
Vector bundles over cylinders 

 
One important fact about vector bundles is that they can be classified using 

homotopy theory.  An essential step in developing this classification is the 

following result on vector bundles over the product of a space with an interval: 
 

Theorem.   Let  αααα    : A →→→→ X  and  ββββ    : B →→→→ X  be (topological or smooth) vector 

bundles over a compact space X, let   
 

αααα        × Identity:  A × ( – εεεε, 1 + εεεε )  →→→→  X  × ( – εεεε, 1 + εεεε ) 
 

denote the product with the open interval  ( – εεεε, 1 + εεεε )  for some  εεεε  >  0  and 

likewise for β β β β     × Identity,  for each  x in  X  let  Ax  and  Bx  denote the vector 

spaces (fibers) in  A  and  B  which map to  x  under the projection maps, and let   
 

T: A × ( – εεεε, 1 + εεεε )  —→→→→  B  × ( – εεεε, 1 + εεεε ) 
 

be a (continuous or smooth) mapping such that for each  x in  X  and  t  in the 

interval, the mapping T sends  Ax × { t }  to  Bx × { t }  by a linear monomorphism.  

Assume further that we are given a (continuous or smooth) Riemannian metric on  

B, let  C  denote the orthogonal complement of  T[A × { 0 }]  in  B × { 0 } under the 

obvious identifications Y  →→→→  Y × { 0 }, and let  D  denote the orthogonal 

complement of  T[A × ( – εεεε, 1 + εεεε )].   Then  D  is isomorphic as a (continuous or 

smooth) to the product  C × ( – εεεε, 1 + εεεε )  →→→→  X  × ( – εεεε, 1 + εεεε ).  
 

It is possible to eliminate the compactness assumption on  X, but we shall not do so 

since we only need the result in the compact case.  In the topological category 

there is a similar result if one replaces the open interval with a closed interval such 

as  [0, 1]; the argument is very similar to the one given below, and it is left to the 

reader as an exercise. 

 

Important consequences.   1.   Isotopic smooth embeddings have isomorphic 

normal bundles.  Given a smooth isotopy ht : M  →→→→  N, there is an associated 

smooth embedding  
 

k: M × ( – εεεε, 1 + εεεε )  —→→→→  N  × ( – εεεε, 1 + εεεε ) 
 

sending (x, t)  to  ( ht (x) , t ).  The preceding theorem implies that the normal bundle 

to the embedding  k  is a product of the normal bundle to  N × { 0 }  with the 

interval, and the restriction of this normal bundle to  N × { 1 }  is the restriction of 

the normal bundle for  k  to  N × { 1 }. 



 

2.   If we use the modified version of the main result for topological products with 

closed intervals, by induction we can conclude that every topological vector bundle 

over a product of closed intervals  —  and hence also every topological vector 

bundle over a closed disk  —  is a product bundle. 
 

3.   Using the preceding, we can conclude that every  k – dimensional vector 

bundle over the sphere  S 

n
  is obtained by gluing together two  k – dimensional 

product bundles over the upper and lower hemispheres by means of a vector 

bundle automorphism over the equatorial subsphere  S 

n – 1
.  Such an automorphism 

corresponds to a continuous map from the subsphere into the group  GL(k, RRRR) (this 

map is often called a clutching function); one can prove that two clutching 

functions determine the same vector bundle if and only if they are homotopic (we 

shall prove variants of this result later).  Similar results hold in the smooth category 

but require more work. 

 

Proof of the theorem.   There are two main steps in the proof.  The first is to show 

that for each choice of  t  there is an  h  >  0   such that the restriction of  D  to the 

thickened slice  X × ( t – h, t + h ) is a product of  C[ t ]  —  the restriction of the 

vector bundle  D  to B × { t }  —  with the interval ( t  – h, t  + h ).  The second step 

of the proof applies the first to conclude that  D  itself is isomorphic to the product 

C × ( – εεεε, 1 + εεεε ). 
 

Let  E(t)  denote the fiberwise perpendicular projection of  B × { t } onto  C[ t ], and 

let  x  be a point in  X.  Then a continuity argument (which can be done over an 

open subset of  X  on which  B  is trivial)  implies that over all points (y, u ) 

sufficiently close to (x, t ) the restriction of E(t)x to  Cy × { u }  maps the latter 

isomorphically to  Cx × { t }.  In particular, it follows that there is an open 

neighbhorhood  W  of  X × { t }  such that the restriction of the composite 
 

D  ⊂⊂⊂⊂  B × ( – εεεε, 1 + εεεε )  →→→→  B × { t }  →→→→  C[ t ] 
 

to the inverse image of  W  is an isomorphism on each fiber.  Since  X  is compact, 

it follows that there is some  h  >  0  such that X × ( t – h, t + h ) is contained in  

W.   But this implies that the restriction of the bundle  D  to  B × ( – εεεε, 1 + εεεε )  is 

isomorphic to C[ t ] × ( t – h, t + h ).  
 

In particular, for each value of  t  it follows that there is some  h  >  0  (depending 

upon  t ) such that the restriction of   D  to  X × ( t – h, t + h )  is isomorphic to the 

product C[ t ] × ( t – h, t + h ); let  h0  be the choice of  h  corresponding to  t  =  0.    

Consider now the set of all  k  >  0  such that the restriction of  D  to  X × ( – h0, k )  



is isomorphic to the product of  C[ 0 ] with ( – h0, k ); this nonempty set is bounded 

from above by 1 + εεεε  and hence has a least upper bound  ηηηη.  We claim that  ηηηη     is 

equal to 1 + εεεε.  If it is strictly less than 1 + εεεε, consider what must happen.  First, 

since  ηηηη  is the least upper bound it follows that for all  k  <  ηηηη  the restriction of  D  

to  X × ( – h0, k )  is isomorphic to C[ 0 ] × ( – h0, k ).  Next, there is some δδδδ  >  0 

such that the portion of the bundle over  (ηηηη – δδδδ, ηηηη + δδδδ )  is a product of C[ηηηη ] with 

(ηηηη – δδδδ, ηηηη + δδδδ ).  Now we know that the restriction of  D  to  X × ( – h0, ηηηη – [δδδδ/3]/3]/3]/3] )  

is isomorphic to C[ 0 ] × ( – h0, ηηηη – [δδδδ/3]/3]/3]/3]  ).   If we combine these observations, one 

immediate conclusion is that  C[ 0 ],  C[ηηηη – ½ δδδδ ]  and  C[ηηηη ]  are all isomorphic.  

Using these isomorphisms, we can piece together an isomorphism between the 

restriction of  D  to  X × ( – h0, ηηηη + δδδδ  )  and  C[ 0 ] × ( – h0, ηηηη + δδδδ  ).  This 

contradicts our basic assumption that the least upper bound  ηηηη was strictly less than 

1 + εεεε, and therefore we must have ηηηη        =  1  + εεεε.  This almost gives the desired 

conclusion, the difference being that we only know the result for the restriction to 

the subset  X × ( – h0, 1  + εεεε ).  However, we can now modify the preceding 

argument to show that  D, which is its restriction to  X × ( – εεεε, 1 + εεεε ), is isomorphic 

to the product  C[ 0 ] × ( – εεεε, 1 + εεεε ). 

 
 



 


