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Abstract. For each m ≥ 0 we find an open (4m+9)-dimensional simply-
connected manifold admitting complete nonnegatively curved metrics whose
souls are non-diffeomorphic, homeomorphic, and have codimension 2. We
give a diffeomorphism classification of the pairs (N, soul) when N is a
nontrivial complex line bundle over S7 × CP2 : up to diffeomorphism there
are precisely three such pairs, distinguished by their non-diffeomorphic souls.

1. Introduction

In dimension 7 there are several examples of closed Riemannian manifolds of
sec ≥ 0 that are homeomorphic and non-diffeomorphic. Historically, the first
such example is an exotic 7-sphere discovered by Gromoll-Meyer as the biquo-
tient Sp(2)//Sp(1) [GM74]. Other examples include some homotopy 7-spheres
with metrics of sec ≥ 0 constructed by Grove-Ziller [GZ00], and examples found
among Eschenburg spaces and Witten manifolds by Kreck-Stolz [KS88, KS93]
(see also [CEZ07]).

Our main result gives first examples of this kind in dimensions > 7, e.g. we
show that S7 × CP2m is not diffeomorphic to Sp(2)//Sp(1) × CP2m . This is
proved via a delicate argument which mixes surgery with homotopy-theoretic
considerations of [Sch73, BS74, Sch87].

Recall that for any integer d there is a unique oriented homotopy 7-sphere
Σ7(d) that bounds a parallelizable manifold of signature 8d [KM63]. Here
Σ7(0) = S7 , and Σ7(1) = Sp(2)//Sp(1) generates bP8

∼= Z28 , the group of
oriented homotopy 7-spheres, which all bound parallelizable manifolds.

Grove-Ziller [GZ00] constructed cohomogeneity 1 metrics of sec ≥ 0 on all
exotic 7-spheres that are linear S3 -bundles over S4 . A classification of such
exotic spheres by Eells-Kuiper [EK62] then implies that Σ7(d) admits a metric
of sec ≥ 0 if d ≡ h(h−1)

2 mod 28 for some integer h . Since Σ7(−d) and
Σ7(d) are orientation reversing diffeomorphic, we summarize that unoriented
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diffeomorphism classes of homotopy 7-spheres are represented by Σ7(d)’s with
0 ≤ d ≤ 14 where such Σ7(d) is known to admit a metric of sec ≥ 0 if
d /∈ {2, 5, 9, 12} . We prove

Theorem 1.1. If m, d, d′ are integers and d− d′ is odd, then Σ7(d)×CP2m

is not diffeomorphic to Σ7(d′)× CP2m .

The proof of Theorem 1.1 occupies most of the paper and is sketched in Sec-
tion 4. As we see in Lemma 12.2 below, Σ7(d)×CP2m and Σ7(d′)×CP2m are
diffeomorphic if either d− d′ or d + d′ is divisible by 4, and m is not divisible
by 3. For m = 1 this is optimal:

Theorem 1.2. If d, d′ are integers, then Σ7(d) × CP2 is diffeomorphic to
Σ7(d′)× CP2 if and only if either d− d′ or d + d′ is divisible by 4.

Therefore, if m is not divisible by 3, then each Σ7(d)×CP2m admits a metric
of sec ≥ 0, and the manifolds Σ7(d) × CP2m lie in 2 or 3 unoriented diffeo-
morphism classes; for m = 1 they lie in 3 unoriented diffeomorphism classes.

We also show that any manifold that is tangentially homotopy equivalent to
Σ7(d)× CP2 is diffeomorphic to Σ7(d′)× CP2 for some d′ (see Section 13).

Studying whether products of CPn with homotopy spheres are diffeomorphic
goes back to Browder who showed its relevance to constructing smooth semifree
circle actions on homotopy (2k+7)-spheres. In particular, by results in [Bro68],
Theorem 1.1 applied for d = 1 immediately implies:

Corollary 1.3. Given an odd integer d and positive integer k , the exotic sphere
Σ7(d) is diffeomorphic to the fixed point set of a smooth semifree circle action
on a homotopy (2k + 7)-sphere if and only if k is even.

The result is new for k = 3. The corresponding result for k ≥ 5 was sketched
by Schultz in [Sch87, Theorem III]. The case k = 1 follows from a result of
Hsiang [Hsi64, Theorem II]. If k is even, [Bro68, Theorem 6.1] implies that
any Σ7(d) × CPk−1 is diffeomorphic to S7 × CPk−1 , and that any homotopy
7-sphere can be realized as a fixed point set of a smooth semifree S1 -action on
a homotopy (2k + 7)-sphere.

Any open complete manifold N of sec ≥ 0 is diffeomorphic to the total
space of a normal bundle to a compact totally geodesic submanifold, called
a soul [CG72]. The diffeomorphism class of a soul may depend on the metric,
and this dependence has been investigated in [Bel03, KPT05] and most re-
cently in [BKS] where the reader can find further motivation and background.
In particular, in [BKS] we systematically searched for open manifolds admitting
metrics with non-diffeomorphic souls of lowest possible codimension. To this
end we show:
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Theorem 1.4. For each m ≥ 0 there exists an open (4m + 9)-dimensional
simply-connected manifold N admitting complete metrics of sec ≥ 0 whose
souls are non-diffeomorphic, homeomorphic, and have codimension 2.

Codimension 2 is the lowest possible if dim(N) ≥ 6 because by the h-cobordism
theorem, in a simply-connected manifold open manifold of dim ≥ 6 all codi-
mension 1 souls are diffeomorphic. Letting N in Theorem 1.4 be the product
of R2 with manifolds in Theorem 1.1 cannot work because a closed simply-
connected manifold of dimension ≥ 5 can be recovered up to diffeomorphism
from its product with R2 . Instead, we find nontrivial R2 -bundles over mani-
folds in Theorem 1.1 that admit metrics of sec ≥ 0 and have diffeomorphic total
spaces. The same reasoning works for R2 -bundles over Eschenburg spaces or
Witten manifolds that are homeomorphic and non-diffeomorphic, which covers
the case m = 0 in Theorem 1.4.

Let M
k,c
sec≥0(N) denote the moduli space of complete metrics of sec ≥ 0 on

N with topology of Ck -convergence on compact subsets, where 0 ≤ k ≤ ∞ .
Suppose N admits a complete metric with sec ≥ 0 whose soul has non-trivial
normal Euler class. Then it was shown in [KPT05] that metrics with non-
diffeomorphic souls lie in different components of M

k,c
sec≥0(N); more generally,

the authors showed in [BKS] that associating to the nonnegatively curved metric
g the diffeomorphism type of the pair (N, soul of g) defines a locally constant
function on M

k,c
sec≥0(N); thus non-diffeomorphic pairs correspond to metrics in

different components of the moduli space. Since the souls in Theorem 1.4 have
nontrivial normal Euler class, we get:

Corollary 1.5. M
k,c
sec≥0(N) is not connected for N as in Theorem 1.4.

Given an open manifold N admitting a complete metric of sec ≥ 0 with soul
S0 , an attractive goal is to obtain a diffeomorphism classification of pairs (N, S)
where S is a soul of some complete metric of sec ≥ 0 on N . Here we focus
on the case when S0 is a simply-connected, has codimension 2, and dimension
≥ 5. If S0 has trivial normal bundle, and S is any other soul in N , then the
pairs (N, S), (N, S0) are diffeomorphic (see [BKS]).

To our knowledge the results below are the first instances of diffeomorphism
classification of pairs (N,S) in which not all pairs are diffeomorphic.

Theorem 1.6. The total space N of any nontrivial complex line bundle over
CP2 × S7 admits 3 complete nonnegatively curved metrics with pairwise non-
diffeomorphic souls S0 , S1 , S2 such that for any complete nonnegatively curved
metric on N with soul S , there exists a self-diffeomorphism of N taking S to
some Si .
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Here Si is isometric to the product CP2 × Σ7(3i) where the second factor is
given a metric of sec ≥ 0 by [GZ00].
One can prove similar result for 7-dimensional souls which are certain Wit-
ten manifolds. Recall that the Witten manifold Mk,l is the total space of
an oriented circle bundle over CP2 × CP1 with Euler class given by (l, k) ∈
H2(CP2)⊕H2(CP1) where l , k are nonzero coprime integers. In [KS88, Theo-
rem B] Kreck-Stolz classified Witten manifolds Mk,l up to oriented homeomor-
phism and diffeomorphism in terms of k, l , and the above definition of Mk,l

easily implies that M−k,−l is oriented diffeomorphic to Mk,l with the oppo-
site orientation, so one also has a (unoriented) diffeomorphism classification of
Witten manifolds. As remarked after [KS88, Theorem C], the homeomorphism
type of Mk,l consists of Witten manifolds if l ≡ 0 mod 4 and l ≡ 0, 3, 4 mod 7.
We prove:

Theorem 1.7. For nonzero coprime integers k, l with l ≡ 0, 3, 4mod 7 and
l ≡ 0mod 4, let N be the total space of a nontrivial R2 -bundle over Mk,l .
(1) If the Witten manifold Mk′, l′ is homeomorphic to Mk,l , then N has a
complete metric of sec ≥ 0 whose soul Sk′,l′ is diffeomorphic to Mk′,l′ .
(2) For any complete metric of sec ≥ 0 on N with soul S the pair (N, S) is
diffeomorphic to (N,Sk′, l′) for some Sk′,l′ as in (1).

The proof of Theorems 1.6 and 1.7 hinges on the following three observations.
• If S , S′ are homeomorphic, non-diffeomorphic manifolds that are Eschenburg
spaces, or Witten manifolds, or products Σ7(d)×CP2m , then S′ is the connected
sum of S with a homotopy sphere.
• If S′ is a closed simply-connected manifold of dimension ≥ 5, and if S
is diffeomorphic to the connected sum of S′ and a homotopy sphere, then
there are nontrivial R2 -bundles over S , S′ with diffeomorphic total spaces (see
Theorem 14.1).
• If S , S′ are simply-connected souls of codimension 2 and dimension ≥ 5,
then S is diffeomorphic to the connected sum of S′ and a homotopy sphere
(see [BKS, Theorem 1.8]).
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3. On classifying smooth manifolds via surgery

In this section we describe some results of surgery theory that are used through-
out this paper paper. Background references for surgery are Wall’s book [Wal99],
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especially Chapters 3 and 10, recent book of Ranicki [Ran02], and Browder’s
book [Bro72] for the simply-connected case.

Let Mn be a compact smooth manifold, with or without boundary, where
unless stated otherwise both M and ∂M are assumed connected. We also
assume that n ≥ 6 if ∂M 6= ∅ , and n ≥ 5 otherwise. A simple homotopy
structure on M is a pair (N, f) consisting of a compact smooth manifold N
and a simple homotopy equivalence of manifolds with boundary (in other words,
a homotopy equivalence of pairs). Two such structures (N1, f1) and (N2, f2)
are said to be equivalent if there is a diffeomorphism h : N1 → N2 such that
f2◦h ' f1 , where again the homotopy is a homotopy of pairs. The set of all
such equivalence classes is a pointed set which is called a structure set and is
denoted by Ss(M). Its base point is the identity on M , and this pointed set
fits into an exact Sullivan-Wall surgery exact sequence

· · · → [Σ(M/∂M), F/O] σ→ Ls
n+1(π1(M), π1(∂M)) ∆→ Ss(M)

q→ [M,F/O] σ→ . . .

which can be continued indefinitely to the left, and one step to the right as
σ : [M, F/O] → Ls

n ( π1(M), π1(∂M) ). Here Ls
m(π1(M), π1(∂M)) is an abelian

group, called the Wall group, that depends only on the (inclusion induced) ho-
momorphism π1(∂M) → π1(M), the value of m modulo 4, and the (orientaton)
homomorphism w : π1(M) → Z2 , which we omit from the notation. The map
∆ is comes from an action of Ls

n+1(π1(M), π1(∂M)) on Ss(M), namely ∆ send
an element α of the Wall group to the α-image of the structure represented by
id(M). The map q from Ss(M) to the set of homotopy classes [M,F/O] is
called the normal invariant. The map σ is called the surgery obstruction map.

