
Existence of Tubular Neighborhoods 

 
Locally, we know how a smooth submanifold  N 

n
 sits inside its ambient manifold 

M 

m
  (where n  <  m), for we can change variables smoothly so that the inclusion of 

the submanifold locally looks like the flat inclusion of  RRRR 

n
 in  RRRR 

m
 as the subspace 

of all vectors whose last  m – n  coordinates are all zero.  For many purposes it is 

useful, or even absolutely essential, to have a comparable global picture.   
 

Easy example.    Take  S 

n
  as a submanifold of RRRR 

n +
 
1
 in the usual way.  Then one 

knowns that the open neighborhood  RRRR 

n +
 
1
 � � � � {0} of  S 

n
  is diffeomorphic to the 

product   S 

n
 × RRRR by the map sending v to the pair ( ||||v|||| 

–
 
1

 v, ln ||||v|||| ), and under 

this diffeomorphism  S 

n
  corresponds to  S 

n
 × {0}.   

 

Easy generalizations.     Look at regular level hypersurfaces of  RRRR 

n +
 
1
  defined by 

equations of the form  f (x)  =  0, where  f  is a smooth real valued function with the 

basic regularity property one first sees in the theory of Lagrange multipliers f :  If  

f (x)  =  0  then the gradient ∇∇∇∇ f (x)  is nonzero.   In this case, the zero set  N  of  f  

is a smooth  n – dimensional submanifold of  RRRR 

n +
 
1
 and the normal thickening map 

 

Q : N × RRRR   —→→→→   RRRR 

n +
 
1
 

 

given by  Q(x, t)   =   x  +  t  · ∇∇∇∇ f (x)  is a smooth map such that for each  x  the 

derivative matrix/linear transformation  DQ(x, 0)  is invertible (this uses the fact 

that the gradient is nonzero perpendicular to the hypersurface everywhere).  This 

means that for each  x  there is some  h  >  0 and some neighborhood  U  of  x  in  

N such that the restriction of  Q  to  N × ( – h, h) is mapped diffeomorphically onto 

a neighborhood of  x  in RRRR 

n +
 
1
.   As the picture below suggests, the map  Q  will 

usually not define a diffeomorphism on all of  N × RRRR (in contrast to the case of the 

sphere).  However, one can use some point set topology to show that there is an 

open neighborhood  V  of  N × {0} such that  Q  maps  V  diffeomorphically onto a 

neighborhood of  N  in RRRR 

n +
 
1
  (in the picture, this neighborhood is indicated by the 

red line segments; see also the second picture below).   

 

The preceding examples might lead one to ask if for every submanifold inclusion 

of some  N 

n
 in an  M 

m
  there is a neighborhood diffeomorphic to a product 

manifold  N 

n
 × RRRR 

m – n
 .  However, this is false; the simplest example of this sort is 

given by taking  M  to be a Möbius strip and  N  to be the circle in the center of the 



Möbius strip.  The well – known  “one – sidedness”  property of the Möbius strip 

then leads to the following conclusion: 
 

If  V  is an open neighborhood of  N  in  M  and  x  is a point of  N, then there is an 

open neighborhood  W  of  x  in  V  and all points of  W ���� N  lie in the same 

connected component of  M ���� N. 
 

This could not happen if  N  had a neighborhood  U which was homeomorphic to 

N  × RRRR (why?). 
 

On the other hand, the Möbius strip example also provides a key to understanding 

what does happen in general.  This may be seen using a standard parametrization 

of the Möbius strip as a ruled surface, in which every point lies on a unique line 

segment passing through the central circle  N : 
 

σσσσ(u, v)  =  (cos u, sin u, 0)  +  v    ·    (    cos u · cos(u/2), sin u · cos (u/2), sin (u/2)    )    
 

One important feature of this parametrization is the existence of a projection from 

M  to  N  given geometrically by taking all points on the line segment in  M  

through  x  and mapping them to  x ; this projection is a smooth submersion whose 

restriction to  N  is the identity map. 
 

In fact, using a suitable change of coordinates it is possible to think of the line 

segments through points as  1 – dimensional vector spaces, each with its own 

addition and scalar multiplication, and with the zero given by the unique point of  

N  through which the line segment passes.  This is an example of a vector bundle 

structure on  M  over  N. 