The exactness in the term Ss(M) means that two simple homotopy structures
have equal normal invariants if and only if they are in the same orbit of ∆. Even
though [M, F/O] is an abelian group, σ : [M,F/O] → Ls

n ( π1(M), π1(∂M) ) is
not necessarily a homomorphism, and exactness at [M,F/O] means that the im-
age of q equals to σ−1(0); nevertheless, σ becomes homomorphism in the con-
tinuation of the surgery sequence to the left starting from [Σ(M/∂M), F/O] →
Ls

n+1(π1(M), π1(∂M)) [Wal99, Proposition 10.7].

Although surgery theory in principle yields a diffeomorphism classification for
closed manifolds with a fixed homotopy type, it does so indirectly, and only for
a few homotopy types a complete classification is known.

If the inclusion ∂M → M induces a π1 -isomorphism, the relative Wall groups
vanish, and Ss(M) is bijective to [M, F/O] via q .

If M = Sn , then Ss(Sn) = Θn , the set of oriented diffeomorphism classes
of homotopy n-spheres which forms a group under connected sum. The sub-
group bPn+1 of homotopy n-spheres that bound parallelizable manifolds can
be identified with the image of the homomorphism Ls

n+1(1) → Ss(Sn).
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If M is closed and simply-connected, then the action of Ls
n+1(1) on Ss(M)

factors through the bPn+1 -action via connected sum, and for any two homotopy
equivalences f1, f2 : N → M with equal normal invariants, f1 is the connected
sum of f2 with an orientation-preserving homeomorphism Σn → Sn where Σn

represents an element of bPn+1 ; in particular, N1 is diffeomorphic to N2 #Σn .
Kervaire-Milnor [KM63] showed that bPn+1 is a finite cyclic group which van-
ishes if n is even, and has order at most 2 if n = 4r + 1. On the other hand,
the order of P4r grows exponentially with r , and this is the case we focus on in
the present paper. Each element of bP4r with r ≥ 2 is represented by a (unique
up to orientation-preserving diffeomorphism) homotopy sphere Σ4r−1(d) that
bounds a parallelizable manifold of signature 8d . Here Σ4r−1(1) = S4r−1 , and
Σ4r−1(1) generates bP4r .
We illustrate how surgery works in a setting that plays an important role in this
paper. Removing an open disk from the interior of a parallelizable manifold with
boundary Σ4r−1(d) yields a parallelizable cobordism W 4r between Σ4r−1(d)
and Sk , and hence defines a normal map

F : (W k+1, ∂W k+1) → (Sk × I, Sk × ∂I)

covered by an isomorphism of trivial tangent bundles. The surgery obstruc-
tion is preserved by products with CP2m [Bro72, Theorem III.5.4], so that
σ(F × id(CP2m)) = σ(F ) = d . Let f : U4m+4r(d) → D4m+4r is a (boundary
preserving) degree one map, where U4m+4r(d) is a parallelizable manifold that
bounds Σ4m+4r(d). Taking boundary connected sums of F × id(CP2m) and f
along the boundary component S4r−1 ×CP2m defines a normal map with zero
surgery obstruction, hence it can be turned into a simple homotopy equivalence
via surgery, in other words, we get an s-cobordism between Σ4r−1(d) × CP2m

and (S4r−1 × CP2m)# Σ4m+4r(d), which are therefore diffeomorphic. In sum-
mary the following holds:

Fact 3.1. Let M = S4r−1 × CP2m where r ≥ 2. If h : Σ4r−1(d) → S4r−1 and
H : Σ4m+4r−1(d) → S4m+4r−1 are orientation-preserving homeomorphisms, then
the simple homotopy structures

h× id(CP2m) : Σ4r−1(d)× CP2m → S4r−1 × CP2m

H # id(M) : Σ4m+4r−1(d)#M → S4m+4r−1 # M = M

represent the same element ∆(d) in the structure set Ss(M).

Determining the kernel of the bPn+1 -action on Ss(M) is a major step in the
diffeomorphism classification of closed manifold homotopy equivalent to M .
The homotopy inertia group Ih(M) of an n-manifold M is the group of all
Σ ∈ Θn such that the standard homeomorphism M#Σ → M is homotopic
to a diffeomorphism. The kernel of ∆: Ls

n+1(π1(M)) → Ss(M) is called the
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surgery inertia group and denoted I∆(M). If M is closed and simply-connected,
then I∆(M) is the preimage of Ih(M) ∩ bPn+1 under ∆.
In particular, if M is a closed simply-connected (4r − 1)-manifold, then d ∈
Z = Ls

4r(1) acts on Ss(M) by taking connected sum with Σ4r−1(d), and ∆(d)
is trivial in Ss(M) if and only if Σ(d) ∈ Ih(M).
A key ingredient of our work is the proof given in [Sch87, Theorem 2.1] of the
following (unpublished) result of Taylor.

Theorem 3.2. (Taylor) If M is a closed oriented smooth manifold of di-
mension 4r − 1 ≥ 7, then the subgroup Ih(M) ∩ bP4r of bP4r has index ≥ 2.

Taylor’s theorem is generally optimal, e.g. if M = S3×CP 2m with m ≥ 1, then
the index of Ih(M) ∩ bP4r in bP4r is 2. (Indeed, if U4 is the connected sum
of D4 and a K3-surface, then U4 is a parallelizable manifold and signature
−16 = −2 · 8, so arguing as in the above proof of Fact 3.1 we see that the
simple homotopy structure id(S3 × CP2m) represent both ∆(0) and ∆(−2)
in Ss(S3 × CP2m), which means that Σ4m+3(−2) lies in Ih(S3 × CP2m) as
claimed.)
On the other hand, [Bro65, Theorem 2.13] implies that Ih(M) ∩ bP4r is trivial
if M is a simply connected, stably parallelizable closed manifold of dimension
4r − 1 ≥ 7. In Section 12 we show that Ih(M) ∩ bP4r has index 4 in bP4r if
M = S7 × CP2 .
Even though Taylor’s theorem ensures that the standard homeomorphism from
Σ7(1) # (S3 × CP2) to S3 × CP2 is not homotopic to a diffeomorphism, these
two manifolds are diffeomorphic as proved in [MS99, Corollary 4.2].
This naturally brings us to another source of nontrivial elements in Ss(M):
simple homotopy self-equivalences of M that are not homotopic to diffeomor-
phisms. For the purposes of diffeomorphism classification, any two homotopy
structures f1, f2 : N → M that differ by a simple homotopy self-equivalences of
M should be identified, i.e. we need to take the quotient of Ss(M) by the ac-
tion of the group Es(M, ∂M) of simple homotopy self-equivalences of (M,∂M)
via composition:

[h] · [N, f ] = [N,h◦f ].
where (N, f) represents a class in Ss(M) and h ∈ Es(M, ∂M). With rare
exceptions the group Es(M, ∂M) is extremely hard to compute, even when M
is simply-connected; in this case all homotopy equivalences are simple so in
agreement with an earlier notation we write E instead of Es .
In comparing elements of Ss(M) that differ by a homotopy self-equivalence the
following composition formula for normal invariants is handy (see [Sch71, page
144] or [MTW80, Corollary 2.6]):

q(g◦h) = q(g) + (g∗)−1 q(h),
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where g represents a class in Ss(M), and h is a homotopy self-equivalence
of M , and the + refers to the group structure in [M,F/O] induced by the
Whitney sum in F/O .

Another version of surgery theory concerns relative structure sets Ss(M rel ∂M)
of simple homotopy structures (N, f) such that f |∂N : ∂N → ∂M is a diffeo-
morphism; two such structures (N1, f1) and (N2, f2) are said to be equivalent
if there is a diffeomorphism h : N1 → N2 such that f2◦h ' f1 , are homotopic
through the maps that are diffeomorphisms on the boundary. The correspond-
ing surgery sequence is exact for n ≥ 5:

[Σ(M/∂M), F/O] → Ls
n+1 ( π1(M) ) → Ss(M rel ∂M) → [M/∂M, F/O]

Finally, we summarize results on classifying spaces that are used below. There
exists a (homotopy) exact sequence of H -spaces

(3.3) O → F → F/O → BO → BF.

where any three consecutive terms in the sequence form a fibration, and where
BF is the classifying space for stable fiber homotopy equivalence classes of
spherical fibrations. Applying to the sequence the functor of homotopy classes
of maps from a cell complex X yields exact sequence of abelian groups:

[X,O] → [X,F ] → [X, F/O] → [X, BO] → [X, BF ],

where the groups [X, F ] and [X, BF ] are finite if X is a finite complex.

4. Sketch of the proof of Theorem 1.1

Let M = Sk×CP2m . If k = 4r−1 ≥ 7, then the product formula for the surgery
obstruction implies that Σk(c) × CP2m is diffeomorphic to M #Σ4m+k(c) for
any integer c , so after taking connected sums of Σk(d)×CP2m , Σk(d′)×CP2m

with Σ4m+k(−d′) it becomes enough to prove that M #Σ4m+k(d) is not diffeo-
morphic to M for odd d . By Taylor’s Theorem 3.2 the obvious homeomorphism
g : M #Σ4m+7(d) → M is not homotopic to a diffeomorphism, yet there could
exist a diffeomorphism φ : M → M #Σ4m+k(d) with φ−1 in another homotopy
class. By exactness of the smooth surgery sequence, g has trivial normal invari-
ant, and hence so does the homotopy self-equivalence g◦φ . (Knowing that g◦φ
is a homeomorphism does not really help because by the topological surgery
sequence any homotopy self-equivalence of M with trivial normal invariant is
homotopic to a homeomorphism).

We start by decomposing any homotopy self-equivalence of Sk × CPq into
the composition of a diffeomorphism, which we may ignore, with two homo-
topy self-equivalences f , f ′ coming from adjoints of maps in πk(E1(CPq)) and
[CPq, E1(Sk)], respectively; this argument works for all odd k .
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A priori, vanishing of the normal invariant of q(g◦φ) need not imply that the
normal invariants of q(f) and q(f ′) vanish; rather by the composition formula
for normal invariants, the sum q(f) + f∗−1q(f ′) vanishes. Still we show that
their normal invariants q(f) and q(f ′) restrict nontrivially to skeleta of different
dimensions, so they cannot cancel, and therefore, q(f) and q(f ′) must both
vanish.
Then f ′ can be extended via the fiberwise cone construction to a homotopy
self-equivalence f̂ ′ of Dk+1 × CPq , and then it is easy to see that vanishing of
q(f ′) implies vanishing of q(f̂ ′), and by Wall’s π − π -theorem for manifolds
with boundary any simple homotopy structure with trivial normal invariant
must be trivial, so restricting back to the boundary shows that f ′ is homotopic
to a diffeomorphism.
To analyze f arising as adjoint of a map in πk(E1(CPq)) we need to specialize
to k = 7. For q ≥ 3, it was shown in [Sch87] that vanishing of q(f) ∈
[S7×CPq, F/O] implies that f is homotopic to a diffeomorphism. A number of
computational details in the proof in [Sch87] are omitted, so for completeness
we fill them here with help of [Sch73, BS74] as follows. Results of [Sch73] imply
that for q ≥ 3 the group π7(E1(CPq)) stabilizes, and by [BS74] this stable
group is isomorphic to Z⊕Z2 where the Z-factor corresponds to the homotopy
self-equivalences that come from Uq+1 ⊂ E1(CPq), and which are homotopic to
diffeomorphisms. On the other hand, following an idea in [Sch87] we show that
the homotopy self-equivalence corresponding to the Z2 -factor has nontrivial
normal invariant. In summary, the elements in the Z-factor are precisely the
ones that give rise to homotopy self-equivalences with trivial normal invariant,
which are in fact homotopic to diffeomorphisms.
In dealing with the case q = 2 a key tool is a spectral sequence in [Sch73]
that converges to homotopy groups of E1(CPq). In contrast to the case q ≥ 3
the group π7(E1(CP2)) is unstable, and we use the above spectral sequence to
show that suitably defined “stabilization” homomorphism from π7(E1(CP2)) to
π7(E1(CP3)) has image of order 2, and kernel of order ≤ 2. The spectral se-
quence computation exploits certain low-dimensional phenomena, and involves
analyzing various maps between homotopy groups of spheres.
If a homotopy self-equivalence f comes from a stably nontrivial element of
π7(E1(CP2)), then we show that q(f) is nontrivial, so this case does not happen.
Thus f comes from a stably trivial element π7(E1(CP2)). In general, any
homotopy self-equivalence coming from an element of π7(E(CPq)) is canonically
tangential, and we can arrange that it fixes {∗}×CPq pointwise. This allows to
show that the map from π7(E1(CPq)) to the structure set of S7 ×CPq factors
through a homomorphism of π7(E1(CPq)) into a relative tangential structure
set on D7×CPq , where D7 should be thought of as the complement of a small
open disk centered at ∗ ∈ S7 . The fact that f comes from a stably trivial
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element of π7(E1(CPq)) translates into vanishing of the normal invariant of f
in the relative tangential surgery sequence of D7 × CPq in which all maps are
homomorphism. Looking at this sequence, and combining Ls

4m+8(1) = Z with
the fact that f comes from a finite order element of π7(E1(CPq)) easily yields
that f is trivial in the relative tangential structure set, which gives triviality
of the ordinary structure set by naturally extending f to S7×CPq . Thus f is
homotopic to a diffeomorphism.

5. Dichotomy Principle and its applications

Understanding normal invariants of simple homotopy self-equivalences of a
closed manifold M is an important step towards classifying manifolds in Ss(M).
In case M = S7 × CP2m , we prove the following clean result.

Theorem 5.1. (Dichotomy Principle) If f is a homotopy self-equivalence
of S7 × CP2m , then f is homotopic to a diffeomorphism if and only if f has
trivial normal invariant.

In other words, there is a dichotomy: either f is homotopic to a diffeomor-
phism else f is not even normally cobordant to the identity. We shall prove
Theorem 5.1 later in Section 11, and now focus on its applications.

Corollary 5.2. If M = S7 × CP2m , then the number of oriented diffeomor-
phism types of manifolds Σ7(d)×CP2m equals to the index of Ih(M)∩ bP4m+8

in bP4m+8 . Explicitly, Σ7(d) × CP2m , Σ7(d′) × CP2m are oriented-preserving
diffeomorphic if and only if Σ4m+7(d− d′) lies in Ih(M).

Proof. First suppose that Σ7(d) × CP2m and Σ7(d′) × CP2m are orientation-
preserving diffeomorphic. By Fact 3.1 this gives an orientation-preserving dif-
feomorphism of Σ4m+7(d′)#M onto Σ4m+7(d) #M , and taking connected sum
with Σ4m+7(−d′), we end up with an orientation-preserving diffeomorphism φ
of M onto Σ4m+7(d− d′)# M .

On the other hand, if H : Σ4m+7(d− d′) → S4m+7 is an orientation preserving
homeomorphism, then the map g := H # id(M) : Σ4m+7(d − d′)#M → M ,
representing ∆(d − d′) in the structure set, has trivial normal invariant by
exactness of the surgery sequence.

By the composition formula for normal invariants q(g◦φ) is trivial. Then The-
orem 5.1 implies that g◦φ is homotopic to a diffeomorphism, and so g is ho-
motopic to a diffeomorphism, i.e. Σ4m+7(d − d′) lies in the homotopy inertia
group Ih(M), as claimed.

Conversely, if Σ4m+7(d − d′) lies in the homotopy inertia group Ih(M), then
Σ4m+7(d − d′)#M is diffeomorphic to M , so taking connected sum with
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Σ4m+7(d′), and applying Fact 3.1 gives an orientation-preserving diffeomor-
phism of Σ7(d)× CP2m and Σ7(d′)× CP2m .

Finally, the first assertion of the corollary follows because the preimage of Ih(M)
under the map d → Σ4m+7(d) is a subgroup of Z whose index equals to the
index of Ih(M)∩ bP4m+8 in bP4m+8 , and d− d′ is in this subgroup if and only
if Σ7(d)× CP2m and Σ7(d′)× CP2m are oriented diffeomorphic. ¤
Remark 5.3. By composing with the product of id(CP2m) and an orientation-
reversing diffeomorphism Σ7(d′) → Σ7(−d′), we immediately conclude that
Σ7(d)×CP2m , Σ7(d′)×CP2m are oriented-reversing diffeomorphic if and only
if Σ4m+7(d + d′) lies in in Ih(S7 × CP2m).

Remark 5.4. As mentioned in Section 3 the standard homeomorphism from
Σ7(1) # (S3×CP2) to S3×CP2 is not homotopic to a diffeomorphism, yet the
domain and codomain are diffeomorphic. The proof of Corollary 5.2 then shows
that S3 × CP2 has a homotopy self-equivalence with trivial normal invariant
that is not homotopic to a diffeomorphism.

Proof of Theorem 1.1. If Σ7(d)×CP2m and Σ7(d′)×CP2m are diffeomorphic,
then by Corollary 5.2 and Remark 5.3 at least one of the homotopy spheres
Σ4m+7(d−d′), Σ4m+7(d+d′) lies in the homotopy inertia group Ih(S7×CPq),
which contradicts Taylor’s Theorem 3.2 because d−d′ and d+d′ = d−d′+2d′
are odd. ¤

6. Factorization of self-equivalences of S7 × CPq

This section describes a fairly canonical factorization of any homotopy self-
equivalence of S7×CP2m , with m ≥ 1, into the composition of a diffeomorphism
and two homotopy self-equivalences each arising from a map of one factor into
the space of homotopy self-equivalences of the other factor.

Recall that for an arbitrary compact Hausdorff space T , E(T ) denotes the
group of all homotopy classes of homotopy self-equivalences of T , and E1(T )
denote the path-component of the identity in the topological monoid of all self-
maps of T (with the compact-open topology). If T is homeomorphic to a finite
connected cell complex, then E1(T ) has the homotopy type of a CW complex
by a result of Milnor [Mil59].

Proposition 6.1. (i) Let f : Sk × CPq → Sk × CPq be a homotopy self-
equivalence, where q ≥ 1 and k is odd. Then there is a diffeomorphism
h : Sk × CPq → Sk × CPq such that f and h induce the same automorphism
of H∗(Sk × CPq;Z).
(ii) Let f be above, and assume that f induces the identity on H∗(Sk×CPq;Z).
Let j(Sk) : Sk → Sk × CPq and j(CPq) : CPq → Sk × CPq be slice inclusions
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whose images are subspaces of the form Sk×{y0} and {x0}×CPq respectively,
and let p(Sk) : Sk × CPq → Sk and p(CPq) : Sk × CPq → CPq denote pro-
jections onto the respective factors. Then the composites p(Sk)◦f ◦j(Sk) and
p(CPq)◦f ◦j(CPq) are homotopic to the corresponding identity mappings.

Proof. (i) The ring H∗(Sk ×CPq;Z) is generated by the classes of dimensions
2 and k , which also generate cohomology 2nd and k th cohomology groups, so
the induced cohomology automorphism f∗ of H∗(Sk × CPq;Z) is completely
determined by its behavior on the generators in dimensions 2 and k , and it must
be multiplication by ± 1 in each case. If χ is the conjugation involution on CPq ,
then id(Sk) × χ is multiplication by +1 on the k -dimensional generator and
multiplication by −1 on the 2-dimensional generator, while if ϕ is reflection
about a standard (k − 1)- sphere in Sk then ϕ × id(CPq) is multiplication
by −1 on the k -dimensional generator and multiplication by +1 on the 2-
dimensional generator. Finally, the composition of these maps is multiplication
by −1 on both generators. Thus every automorphism of H∗(Sk×CPq;Z) is in
fact induced by a diffeomorphism.

(ii) The composite self-map of Sk induces the identity in cohomology and
hence is homotopic to the identity; similarly, the composite self-map of CPq

also induces the identity in cohomology, and a simple obstruction-theoretic
argument shows that this composite must also be homotopic to the identity:
indeed, the restrictions to CP1 are homotopic by degree reasons, and the ob-
structions to extending this to a homotopy of the original maps lie in the groups
H2i

(
CPq,CP1; π2i(CPq)

)
, which are all trivial. ¤

The next step in analyzing the homotopy self-equivalences of S7 ×CPq can be
done in a fairly general context. For the rest of this section X and Y denote
path-connected finite cell complexes with base points x0 and y0 respectively.
which define slice inclusions i(X), i(Y ) : X,Y → X × Y ; projections onto the
factors are denoted p(X), p(Y ).

Let E ′(X×Y ) be the set all classes [f ] ∈ E(X×Y ) of homotopy self-equivalences
such that p(X)◦f ◦j(X) ' id(X) and p(Y )◦f ◦j(Y ) ' id(Y ). If X × Y is the
product of a complex projective space and an odd-dimensional sphere, E ′(X×Y )
equals to the kernel of the action of E(X × Y ) on cohomology (with one direc-
tion given by Proposition 6.1(ii) and the other one is clear as each cohomology
class in this product comes from one of the factors). In general, E ′(X × Y )
need not be a subgroup, yet regardless of whether or not E ′(X × Y ) is a sub-
group of E(X × Y ), there are two important subsets of E ′(X × Y ) that are
subgroups, each arising from a map of one factor into the space of homotopy
self-equivalences of the other factor. One of these is the image of a homo-
morphism αX : [X,E1(Y )] → E ′(X × Y ) defined as follows. Given a class in
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[X, E1(Y )], choose a base point preserving representative g : X → E1(Y );
then g is adjoint to a continuous map g# : X × Y → Y whose restriction
to {x0} × Y is the identity; furthermore, if g′ is homotopic to g then g′# is
homotopic to g# . (This uses the fact that the adjoint isomorphism of function
spaces is a homeomorphism F (A, (B, C) ) ∼= F (A×B, C) where F denotes the
continuous function space with the compact open topology and A,B, C are
compact Hausdorff spaces). Then αX([g]) is defined to be the homotopy class
of the (unique) homotopy self-equivalence G that satisfies p(Y )◦G = g# and
p(X)◦G = p(X). Note that αX([g]) lies in E ′(X × Y ) because the assumption
that g is base point preserving implies that

p(Y )◦G◦j(Y ) = g# ◦j(Y ) = id(Y ) p(X)◦G◦j(X) = p(X)◦j(X) = id(X).