 

The Tubular Neighborhood Theorem  states that every submanifold N in M has 

a neighborhood with such a vector bundle structure, and in fact this bundle 

structure is unique up to a suitable notion of equivalence.  This result is important 

for many reasons, some of which are related to the geometry of  M and  N, and 

others of which expedite the use of algebraic topology and homotopy theory for 

studying smooth manifolds.   One reference for the statements and proofs of the 

basic existence theorems is Bredon, Geometry and Topology, specifically pages 93 

– 94 (Theorem I I.11.4) and 99 – 100 (Theorem I I.11.14).  These proofs are brief 

and direct, and they do not use vector bundles explicitly.  Since the formulations 

and proofs of the uniqueness theorems for tubular neighborhoods require vector 

bundle structure, it will be worthwhile to reformulate some of Bredon’s exposition 

in terms of vector bundles.   We shall refer to the following old Mathematics 205C 

notes for the basic definitions for such objects: 
 

http://math.ucr.edu/~res/math260s10/coursenotes205C.pdf 



 

More precisely, the general concept of a vector bundle is discussed beginning in 

Subsection V.1.3 on page 173 (the preceding subsections in V.1 discuss basic 

examples of vector bundles on real and complex projective spaces; one can skip 

the discussion of such examples and proceed straight to the last two paragraphs of 

the subsection without loss of continuity).  Subsections V.1.4 through V.1.6 give 

most of the formal definitions and foundational results, and Subsection V.2.1 gives 

an important construction called the pullback.   We shall freely use material from 

these subsections henceforth. 
 

In the theory of vector bundles, it is often useful and sometimes essential to put 

inner products on the vector spaces which lie over the points of the base space.  As 

in the case of tangent bundles, such structures are called Riemannian metrics, and 

Subsection V.2.4 of the notes (beginning on page 184) gives the definitions and 

main results, including the all – important theorems about the existence of such 

structures on arbitrary vector bundles.   
 

We shall need one additional concept involving vector bundles; namely, the notion 

of a vector sub – bundle.   As for vector bundles, there are both topological and 

smooth versions of this concept. 
 

Definition.   Let  αααα    : A →→→→ X and ββββ    : B →→→→ X be (topological or smooth) vector 

bundles over X, for each  x in  X  let  Ax  and  Bx  denote the vector spaces (fibers) 

in  A  and  B  which map to  x  under the projection maps, and let  T: A →→→→ B  be a 

(continuous or smooth) mapping such that for each  x in  X  the mapping T sends 

Ax  to  Bx  by a linear monomorphism.  Then we shall say that the image T[A] is a 

(continuous or smooth) vector sub – bundle of B.   In the smooth category, it 

follows that the mapping T defines a smooth embedding (onto a smooth 

submanifold of  B). 
 

Fundamental Examples.   1.  Suppose that  X  is a nowhere zero smooth vector 

field on the smooth manifold  M.  Then there is a vector bundle inclusion from the 

product bundle  M × RRRR  to  T(M) sending (y, t)  to  t  · X(y). 
 

2.  Suppose that  N 

n
  is a smooth embedding of  M 

m
  (where n  <  m) and  j  is the 

inclusion mapping.  Then the map of tangent spaces  T( j ) from T(N 

n
) to T(M 

m
) 

identifies T(N 

n
)  a subbundle of  T(M 

m
)  restricted to the submanifold  N 

n
.  

 

Predictably, the second example is particularly important to us in the present 

discussion.   In any case, we have the following fundamentally important result, 

which is basically a general form of Proposition I I.11.2 on page 93 of Bredon: 

 



Complementary Subbundle Theorem.   Suppose we are given the data needed 

for the definition of a (topological or smooth) sub – bundle, and use the notation in 

the definition above; assume also that we are given a (continuous or smooth) 

Riemannian metric on  B.   For each  x  in  X  let  Cx  ⊂⊂⊂⊂  Bx  be the orthogonal 

complement of T[ Ax ] in Bx , and let C be the union of these vector subspaces.   

Then the restriction of  ββββ     to C defines a (topological or smooth) vector bundle 

which is a sub – bundle of  B; furthermore, in the smooth category this sub – 

bundle is also a smooth submanifold. 
 

Less formally,  for each sub – bundle there is a complementary sub – bundle, and 

over each point the fibers of these subbundles are complementary subspaces (their 

linear sum is the whole fiber, and their intersection only contains the zero vector). 

 

Proof.   Let  x  be a point in  X, and let  U  be an open neighborhood of  x  such 

that the restrictions of both  A  and  B  to  U  are product bundles, say  U × RRRR 
n
 and 

U × RRRR 
n
.  Then locally the map T sends (u, v) to (u, H(u) v), where  H(u)  is a 

(continuous or smooth) function taking values in the space of all  m × n matrices 

of rank  n (recall that  n  <  m).  In particular, if as usual we let  e1, … etc. denote 

the standard unit vectors, then for each  u  the vectors  ai (u) = H(u) ei  form a basis 

for the subspace T[ Au ]. 
 

Next, extend the linearly independent set  { ai (u) } to a basis for  RRRR 
n
  by adding the 

vectors wj , where j = 1, … , m – n; define cross sections of  B  restricted to  U  by 

bj (u)  =  (u, wj).  Since the set of invertible matrices is open in the set of all m × m 

matrices, it follows that for all u sufficiently close to x the vectors ai (u) and bj (u) 

combine to form a basis for RRRR 
n
.  If necessary, take a smaller neighborhood  V of  x 

such that the given vectors form a basis for all points of V. 
 