Basic properties of adjoints imply that αX is a well-defined homomorphism
into E(X × Y ) whose image lies in E ′(X × Y ). Interchanging the roles of X
and Y yields a second homomorphism αY : [Y, E1(X)] → E(X×Y ) with image
in E ′(X × Y ).

Special cases of the following proposition are in the literature (e.g. in [Lev69,
2.5]).

Proposition 6.2. Every element in E ′(X×Y ) can be decomposed as the product
αY (v)αX(u) for some u ∈ [X,E1(Y )] and v ∈ [Y,E1(X)].

Proof. Suppose that f represents an element of E ′(X × Y ). By assumption
p(Y )◦f |{x0}×Y is homotopic to the identity, so after changing f within its
homotopy class we may assume p(Y )◦f |{x0}×Y is the identity. Let U : X →
F(Y, Y ) be the adjoint of p(Y )◦f . Since U(x0) = id(Y ) and X is path-
connected, the image of U lie in E1(Y ), which lets us think of U as a map
X → E1(Y ). Hence U defines a homotopy self-equivalence g of X × Y given
by g(x, y) = (x,U(x)(y)); note that p(Y )◦f = p(Y )◦g . Let g′ be a homotopy
inverse of g . Then p(Y )◦f ◦g′ = p(Y )◦g◦g′ is homotopic to p(Y ), and keeping
the homotopy equal to p(X)◦f ◦g′ on the X -coordinate defines a homotopy of
f ◦g′ to a map adjoint to some V : Y → F(X,X), and again path-connectedness
of Y and the assumption that p(Y )◦f |X×{y0} is homotopic to identity imply
the image of V is contained in E1(X). Since f is homotopic to f ◦g′◦g , the
homotopy class of f equals to αY (v)αX(u) where u , v are the homotopy classes
of U , V , respectively. ¤

Remark 6.3. Since X×Y and Y ×X are canonically homeomorphic, Propo-
sition 6.2 easily implies that the classes in E ′(X × Y ) can be also decomposed
as αX(u′)αY (v′) for some u′ and v′ .
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7. A spectral sequence converging to π7(E1(CPq))

By Proposition 6.2 if a homotopy self-equivalence of S7×CPq induces a trivial
map on cohomology, then its homotopy class can be factored as a product of
an element in π7(E1(CPq)) and an element in [CPq, S7] , and in this section we
recall and prove some results on π7(E1(CPq)).

The space E1(CPq) does not have nice stabilization properties so instead it is
convenient to work with the space FS1(Cq+1) of S1 -equivariant self-maps of
S2q+1 , the unit sphere in Cq+1 with the standard S1 -action that has CPq as
the quotient. The space FS1(Cq+1) is given the compact-open topology; when
it is necessary to take a basepoint, the default choice will be the identity. There
is an obvious continuous homomorphism from FS1(Cq+1) to E1(CPq) given by
passage to quotients, and the results of James [James 1963] show that this map
induces πk -isomorphisms for k ≥ 2.

An important advantage of FS1(Cq+1) over E1(CPq) is the existence of the sta-
bilization homomorphism sq+1 : FS1(Cq+1) → FS1(Cq+2) induced by the double
suspension. We denote the infinite stabilization by FS1 . By [BS74] the homo-
topy group πk(FS1) is isomorphic to the stable homotopy group πS

k (SCP∞+ ),
where SCP∞+ is the suspension of the disjoint union of CP∞ and a point, and
moreover by [BS74, Theorem 11.1] the obvious map Uq+1 → FS1(Cq+1) is πk -
isomorphism on a direct summand, which has finite index in πk(FS1(Cq+1)). In
fact since SCP∞+ is homotopy equivalent to SCP∞∨S1 , the group πS

7 (SCP∞+ )
contains πS

7 (S1) = Z2 as a direct summand, which implies as we shall see
in the proof of Lemma 7.2(4) that π7(FS1) = π7(U) ⊕ πS

7 (S1) = Z ⊕ Z2 .
Also as we note below if q ≥ 3, then sq+1 induces a π7 -isomorphism so
π7(FS1(Cq+1)) ∼= π7(FS1).

On the other hand the group π7(FS1(C3)) is unstable, and a goal of this section
is to prove the following.

Proposition 7.1. The map s3∗ : π7(FS1(C3)) → π7(FS1(C4)) ∼= π7(FS1) has
kernel of order at most 2, and has image isomorphic to Z2 . If the kernel is
nontrivial, then π7(FS1(C3)) ∼= Z2 ⊕ Z2 .

While Proposition 7.1 does not compute π7(FS1(C3)), its conclusion suffices for
the purposes of this paper.

General tools for studying homotopy groups of FS1(Cq+1) are spectral se-
quences developed in [Sch73] and [BS74]. To avoid additional digressions, we
only use the spectral sequences described in [Sch73, Sections 1 and 5] and
the relations among them. These spectral sequences arise from the long exact
homotopy sequences associated to standard filtrations of function spaces and
certain classical Lie groups. In the case of FS1(Cq+1), the filtration is given by
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the submonoids Filt(2p−1) = Filt(2p) of functions that restrict to inclusions on
the standard subspheres S2q−2p+1 ⊂ S2q+1 , where 0 ≤ p ≤ q ; by convention,
Filt(2q+1) is the entire space. For the group Uq+1 , a similar filtration is given by
the standardly embedded unitary groups Up , where p runs through the same
set of values. There is an obvious inclusion of Uq+1 in FS1(Cq+1) which is
compatible with these filtrations, and the results of [Sch73, Section 5] relate
the spectral sequences for the homotopy groups of these spaces. Other results
in [Sch73] describe spectral sequence mappings corresponding to the stabiliza-
tion maps FS1(Cq) ⊂ FS1(Cq+1). In all cases, the terms E1

s,t are the relative
homotopy groups πs+t(Filt(s),Filt(s−1)), which turn out to be canonically iso-
morphic to certain homotopy groups of spheres.
Notations. The spectral sequences for the homotopy groups of the unitary
group Uq+1 which appear in [Sch73, Theorem 5.2] will be denoted by Er

s,t(Uq+1),
and the previously discussed spectral sequences for the homotopy groups of
the spaces FS1(Cq+1), which are called GCq+1 in [Sch73], will be denoted by
Er

s,t(GCq+1); to simplify notations we sometimes are using the notation GCq+1

for the equivariant function space instead of FS1(Cq+1).
By [Sch73] the spectral sequence {Er

s,t(GCq+1)} converges to πp+q(GCq+1),
and E2

s,t(GCq+1) = Hs−1(CPq, πt+2q+1(S2q+1)), while {Er
s,t(Uq+1)} converges

to πp+q(Uq+1), and E2
s,t(Uq+1) = Hs−1(CPq, πs+t(Ss)). By [Sch73, Theorem

5.2] there is a canonical mapping between the spectral sequences which con-
verges to a map of homotopy groups induced by the inclusion Uq+1 → GCq+1 ,
and which on E2 -level correspond to the coefficient homomorphism induced by
the (2q + 1 − s)-fold suspension. Similarly, the stabilization homomorphism
induces a map between spectral sequences for GCq+1 and GCq+2 which on
E2 -level corresponds to the coefficient homomorphism induced by the double
suspension and by the inclusion CPq → CPq+1 . Now a straightforward com-
putation implies that π7(FS1(Cq+1)) is stable for q ≥ 3, because then the
stabilization homomorphism E2

s,7−s(GCq+1) → E2
s,7−s(GCq+2) is an isomor-

phism.
To prove Proposition 7.1 we need some formulas for differentials in above spec-
tral sequences, where notation for elements in the homotopy groups of spheres
is the same as in Toda’s book [Tod62].

Lemma 7.2. In the preceding spectral sequences, one has the following differ-
entials:
(1) The differential d2

5,0(U3) : π5(S5) = Z → π4(S3) = Z2 sends the gener-
ator of the domain to the generator of the codomain (which is the Hopf map
η4 : S4 → S3 ).
(2) The differential d2

5,0(GC3) : π5(S5) = Z → π6(S5) = Z2 sends the gener-
ator of the domain to the generator of the codomain (which is the Hopf map
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η6 : S6 → S5 ).
(3) The differential d2

5,2(GC3) : π7(S5) = Z2 → π8(S5) = Z24 is injective,
in fact, it sends the generator of the domain to the unique element in of the
codomain of order 2.
(4) For each q ≥ 2, the generator of E2

1,6(GCq+1) = Z2 defines a cycle in
E∞

1,6(GCq+1), and the corresponding class in π7

(
FS1(Cq+1)

)
is mapped to the

unique element of order 2 in π7 (FS1) ∼= Z⊕ Z2 .

Proof. The validity of (1) follows because this is the only choice of differen-
tial which is compatible with the fact that π4(U3) = 0, and (2) then follows
because the map from π4(S3) = E2

3,1(U3) to π6(S5) = E2
3,1(GC3) is given by

double suspension [Sch73, Theorem 5.2, p.70], and this map is bijective [Tod62,
Proposition 5.1, p.39].

To establish (3) it is enough to show that d2
5,2(GC3) is nontrivial on π7(S5) =

E2
5,2(GC3), which is generated by the square η2 of the Hopf map [Tod62,

Proposition 5.3, p. 40]. To this end it helps to use composition operations
of the spectral sequence as described in [Sch73, Proposition 1.4, p. 54]. De-
noting the identity element of S5 by 1, and thinking of η2 as 1◦η2 , we write
d2

5,2(GC3)(η2) as d2
5,0(GC3)(1◦η2) which stably equals to d2

5,0(GC3)(1)◦η2 be-
cause the operation of precompositing with η2 stably commutes with differen-
tials. Now (2) implies that d2

5,2(GC3)(η2) = η◦η2 = η3 which has order 2 in
π8(S5) = E2

3,3(GC3) [Tod62, formula (5.5), p. 42]; thus d2
5,2(GC3) is nontrivial.

It remains to verify (4). First, suppose that q ≥ 3; then π4+2q+1(S2q+1) =
0, which implies E2

3,4 = 0. Using (3) and the stabilization maps for spec-
tral sequences from [Sch73, Theorem 3.2, p. 64] we see that the differentials
d2

5,2(GCq+1) : π2q+3(S2q+1) = Z2 → π2q+4(S2q+1) = Z24 are nontrivial, so that
E∞

5,2 = 0. Thus E∞
s,7−s(GCq+1) is trivial except possibly when s = 1 or s = 7.

Let us show that E∞
7,0(GCq+1) ∼= Z . The group E2

s,t(Uq+1) is zero for even
s , and is equal to πs+t(Ss) for odd s . Since πs+t(Ss) is finite for t > 0, the
group E∞

s,t(Uq+1) is finite for t > 0. But π7(Uq+1) = Z for q ≥ 3, and Z has
only trivial filtrations, so E∞

s,7−s(Uq+1) = 0 for s < 7 and hence π7(Uq+1) =
E∞

7,0(Uq+1) ∼= Z . As we mentioned above by [BS74] the image of π7(Uq+1) in
π7(FS1(Cq+1)) ∼= π7(FS1) is infinite cyclic, hence E∞

7,0(GCq+1) must be infinite,
and since E2

7,0(GCq+1) ∼= Z , we conclude E∞
7,0(GCq+1) ∼= Z .

Recall that E2
1,6(GCq+1) = π6+2q+1(S2q+1) ∼= Z2 , hence if the generator of

E2
1,6(GCq+1) were not a cycle in E∞

1,6(GCq+1), then E∞
1,6(GCq+1) = 0, which

would mean that π7(FS1(Cq+1)) = E∞
7,0(GCq+1) ∼= Z which contradicts the fact

that π7(FS1(Cq+1)) contains πS
7 (S1) = Z2 . Thus E∞

1,6(GCq+1) ∼= Z2 which
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gives an order 2 element in π7(FS1(Cq+1)) ∼= Z ⊕ Z2 , which is unique and
generates the torsion subgroup. This completes the argument for q ≥ 3.

To recover the case q = 2, we note that E2
1,6(GC3) = π11(S5) ∼= Z2 and the

stabilization map from π11(S5) → πS
6 = E2

1,6(GC4) = E∞
1,6(GC4) is bijective

(see [Tod62, Proposition 5.11, p. 46]); thus the nonzero element E2
1,6(GC3)

survives in E∞
1,6(GC4), which implies that it must survive in E∞

1,6(GC3), as
claimed. ¤

Proof of Proposition 7.1. Lemma 7.2(3) implies that E∞
s,7−s(GC3) = 0 except

possibly when s 6= 1, 3, and from Lemma 7.2(4) we see that E∞
1,6(GC3) = Z2 ,

which maps injectively into π7(FS1). Therefore, the only uncertainty involves
the group E∞

3,4(GC3). Recall that E2
3,4(GC3) = π9(S5) ∼= Z2 [Tod62, Propo-

sition 5.8, p. 43] and E2
3,4(GC4) = 0. Hence the quotient of π7(FS1(C3)) by

the subgroup E∞
1,6(GC3) ∼= Z2 is E∞

3,4(GC3), which is a group of order at most
2. Since E∞

3,4(GC4) = 0, the stabilization homomorphism maps π7(FS1(C3))
onto a (unique) order two subgroup of π7(FS1) ∼= Z ⊕ Z2 that is the image
of E∞

1,6(GC3). If E∞
3,4(GC3) ∼= Z2 , then the group π7(FS1(C3)) has order 4,

and it cannot be isomorphic to Z4 because it has an order 2 element that
does not lie in the kernel of the homomorphism into π7(FS1); thus in this case
π7(FS1(C3)) ∼= Z2 ⊕ Z2 . ¤

8. Tangential structure sets

The machinery of this section is useful in the study of normal invariants of ho-
motopy self-equivalences of Sk×CPq that come from classes in πk(E1(CPq)) ∼=
πk(FS1

(
Cq+1)

)
, where k ≥ 2. Below we describe a well-known surgery exact

sequence for tangential homotopy equivalences, which in topological category
can be found in [MTW80, Section 2].

For n ≥ 5, a tangential simple homotopy structure on an n-manifold X , with
or without boundary, is a triple (N, f, f̂) such that (N, f) is a simple homotopy
structure on X and f̂ : τN → τX is a isomorphism of stable tangent bundles
that covers f . Two such structures (N1, f1, f̂1), (N2, f2, f̂2) are said to be
equivalent if (N1, f1), (N2, f2) are equivalent as simple homotopy structures,
i.e. f1 and f2◦h are homotopic through maps of pairs (N1, ∂N1) → (X, ∂X)
for some diffeomorphism h . (This definition is slightly different in topological
category where one has to insists that the differential of the homeomorphism h
preserves stable tangent bundles; this holds automatically in smooth category).

We denote the set of equivalence classes of tangential simple homotopy struc-
tures on X by Ss,t(X). One then has the tangential surgery exact sequence
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which is mapped into the ordinary surgery exact sequence by forgetting the
bundle data, forming the commutative diagram below

[X, O]

²²yyrrrrrrrrrr

[Σ(X/∂X), F ] //

²²

Ls
n+1 ( π1(X), π1(∂X) ) // Ss,t(X)

qt
//

²²

[X, F ]

²²
[Σ(X/∂X), F/O] // Ls

n+1 ( π1(X), π1(∂X) ) // Ss(X) //

%%LLLLLLLLLL
[X, F/O]

²²
[X, BO]

where the map qt is called the refined normal invariant. The rightmost column
corresponds to the fibration sequence F → F/O → BO . Up to a canonical
choice of sign, the map Ss(X) → [X, BO] in this exact sequence takes the class
represented by (N, f) to the difference τX − f−1∗τN of stable vector bundles.
The map [X,O] → Ss,t(X) whose value is given by (X, 1X , Φ), where Φ is a
stable vector bundle automorphism of X × Rk associated to a class in [X, Ok]
for k À n . This results in an exact sequence

[X, O] −→ Ss,t(X) −→ Ss(X) −→ [M, BO].

Similarly, one has the tangential relative structure sets Ss,t(X rel ∂X) of equiv-
alence classes of the tangential simple homotopy structures that restrict to dif-
feomorphisms on the boundary, and again in defining equivalent structures one
requires that the homotopy is through maps that are diffeomorphisms on the
boundary; Ss,t(X rel ∂X) fits into the commutative diagram with exact rows:

Ls
n+1 ( π1(X) ) // Ss,t(X rel ∂X)

qt

//

²²

[X, F ] //

²²

Ls
n (π1(X) )

Ls
n+1 ( π1(X) ) // Ss(X rel ∂X) // [X,F/O] // Ls

n (π1(X) )

For a closed manifold Y and k ≥ 1, we let X := Dk × Y and denote

Ss
k(Y ) := Ss(X rel ∂X) and Ss,t

k (X) := Ss,t(X rel ∂X).

These structure sets have group structures given by the boundary connected
sum; moreover, the group structures are abelian if k ≥ 2. Furthermore, “spaci-
fication” techniques (see e.g. [Wei94, Section 3.1]) imply that for X = Dk × Y
all the maps in the above diagram are group homomorphisms; in fact, one can
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show that the above surgery sequence comes from the exact homotopy sequence
associated to some fibration.

There is a canonical map

Γ: Ss
k(Y ) → Ss(Sk × Y )

that is obtained by doubling along the boundary. More precisely, given a repre-
sentative h : (W,∂W ) −→ (Dk×Y, ∂Dk×Y ) of a relative structure, where the
boundary map ∂h is a diffeomorphism, we take V = W ∪∂h Dk × Y , where
the Dk -factor is given the opposite orientation, and let V → Sk × Y be the
well-defined map which is given by h on W and the identity on Dk × Y . This
construction preserves homotopies through maps that are diffeomorphisms on
the boundary, and hence it defines a well-defined map Γ. Also the construction
preserves the identity, so Γ preserves the base points (recall that while Ss

k(Y )
is a group, Ss(Sk × Y ) is merely a pointed set). Note that Γ maps Ss,t

k (Y ) to
Ss,t(Sk × Y ).

Finally, we relate this abstract machinery to the objectives of this paper. Every
element of πk(E1(Y )) can be represented by a map (Dk, ∂Dk) → E1(Y ) such
that a small neighborhood of ∂Dk is mapped to id(Y ). For k ≥ 1, this yields
a group homomorphism Ψ: πk(E1(Y )) → Ss

k(Y ) such that the obvious map
πk(E1(Y )) → Ss(Sk×Y ) defined via adjoint can be factored as Γ◦Ψ. Moreover,
if the image of πk(E1(Y )) → Ss(Sk × Y ) lies in Ss,t(Sk × Y ), then the image
of Ψ lies in Ss,t

k (Y ).

9. Stably trivial self-equivalences from π7(E1(CPq)) are trivial

Suppose k ≥ 2, fix α ∈ πk(FS1

(
Cq+1)

)
, and let f̃ be an equivariant self-map

of Sk × S2q+1 representing α . Denote by f the corresponding homotopy self-
equivalence of the orbit space Sk×CPq , Then f̃×S1 id(C) is a vector bundle self-
isomorphism of the canonical line bundle on Sk×CPq which covers f , and since
the stable tangent bundle of CPq is stably a direct sum of (q + 1) copies of the
canonical line bundle it follows that f̃ defines an explicit tangential homotopy
structure on Sk × CPq which refines the ordinary homotopy structure (Sk ×
CPq, f). As in the last paragraph of Section 8, this defines a homomorphism
πk

(
FS1(Cq+1)

) −→ Ss,t
k (CPq). In these notations we have:

Proposition 9.1. Suppose that k ≥ 2 and k + 2q ≡ 3 mod 4. If α has finite
order in πk

(
FS1(Cq+1)

)
and if the refined normal invariant of f is trivial, then

the homotopy self-equivalence f of Sk×CPq is homotopic to a diffeomorphism.

Proof. The image of α in Ss,t
k (CP q) has finite order because the map is a homo-

morphism. On the other hand, consider the following portion of the tangential
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surgery sequence where X = Dk × CPq :

[Σ(X/∂X), F ] → Lk+2q+1({1}) ∼= Z → Ss,t
k (CP q) → [X/∂X,F ]

The groups [Σ(X/∂X), F ] , [X,F ] are finite, so the map from Z to Ss,t
k (CP q)

must be a monomorphism. By exactness α is trivial in Ss,t
k (CP q), and hence

in Ss
k(CP

q). Since Γ: Ss
k(CP

q) → Ss(Sk ×CPq) preserves the base points, the
image of α in Ss(Sk × CPq) is also trivial. ¤
Corollary 9.2. Suppose that k ≥ 2 and k ≡ 3 mod 4. Let α ∈ πk

(
FS1(C3)

)
be a nontrivial element that stabilizes to zero in πk(FS1). Then the image of α
in Ss(Sk × CP2) is trivial.

Proof. If X = Dk×CPq , then X/∂X is homotopy equivalent to Sk(CPq)∨Sk ,
hence the refined normal invariant takes values in [Sk(CPq) ∨ Sk, F ] . We have
the following commutative diagram, in which the vertical arrow on the left is
induced by the stabilization map from FS1(C3) to FS1(Cq+1) for q ≥ 3 and
the vertical arrow on the right is induced by the inclusion map from CP2 to
CPq :

(9.3) πk( FS1(C3) ) //

²²

[Sk(CPq) ∨ Sk, F ]

πk( FS1(Cq+1) ) // [Sk(CPq) ∨ Sk, F ]

OO

where horizontal arrows are refined normal invariant precomposed with the
homomorphism πk

(
FS1(Cq+1)

) −→ Ss,t
k (CPq). Since the image of α under

stabilization is trivial, the top horizontal arrow maps α to zero, so that α
satisfies the assumptions of the preceding proposition. ¤

10. Normal invariant of the stable element of order 2

As mentioned in Section 7, the group π7(FS1) has a unique order two element,
and in this section we show that the corresponding homotopy self-equivalence
f of S7 × CPq , q ≥ 3 has nontrivial normal invariant. A proof of this was
briefly sketched in [Sch87]; here we provide details.
It is shown in Section 9 that f is tangential. Let γ denote the normal bundle of
X := S7×CPq in some higher dimensional Sm+2q+7 . Let f̂ denote the self-map
of γ of X that covers f , and let T (f̂) be the induced self-map of its Thom
space T (γ). Let q : SN → T (γ) be the map that collapses the complement of a
tubular neighborhood of X to a point. By definition in [Bro72] (cf. [MTW80])
the refined normal invariant qt(f) ∈ [X,F ] is the Spanier-Whitehead dual of
T (f̂)◦q , where the set [X, F ] of free homotopy classes is identified with the set
of based homotopy classes [X+, F ] = {X+, S0} .