We can now apply the Gram – Schmidt orthogonalization process to the vector 

valued functions a1, … , an , b1, … , bm – n  in that order.  Let  y1, … , yn , z1, … , 

zm – n  in  Bu  be the orthonormal basis obtained in this fashion.  Then it follows 

immediately that for each  v  in  V  the vectors (v, zj (v)) are an orthonormal basis 

for Cv .  In particular, using the functions  zj  we obtain a vector bundle inclusion 

from the product vector bundle V × RRRR m – n
 to  B, the image of which is the 

subspace C described above.  In the smooth category, this mapping is also a 

smooth embedding.  Thus we know that locally  C has a vector bundle structure 

and maps appropriately into  B.  To conclude the argument we need to show that C 



has a global vector bundle structure, and this structure is smooth if our original 

data are smooth. 
 

The preceding discussion gives us an open covering { Vαααα } of X and “chart” 

homeomorphisms  hαααα: Vαααα × RRRR m – n
 →→→→ C,  kαααα: Vαααα × RRRR

 m
 →→→→ B, with the following 

properties: 
 

If  e1, … etc. denotes the standard basis of unit 

vectors for RRRR m – n
, then for each point  p  in  Vαααα, 

the maps  hαααα  sends (p, ej ) to  kαααα (p, zαααα, j (p)) where 

the zαααα, j  are orthonormal vector valued continuous 

functions; in the smooth case, the kαααα are smooth 

charts and the  zαααα, j  are smooth functions.   
 

Suppose now that we have an open set  ΩΩΩΩ  contained in both Vαααα and Vββββ, so that the 

restrictions of  hαααα and  hββββ  both define homeomorphisms from ΩΩΩΩ × RRRR m – n
 to  C 

which differ by a homeomorphism ΨΨΨΨ from  ΩΩΩΩ    × RRRR m – n
 to itself.  What can we say 

about this map?  First of all, since hαααα and hββββ are fiber preserving maps, the same is 

true of the difference homeomorphism  ΨΨΨΨ.   Next, since hαααα and hββββ are linear maps 

on each fiber, the same is also true of  ΨΨΨΨ.  This is enough for us to conclude that 

we have a topological vector bundle atlas for  C →→→→ X.  We need to show that this 

will be a smooth atlas if the original data are smooth.   Now the  zαααα, j and  zββββ, j  both 

define orthonormal bases for the same vector subspace when evaluated at an 

arbitrary point  p  of  ΩΩΩΩ .  Therefore the standard formulas of linear algebra imply 

the existence of an  (m – n) × (m – n)  matrix valued function G    ββββ, αααα (p) such that 

the entries of  G    ββββ, αααα (p)  are smooth functions of p (in fact, they are inner products 

of zαααα and zββββ vectors) and the matrix G    ββββ, αααα (p) sends  zαααα, j (p)  to  zββββ, j (p) for all  j and  

p.  This means that the map  ΨΨΨΨ  has the form ΨΨΨΨ (p, w)  =  (p, G    ββββ, αααα (p) w) and hence 

is a diffeomorphism which sends fibers to fibers linearly.  Therefore the mappings  

hαααα  define a smooth vector bundle atlas for C, which is what we wanted to prove. 
 

In particular, this means that the objects denoted by  Ξ     (upper case Greek xi) on 

pages 93 – 94 and 99 – 100 of Bredon are smooth vector bundles and hence also 

smooth manifolds.  In this language, the arguments in Bredon show that the 

smooth maps in the proof of the Tubular Neighborhood Theorems have invertible 

derivatives on the zero sections of the given vector bundles, and therefore they are 

locally diffeomorphisms at such points by the Inverse Function Theorem.  Once we 

have this, the rest of the arguments in Bredon go through without change. 



 
An application of the Tubular Neighborhood Theorem 

 
In his book, Topology and Geometry,  Bredon uses the Tubular Neighborhood 

Theorem to show that continuous maps on smooth manifolds can be approximated 

by smooth ones.  We shall mention another result in this direction which is implicit 

in Bredon and very important for the standard applications of algebraic topology to 

smooth manifolds: 
 

Proposition.   Let  N 

n
  be a smooth submanifold M 

m
  (where n  <  m).   Then there 

is an open neighborhood  U  of  N  in  M  such that  N  is a strong deformation 

retract of  M. 
 

Proof.   Take  U  to be a tubular neighborhood of  N.    Let  q: U →→→→ N correspond 

to the vector bundle projection, so that the inclusion  j  of  N  in  U  corresponds to 

the zero section.  Then the composite q  j is the identity on  N, and the reverse 

composite  j q is homotopic to the identity by the elementary straight line 

homotopy  Ht (v)  =  t v. 

 

 