CODIMENSION TWO SOULS AND CANCELLATION PHENOMENA 21

The proof of Proposition 7.1 shows that f comes from the E2
1,6 -term which is in

the bottom filtration, which means that it comes from E1
1,6 = π7(Filt(1), Filt(0)),

where Filt(0) = {id} and Filt(1) consists of functions in FS1(Cq+1) that restrict
to inclusions on the standard subsphere S2q−1 ⊂ S2q+1 . Changing f within its
homotopy class, we can assume that f is identity on S7 × CPq−1 ⊂ S7 × CPq ,
and as is explained at the end of Section 8, we may also assume that f is
identity on a regular neighborhood of S7 ∨CPq . In summary, we may suppose
that f is identity on the complement of a top-dimensional cell.
Since p(S7)◦f = p(S7), the homotopy self-equivalence f is determined by
p(CPq)◦f . By the previous paragraph f factors as

X
diag // X ∨X

id∨pinch// X ∨ S2q+7
(id,σ) // X

where p(S7)◦σ is null-homotopic and p(CPq)◦σ : S2q+7 → CPq represents an
element of π2q+7(CPq) ∼= π2q+7(S2q+1) ∼= πS

6
∼= Z2 . The unique nontrivial

element of πS
6 is ν2 , and p(CPq)◦σ is nontrivial, as f corresponds to an order

2 element of π7(FS1). Hence p(CPq)◦σ has to factor as ν2 : S2q+7 → S2q+1

postcomposed by the bundle projection S2q+1 → CPq .
The pullback of γ via (id, σ) is the vector bundle γ′ whose restrictions to the
summands of X ∨S2q+7 are γ and the trivial εm bundle over S2q+7 . Its Thom
space T (γ′) is glued from T (γ) and T (εm) = Σm(S2q+7

+ ) ≈ Sm+2q+7∨Sm along
the common copy of Sm , so T (γ′) ≈ T (γ) ∨ Sm+2q+7 . The map T (f̂) factors
as

T (γ)
diag // T (γ) ∨ T (γ)

id∨pinch// T (γ) ∨ Sm+2q+7
(id,σ̃) // T (γ)

where σ̃ is the composition

Σm(S2q+7)
Σm(ν2)// Σm(S2q+1) inclusion// Σm(S2q+1

+ ) // T (γ)

where Σm(S2q+1
+ ) is the Thom space of S2q+1×Rm , and the rightmost map is

the Thomification of the pullback of γ via the map S2q+1 → S7 × CPq that is
constant on the first factor and the standard projection on the second factor.
The normal invariant of id(X) is trivial, so qt(f) equals to the S-dual of σ̃ .
The restriction of qt(f) ∈ {X+, S0} to CPq

+ is the S-dual of σ̃ that is thought
of as a map S2q+7 → T (γ̌), where γ̌ is the restriction of γ to the CPq -factor.
Now ν2 is self-dual, while the S-dual of Σm(S2q+1) ↪→ Σm(S2q+1

+ ) → T (γ̌) is
the Umkehr map Σ(CPq

+) → S2q+1
+ → S0 (see [BS74]).

Next we show that the restriction of the Umkehr map to Σ(CP1) is a generator
of {Σ(CP1

+), S0} ∼= π3(F ) ∼= πS
3
∼= Z24 . Indeed, Σ(CP1) represents a generator

of the Z-factor in
πS

3 (Σ(CP∞+ )) = πS
3 (Σ(CP∞) ∨ S1)) = πS

3 (Σ(CP∞))⊕ πS
3 (S1) ∼= Z⊕ Z2.
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By commutativity of the diagram (6.10) in [BS74] the map πS
3 (Σ(CP∞+ )) →

πS
3 induced by Umkehr coincides with the forgetful map π3(FS1) → π3(F ).

By [BS74, Theorem 11.1] the image of π3(U) → π3(FS1) induced by inclusion
is infinite cyclic. Thus the class of Σ(CP1) equals to a generator of π3(U) = Z
up to an element of order ≤ 2, hence their images in π3(F ) differ by an order 2
element, so it suffices to show that one of them is a generator. That a generator
of π3(U) is mapped to a generator of π3(F ) is true because π3(U) → π3(O)
is onto as π3(O/U) = 0 by Bott periodicity, and the real J -homomorphism
π3(O) → π3(F ) is onto.
The group π3(F ) ∼= πS

3
∼= Z24 is also generated by ν . Since ν3 is nonzero in

πS
9 = (Z2)3 where all nontrivial elements has order 2, so the composition of ν2

with any generator of πS
3 equals to ν3 . Thus qt(f) restricted to ΣCP1 is ν3 .

Finally, qt(f) is mapped to q(f) under [X,F ] → [X, F/O] , and it remains to
show that ν3 is not in the kernel of π9(F ) → π9(F/O) which equals to the
image of the J -homomorphism π9(O) → π9(F ). This image has order two,
and as we see below its nonzero element is ν3 + η◦ε 6= ν3 , which completes the
proof. (To compute the image of the J -homomorphism note that by [Ada66,
Theorem 1.2] η2 induces a nonzero homomorphism Z = π7(O) → π9(O) = Z2 .
Thus if γ denotes a generator of π7(O), then γη2 generates π9(O). The J -
homomorphism π7(O) → π7(F ) ∼= Z240 is onto, so π7(F ) is generated by J(γ),
and then it follows that the image of J : π9(O) → π9(F ) ∼= Z2 ⊕ Z2 ⊕ Z2 is
generated by J(γη2) = J(γ)η2 . Tables in [Tod62, pp. 189-190] imply that the
image of η2 : π7(F ) → π9(F ) is generated by η2σ = ν3 + η◦ε).

11. Dichotomy principles and skeletal filtrations

We start by proving an important particular case of Theorem 5.1; of course,
only one direction is nontrivial.

Proposition 11.1. For q ≥ 2 let f be a homotopy self-equivalence of S7×CPq

that comes from an element of π7

(
FS1(Cq+1)

)
. Then f is homotopic to a

diffeomorphism if and only if f has trivial normal invariant.

Proof. Suppose first that q ≥ 3 so that π7(FS1(Cq+1)) ∼= π7(Uq+1) ⊕ Z2 . We
write f = f1◦f2 where f1 comes from the π7(Uq+1)-factor and either f2 comes
from the Z2 -factor. Then f1 is homotopic to a diffeomorphism, because Uq+1

acts on CP2m by diffeomorphisms. By Section 10 either f2 is homotopic to
identity, or f2 has nontrivial normal invariant, and the claim follows.
Suppose now that q = 2. By Proposition 7.1 the map f is homotopic to
the composition f1◦f2 of homotopy self-equivalence f1 , f2 , where each fac-
tor has order at most 2, the map f1 comes from an element in the ker-
nel of π7(FS1(C3)) → π1(FS1), and f2 is either homotopic to identity, or
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else comes from an element that is mapped to the unique order 2 element
of π1(FS1). Corollary 9.2 implies that f1 is homotopic to a diffeomorphism.
Suppose that f2 is not homotopic to identity. Then as in the proof of Corol-
lary 9.2 q(f2) ∈ [S7 × CP2, F/O] is the image of the refined normal invariant
qt(f2) ∈ [Σ7(CPq) ∨ S7, F ] , which by assumption is the restriction of a stable
refined normal invariant qt ∈ {Σ7(CP∞)∨S7, F ] as follows from commutativity
of the diagram in the proof of Corollary 9.2. By Section 10 the restriction of qt

to Σ7(CP1) ∨ S7 is nontrivial, and hence the same holds for qt(f2). ¤

Lemma 11.2 below leads to a quick proof of Theorem 5.1, and hence Theo-
rem 1.1 in the case S7 × CP2 . Indeed, by Propositions 6.1, 6.2, 11.1, and
Lemma 11.2, any homotopy self-equivalence of S7×CP2 either is homotopic to
a diffeomorphism, or is the composition of a diffeomorphism with a homotopy
self-equivalence that has nontrivial normal invariant, so the result follows from
the composition formula for normal invariants. Later in this section we prove
Theorem 5.1 in full generality without using Lemma 11.2. Recall that SGk+1

is a standard notation for E1(Sk).

Lemma 11.2. The group [CP2, SG8] is trivial.

Proof. Recall that the evaluation map defines a fibration SGk+1 → Sk , with
fiber SFk , the submonoid of SGk+1 consisting of base-preserving maps (see [MM79,
Chapter 3A]).
We know that [CP2, S7] is trivial because the dimension of CP2 is less than
the connectivity of S7 , so any map from CP2 to SG8 can be homotoped into
a fiber of the fibration SF7 → SG8 → S7 . Since SF7 has the homotopy type
of the component of the constant map in the iterated loop space Ω7S7 , we get
the isomorphism

[CP2, SF7] ∼= [S7CP2, S7]
so it suffices to show that the latter vanishes. Now S7CP2 is the mapping
cone of S7η2 , where η2 : S3 → S2 is the Hopf map, and therefore we have the
following cofiber exact sequence:

π11(S7) // [S7CP2, S7] // π9(S7)
(S7η2)∗//// π10(S7)

Results on the homotopy groups of spheres [Toda, Chapter XIV] imply that
π11(S7) = 0, and (S7η2)∗ is injective because π9(S7) = πS

2 is generated by η2 ,
and (S7η2)∗ stably amounts to composing with η , and η3 = 4ν is nontrivial in
πS

3 = π10(S7). Thus [CP2, SF7] must be trivial, as desired. ¤

The case of S7 × CPq with q > 2 needs more work. We start by proving a
Dichotomy Property for normal invariants of homotopy self-equivalences coming
from maps CPq → E1(Sk) = SGk+1 .
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Proposition 11.3. (Dichotomy Property) Let X be a closed connected
smooth n-manifold, let k ≥ 2 with n+k ≥ 5, let u : X → SGk+1 be continuous,
and let f : Sk×X → Sk×X denote the homotopy self-equivalence arising from
u. Then either f is homotopic to a diffeomorphism, or else f is not normally
cobordant to the identity. In the first case, the diffeomorphism extends to a
diffeomorphism of Dk+1 ×X .

Proof. A key point is that every homotopy self-equivalence of Sk extends to
Dk+1 by the cone construction, which implies that f extends to a homotopy
self-equivalence f̂ of Dk+1 × X and hence yields a homotopy structure on
Dk+1 × X . By Wall’s π − π Theorem [Wal99, Chapter 3], the map f̂ is
homotopic to a diffeomorphism if and only if its normal invariant is trivial. The
restriction map from [Dk+1 × X,F/O] ∼= [X,F/O] to [Sk × X, F/O] is split
injective, more precisely if G : Dk+1×X → F/O restricts to g : Sk×X → F/O ,
then g|{∗}×X corresponds to G under [Dk+1 × X, F/O] ∼= [X, F/O] . By the
geometric definition of normal invariant, q(f̂) maps to q(f) by restriction to
the boundary, and therefore, by the previous sentence, q(f) maps to q(f̂) by
restriction to {∗} ×X . It follows that q(f) is trivial if and only if q(f̂) is
trivial, and if is trivial, Wall’s π− π Theorem implies that f̂ , and hence f are
homotopic to a diffeomorphism. ¤

One step in the preceding argument is important enough to be stated explicitly:
the normal invariant of f lies in the image of [X, F/O] in [Sk ×X,F/O] ; we
shall need a strengthened form of this result.

Corollary 11.4. Under the assumptions of Proposition 11.3, if A is a sub-
complex in some triangulation of X and if the restriction u|A is trivial in
[A,SGn+1], then the restrictions of q(f) to A and Sk ×A are also trivial.

Proof. If B is a closed regular neighborhood of A , then by the Homotopy
Extension Property we may replace u with some v in the same homotopy
class such that the restriction of v to B is constant (with value 1X ). Let g
be the homotopy self-equivalence of Sk × X that corresponds to g . Then g
maps Sk × B to itself by the identity, and it also maps X − Int(B) to itself.
Standard restriction properties of normal invariants imply that the restriction
of the normal invariant of g to Sk × B is trivial, and this implies the same
conclusion for the restriction to Sk ×A . ¤

Now that we have Dichotomy Property for homotopy self-equivalences coming
from elements in π7(E1(CPq)) and [CPq, E1(S7)] we only need to see whether
their normal invariants can cancel, so that the normal invariant of the composi-
tion of these homotopy self-equivalences cannot be trivial unless both summands
vanish. This matter is naturally treated in the framework of skeletal filtrations.
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Let T be a contravariant functor defined from the homotopy category of pointed
finite cell complexes to the category of abelian groups. If X is a pointed finite
cell complex, then we say that a a class u ∈ T (X) has skeletal filtration ≥ k , if
the restriction of u to the k -skeleton Xk is trivial, and we say that the skeletal
filtration of u equals k if u has filtration ≥ k but does not have filtration
≥ k + 1. The Cellular Approximation Theorem for continuous maps of CW -
complexes implies that the skeletal filtration of a class in T (X) does not depend
upon the choice of cell decomposition; in fact, it follows that the sets T 〈k〉(X)
of elements with skeletal filtration ≥ k are subgroups and define a filtration of
T by subfunctors.

Proposition 11.5. Suppose that f is a homotopy self-equivalence of S7 ×
CPq with q ≥ 2, which comes from an element of [CPq, SG8]. If the normal
invariant of f is nontrivial, then its filtration is an even number, which is ≥ 4.

Proof. In view of the proof of Proposition 11.3, we might as well consider the
normal invariant for the homotopy self-equivalence of D8 × CPq extended via
the cone construction, which lies in [D8×CPq, F/O)] ∼= [CPq, F/O] . Since CPq

has cells only in even dimensions, it follows that the filtration of a nontrivial
element cannot must be even. Since [CP2, SG8] is trivial, Corollary 11.4 implies
that the skeletal filtration of the normal invariant is at least 4. ¤
Remark 11.6. On the other hand, if f is a homotopy self-equivalence of
S7 ×CPq with q ≥ 2 that comes from an element of π7(E1(CPq)), and if q(f)
is nontrivial, then the skeletal filtration of q(f) is odd. Indeed, as in the proof
of Proposition 6.2 we may assume that f is identity on S7 ∨ CPq ; hence q(f)
can be thought of as an element of [S7 ∧CPq, F/O] . Thus if q(f) is nontrivial,
then the filtration of q(f) is odd because S7 ∧ CPq has a cell decomposition
(inherited from the product of the standard cell decomposition of CPq and
Sk = Dk ∪D0 ) whose positive dimensional cells only appear in odd dimensions
from 9 to 2q + 7. In fact, the 9th skeleton of S7 ∧CPq is S7 ∧CP1 = S9 , and
it was shown in Section 10 that the restriction of q(f) to S7 ∧ CP1 defines a
nontrivial element of π9(F/O), so the filtration of q(f) is 9.

Proof of Theorem 5.1. By Propositions 6.1, 6.2, any homotopy self-equivalence
f of S7 × CP2 either f is homotopic to a diffeomorphism, or f = f1◦f2◦φ
where φ is a diffeomorphism and f1 , f2 are homotopy self-equivalences coming
from elements in π7(E1(CPq)), [CPq, E1(S7)], respectively. The composition
formula for normal invariants says that

q(f) = q(f1◦f2) = q(f1) + (f1)∗−1q(f2).

By above either f1 is homotopic to a diffeomorphism, or else the filtration of
q(f1) is odd. Similarly, either f2 is homotopic to a diffeomorphism, or else
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its filtration is even; general considerations then imply the same conclusion for
(f∗1 )−1q(f2). Therefore, if q(f) is trivial, then both q(f1) and q(f2) are trivial,
and hence f1 , f2 are homotopic to diffeomorphisms, so f is homotopic to a
diffeomorphism. ¤

12. Homotopy inertia group of S7 × CP2

Here we obtain an optimal version of Taylor’s Theorem 3.2 for M = S7×CP2 .

Theorem 12.1. The subgroup Ih(S7 ×CP2) ∩ bP12 has index 4 in bP12 . The
manifolds Σ(d)× CP2 fall into 3 diffeomorphism types, and 4 oriented diffeo-
morphism types.

It follows from Corollary 5.2 and Remark 5.3 that the first sentence in Theo-
rem 12.1 implies the second one, which proves Theorem 1.2.

That Ih(S7×CP2)∩bP4r contains an index 4 subgroup is a general phenomenon
arising from the product formula for the surgery obstruction, and numerical
properties of orders of groups bP4r which we denote |bP4r| . The following
lemma generalizes an argument in [Bro68, (6.5)] given for m = 1.

Lemma 12.2. If m is not divisible by 3, then Σ4m+7(4) ∈ Ih(S7 × CP2m),
and the manifolds Σ4m+7(d)×CP2m fall into at most 3 diffeomorphism types,
and at most 4 oriented diffeomorphism types.

Proof. Setting d = |bPk+1| in Fact 3.1, we see that h is homotopic to a diffeo-
morphism so ker(∆) ≤ Z contains the subgroup of index |bPk+1| , and similarly
ker(∆) contains the subgroup of index |bP4m+k+1| .
By [KM63], for r ≥ 2 the order of bP4r is ar22r−2(22r−1 − 1)nr where ar is 2
if r is odd and 1 if r is even, and and nr is the numerator of Br/4r where Br

is the corresponding Bernoulli number. Basic results in number theory imply
that either nr = 1, or nr equals to a product of irregular primes.

It is straightforward to check that 7 divides |bP4r| if and only if 3 divides r−2.
(The point is that 7 does not divide nr because the smallest irregular prime is
37, and hence we need to see when 7 divides (22r−1− 1) · 2; setting r = 3s + u
with u ∈ {0, 1, 2} , s ∈ Z , we get 22r − 2 = 82s · 22u− 2 which equals to 22u− 2
mod 7, so u must be 2.)

Now specialize to the case k = 7 for which |bP8| = 28 = 4·7, and bP4m+8 = bP4r

for r = m+2, and suppose that 3 does not divide m , so that 7 does not divide
|bP4m+8| . Since ker(∆) ≤ Z contains 28Z and |bP4m+8|Z , it then must contain
4Z as claimed. ¤
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That Ih(S7 × CP2) ∩ bP4r lies in an index 4 subgroup is immediate (by the
proof of Taylor’s theorem in [Sch87] once the following strengthening of [Sch87,
Sublemma 2.3] is obtained.

Lemma 12.3. If ξ is a stably fiber homotopically trivial vector bundle over the
suspension of S7 × CP2 , then for each positive integer m the mth Pontryagin
class pm(ξ) is divisible by 2j4m , where j4m is the order of the image of the
J -homomorphism in dimension 4m− 1.

Proof. For any spaces X, Y there is a natural homotopy equivalence of Σ(X×Y )
and ΣX∨ΣY ∨Σ(X∧Y ) (see e.g. [Bro72, proof of III.4.6]). Hence it suffices to
establish the result for bundles over S8 , SCP2 , S8CP2 . Since SCP2 is obtained
by attaching a 5-cell to SCP1 = S3 and π3(BO) = π5(BO) = 0, we know that
[SCP2, BO] is trivial.

A key ingredient in what follows is a result of Bott (see [BM58]) that the
Pontryagin class pm of any vector bundle over S4m is divisible by am ·(2m−1)!,
where am = 2 if m is odd and am = 1 if m is even.

Suppose that ξ is a stably fiber homotopically trivial vector bundle over S8 .
Since π7(F/O) = 0, the exact homotopy sequence of the fibration implies that
Z = π8(BO) → π8(BF ) = Z240 , is onto, so ξ is stably isomorphic to 240η
where η represents a generator in π8(BO). By Bott’s result p8(η) is divisible
by 6. It follows that p8(ξ) = 240p8(η), hence p8(ξ) is divisible by 240 · 6, but
j8 = 240, so p8(ξ) is divisible by 6j8 , as desired.

Next, suppose that ξ is a stably fiber homotopically trivial vector bundle over
S8CP2 . In the commutative diagram vertical arrows are J -homomorphisms,
and rows are cofiber exact sequence associated with the mapping cone sequence
S2 = CP1 → CP2 → CP2/CP1 = S4 .

π11(BO) //

²²

π12(BO)
×2 //

onto

²²

[S8CP2, BO] //

²²

π10(BO) //

1−1

²²

π11(BO)

²²
π11(BF ) // π12(BF ) // [S8CP2, BF ] // π10(BF ) // π11(BF )

One knows that [CP2, BO] = Z [San64, Theorem 3.9], and by Bott Periodicity
π12(BO) = Z , π11(BO) = 0, π10(BO) = Z2 , and [S8CP2, BO] = [CP2, BO] .
Thus the map

[S8(CP2/CP1), BO] = π12(BO) → [S8CP2, BO]

is multiplication by ± 2.

Since J : π10(BO) → π10(BG) is one-to-one, and ξ is a stably fiber homo-
topically trivial, ξ is a pullback of some vector bundle ζ over S12 . Since
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J : Z = π12(BO) → π12(BG) = Z504 is onto, and π11(BF ) = Z6 , a diagram
chase shows that (the class of) ζ in π12(BO) = Z lies in 84Z where 84·6 = 504,
so ζ = 84ζ ′ in π12(BO). By Bott’s result, p3(ζ ′) is divisible by 2 · 5!, so p3(ζ)
is divisible by 84 · 2 · 5!. Recalling that pullback acts as multiplication by 2, we
see that p3(ξ) is divisible by 2 · 84 · 2 · 5! = 80 · 504 = 80j12 , which completes
the proof. ¤

13. Manifolds tangentially homotopic to S7 × CP2

Theorem 13.1. If d is an odd integer, and a closed manifold M is tangentially
homotopy equivalent to S7 × CP2 , then M is diffeomorphic to S7 × CP2 , or
Σ7(d)× CP2 , or Σ7(2d)× CP2 .

Proof. By Theorem 12.1 it suffices to show that M is diffeomorphic to Σ7(d)×
CP2 for some d . The key point is to understand the normal invariant q(h)
of an arbitrary tangential homotopy equivalence h : M → S7 × CP2 . Since h
is tangential, q(h) is the image of the refined normal invariant qt(h) ∈ [S7 ×
CP2, F ] .

The exact cofiber sequence for the quotient map S7×CP2 → S7∧CP2 = S7CP2

[S7CP2, F ] → [S7 × CP2, F ] → π7(F ) ⊕ [CP2, F ].

maps into the similar exact cofiber sequence for [S7 × CP2, F/O] . Both se-
quences split via precomposing with projections onto S7 and CP2 -factors, and
this forms a commutative diagram in which each of the three components of
[S7×CP2, F ] is mapped into the corresponding component of [S7×CP2, F/O] .

Since CP2 is the mapping cone of the Hopf map η2 : S3 → S2 , we know that
[CP2, F ] fits into the following exact cofiber sequence exact sequence for the
map CP2 → CP2/CP1 = S4 .

πS
4 → [CP2, F ] → πS

2
η∗→ πS

3 ,

and hence [CP2, F ] = 0 because πS
4 = 0, and composition with η induces a

monomorphism from πS
2 to πS

3 as it sends η2 to η3 = 4ν , which has order
2 (see [Tod62, Chapter XIV]). As π7(F/O) = 0, it follows that q(h) lies in
[S7CP2, F/O] , more precisely, q(h) is the image of the [S7CP2, F ]-component
of q(h), which we denote qt(h)|S7CP2 .

The rows of the commutative diagram below are exact cofiber sequences for
the map S7CP2 → S7(CP2/CP1) = S11 , and columns are portions of the exact
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homotopy sequence of the fibration p : F → F/O .

0 = π11(F/O) // [S7CP2, F/O] // π9(F/O) // π10(F/O)

π11(F ) //

OO

[S7CP2, F ] //

OO

π9(F )
η∗ //

p∗
OO

π10(F )

OO

π9(O) //

1-1

OO

π10(O) = 0

OO

Since π11(F/O) = 0, we identify [S7CP2, F/O] with the kernel of the map
π9(F/O) → π10(F/O) so q(h) gets identified with q(h)|S7CP1 ∈ π9(F/O). Note
that p∗ maps qt(h)|S7CP1 to q(h)|S7CP1 , and by exactness qt(h)|S7CP1 ∈ ker(η∗).
Thus the normal invariant of any tangential homotopy equivalence h lies in
p∗(ker(η∗)).

By [Tod62, Chapter XIV], π9(F ) = Z2 ⊕ Z2 ⊕ Z2 with factors generated by
ν3 , µ , η◦ε , where η∗ acts by precomposing with η , which stably and up to
sign amounts to postcomposing with η [Tod62, Proposition 3.1]. Using [Tod62,
Theorem 14.1] we see that η∗ maps ν3 and η◦ε to zero, while η∗(µ) = η◦µ
is nonzero. The J -homomorphism Z2 = π9(O) → π9(F ) is one-to-one, and
its image lies in ker(η∗) because η∗◦J factors through π10(O) = 0. Thus the
subgroup p∗(ker(η∗)) has order 2.

As we mentioned in Remark 11.6 there exists a tangential homotopy self-
equivalence f of S7 × CP2 with such that q(f)|S7CP1 is nonzero. Since both
q(h), q(f) lie in an order two subgroup, q(h) is either trivial or else equal to
q(f). In the former case id(S7 × CP2) and h are in the same bP12 -orbit, and
the same is true in the latter case for the classes of f and h . Thus in either
case M is diffeomorphic to Σ(d)# (S7 × CP2) for some d , as promised. ¤

Remark 13.2. By contrast, any closed manifold M that is tangentially ho-
motopy equivalent to S3 × CP2 must be diffeomorphic to S3 × CP2 . Indeed,
by [MS99, Corollary 4.2] the connected sum of S3 × CP2 with a homotopy
sphere is diffeomorphic to S3 × CP2 , so it suffices to show that the tangential
homotopy equivalence f : M → S3 × CP2 has trivial normal invariant. Now
[S3CP2, F/O] = 0 because it fits into the exact sequence between the zero
groups π7(F/O) and π5(F/O), and moreover, π3(F/O) = 0, so the restriction
[S3×CP2, F/O] → [CP2, F/O] is injective. The claim now follows as q(f) comes
from [S3 × CP2, F ] , and the composition [S3 × CP2, F ] → [S3 × CP2, F/O] →
[CP2, F/O] factors through [CP2, F ] = 0.
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14. Non-diffeomorphic codimension 2 simply-connected souls

In [BKS, Theorem 1.8] the authors showed that if S , S′ are closed simply-
connected manifolds of dimension ≥ 5 such that complex line bundles over
S , S′ have diffeomorphic total spaces, then S′ is diffeomorphic to the con-
nected sum of S with a homotopy sphere. We prove a partial converse to this
statement:

Theorem 14.1. Let ω be nontrivial complex line bundle over a closed simply-
connected n-manifold S with n ≥ 5, and let S′ be the connected sum of S with
a homotopy sphere. Let ω′ be the pullback of ω via the standard homeomor-
phism S′ → S . Then the disk bundles D(ω′), D(ω) are diffeomorphic, except
possibly when n ≡ 1 mod 4 and π1(∂D(ω)) has even order.

Note that π1(∂D(ω)) is a finite cyclic group (see Lemma 14.3 below).

Proof of Theorem 14.1. We may assume n is odd, as in even dimensions there is
no exotic spheres. By surgery theory the standard homeomorphism f : S′ → S
has trivial normal invariant in [S, F/O] . If f̂ : D(f#ω) → D(ω) is the induced
map of 2-disk bundles, and if p : D(ω) → S denotes the disk bundle projection,
then the normal invariants of f̂ and f are related as q(f̂) = p∗q(f) as proved
e.g. in [BKS, Lemma 5.9]; thus q(f̂) is trivial. Denote N := D(ω). Thus the
element of the structure set represented by f̂ lies in the image of

∆: Ls
n+3 ( π1(N), π1(∂N) ) // Ss(N).

Lemma 14.3 below implies π1(∂N) = π1(S(ω)) ∼= Zd for some d ≥ 1, in which
case the above relative Wall group Ls

n+3 ( π1(N), π1(∂N) ) is commonly denoted
by Ls

n+3(Zd → 1).

If Zd = 1, then Wall’s π − π theorem implies that Ls
n+3(Zd → 1) is trivial,

so f̂ is homotopic to a diffeomorphism as desired. In general, there is a short
exact sequence

Ls
n+3(Zd) // Ls

n+3(1) // Ls
n+3(Zd → 1) // Ls

n+2(Zd) // Ls
n+2(1)

in which the leftmost and rightmost arrows split, via the inclusion 1 → Zd , thus
Ls

n+3(Zd → 1) is the kernel of the surjection Ls
n+2(Zd) → Ls

n+2(1). Results of
Wall imply that Ls

n+2(Zd) = 0 if n ≡ 3 mod 4, and results of Bak and Wall
give Ls

odd(Zd) = 0 if d are odd (see [HT00, p.227]). Thus f̂ is homotopic to
a diffeomorphism except possibly when n ≡ 1 mod 4 and d is even, in which
case Ls

n+3(Zd → 1) = Z2 as Ls
n+2(Zd) = Z2 and Ls

n+2(1) = 0. ¤

Proof of Theorem 1.4. Fix homeomorphic, non-diffeomorphic manifolds S , S′
that are products Σ7(d)×CP2m with m ≥ 1, or Eschenburg spaces, or Witten
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manifolds. Their existence is ensured by Theorem 1.1 and results of Kreck-Stolz
mentioned in the introduction.

Then S′ is the connected sum of S with a homotopy sphere. For products
Σ7(d)×CP2m this easily follows as in the proof of Corollary 5.2, and for Eschen-
burg spaces, or Witten manifolds this is implied by smoothing theory and the
fact that their 3rd cohomology with Z2 -coefficients vanish (the point is that if
the manifold M̊ obtained by removing an open ball from a closed 7-manifold M
with H3(M ;Z2) = 0, then M̊ has a unique PL-structure as H3(M̊ ;Z2) = 0,
and hence a unique smooth structure as PL/O is 6-connected).

Recall that Σ7(d)× CP2m with m ≥ 1, Eschenburg spaces, and Witten mani-
folds appear as quotients of Σ7(d)×S4m+1 , SU(3), and S5×S3 , respectively, by
free isometric circle actions. Hence they satisfy the assumptions of Lemma 14.2
below. Recall that any element of H2(S) ∼= Z is the first Chern class of a
unique complex line bundle over S . Given a nontrivial line bundle over S ,
note that by Theorem 14.1 this line bundle and its pullback via the standard
homeomorphism S′ → S have diffeomorphic total spaces. By Lemma 14.2 the
line bundles have metrics of sec ≥ 0 with souls equal to zero sections. ¤

Proof of Theorems 1.6 and 1.7. Here we deal with the situation where there
is a closed n-manifold S with n ≥ 5 and n ≡ 3mod 4 such that for any
homotopy sphere Σn(d) ∈ bPn+1 the connected sum S#Σn(d) is the base of a
principle circle bundle satisfying assumptions of Lemma 14.2. Fix a nontrivial
complex line bundle over S and pull it back to each S#Σn(d) via the obvious
homeomorphism S#Σn(d) → S . As in the above proof of Theorem 1.4 we see
that these line bundles have diffeomorphic total spaces that admit complete
metrics of sec ≥ 0 such that the zero sections are souls. Denote the common
total space of all these bundles by N .

Suppose that S′ is a soul of an arbitrary metric of sec ≥ 0 on N . There is
a canonical homotopy equivalence fd : S#Σn(d) → S′ given by the inclusion
S#Σn(d) → N followed by the normal bundle projection N → S′ . It was shown
in [BKS, Corollary 5.2, Proposition 5.4] that fd has trivial normal invariant in
[S′, F/O] , so for some d0 there is a diffeomorphism φ : S0 := S#Σ(d0) → S′ .

By [BKS, Corollary 5.2] the Euler classes of the normal bundles of S0 , S′ are
preserved by fd0 , and since H2(S0) ∼= H2(S′) = Z , their Euler classes are also
preserved by φ up to sign. So after changing orientation if needed, we may
conclude that φ preserves the Euler classes of the normal bundles of S0 , S′ in
N , and hence the normal bundles themselves, so the pairs (N,S0) and (N, S′)
are diffeomorphic. ¤
Lemma 14.2. Let P → B be a principal circle bundle whose total space P is
2-connected and carries an S1 -invariant metric of sec ≥ 0. Then H2(B) ∼= Z
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and the total space of any complex line bundle over B carries a complete metric
of sec ≥ 0 such that the zero section is a soul.

Proof. By the homotopy sequence of the fibration P → B we see that B is
simply-connected and π2(B) = Z . So by Hurewicz and universal coefficients
theorems we get H2(B) = Z . Note that any complex line bundle ω over B can
be written as P×ρC for some representation ρ : S1 → U(1) (because vanishing
of H2(P ) implies triviality of the pullback of ω via the projection P → B , and
ρ comes from the S1 -action on the C-factor of P ×C). The product metric on
P ×C has sec ≥ 0 and it descends to a complete metric on P ×ρ C of sec ≥ 0
with soul P ×ρ {0} which can be identified with B . ¤

Lemma 14.3. Let B be a simply-connected closed manifold and let P → B
be the projection of a nontrivial circle bundle. Then π1(P ) ∼= Zd , where the
Euler class of the circle bundle is dth multiple of a primitive element in the free
abelian group H2(B).

Proof. Since H1(B) is trivial, a universal coefficients theorem gives H2(B) =
Hom(H2(B),Z), so H2(B) is free abelian. A portion of Gysin sequence reads

0 = H1(B) → H1(P ) → H0(B) → H2(B) → H2(P ) → H1(B) = 0

where the middle map is multiplication by the Euler class. Since the Euler class
is nontrivial and H2(B) has no torsion, we see that Euler class has infinite
order, so Z = H0(B) → H2(B) is injective. Thus H1(P ) = 0. By another
universal coefficients theorem H1(P ) is mapped onto Hom(H1(P ),Z) = 0 with
kernel Ext(H2(P ),Z), which is isomorphic to the torsion subgroup of H2(P ).
Finally homotopy sequence of the circle bundle P → B and triviality of π1(B)
implies that π1(P ) is cyclic, and in particular, abelian, so π1(P ) = H1(P ). If
the Euler class of the circle bundle is dth multiple of a primitive element in
H2(B), then the above Gysin sequence implies that the torsion subgroup of
H2(P ) is isomorphic to Zd , so π1(P ) ∼= Zd . ¤
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