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PROBLEM.   Which smooth manifolds support complete  
 

riemannian metrics with everywhere nonnegative sectional  
 

curvature?   If so, then how many “substantially different”  
 

such metrics are there (say up to deformation)?      

 
(Emphasis is on the 2nd part here) 

 
CHEEGER – GROMOLL SOUL THEOREM.     If a  
 

noncompact, connected manifold admits such a metric,  
 

then it is diffeomorphic to the total space of a vector bundle  
 

over a compact manifold which admits such a metric. 

 
The compact manifold is totally geodesic and is called a   

 

SOUL    of the original riemannian manifold.  The fiber  
 

dimension is called the soul’s  codimension. 



 

HOW UNIQUE IS THE SOUL? 

 

A given metric can have many souls.  Consider Sn × RRRR
k with  

 

the product metric (constant positive curvature on the first  
 

factor, flat on the second).  Then every first factor slice of the  
 

form  Sn × { point }  is a soul. 

 
However, a result of V. Sharafutdinov implies uniqueness  
 

up to ambient isotopy.   

 
But    different    metrics can have non – diffeomorphic souls. 
 

For example, there are many pairs of non – diffeomorphic  
 

lens spaces  L1  and  L2  such that  L1 × RRRR
3   and  L2 × RRRR

3 are  
 

diffeomorphic (cf.  Milnor’s first counterexamples to the  
 

Hauptvermutung).   —   Incidentally, a result of  S.K. + R.S.   
 

implies that one cannot replace  RRRR
3   by  RRRR

2. 

 

Note.  Milnor’s examples were  3 – dimensional, but one can  
 

use results of  J. Ewing, S. Moolgavkar, L. Smith and R. E.  
 

Stong to produce similar examples of lens space pairs in all  
 

(odd) dimensions (except 1). 



 
DEFAULT ASSUMPTION.   To simplify the discussion, 

restrict to the simply connected case. 

 
[There are also some results, particularly for small  
 

fundamental groups.  Some are in the final remarks.] 

 

In fact, there are also simply connected examples with non –  
 

diffeomorphic souls.  Several exotic 7 – spheres ΣΣΣΣ    
7 admit  

 

metrics with nonnegative sectional curvature, and it is well –  
 

known that  ΣΣΣΣ    
7 × RRRR

3   and  S    
7 × RRRR

3 are diffeomorphic for all  
 

exotic  7 – spheres  ΣΣΣΣ    
7.  As before, one cannot replace  RRRR

3   by   
 

RRRR
2  (this actually goes back to the nineteen sixties). 

 
ENUMERATION PROBLEM.      How many distinct  
 

diffeomorphism types of souls can be realized by different  
 

(nonnegatively curved) metrics on the same manifold? 

 
Easy case.  For  simply connected  souls of codimension 1 and  
 

dimension at least 5, the  h – cobordism Theorem implies  
 

that only one diffeomorphism type can be realized. 

 
However, in some cases with larger codimensions, infinitely  



 

many types can be realized (I.B.). 

 
Subsequently,  Kapovitch – Petrunin – Tuschmann  gave  
 

other such examples with better geometric properties and  
 

also showed that sufficiently close (nonnegatively curved)  
 

metrics have diffeomorphic souls. 

 
THEOREM   1.        In fact, sufficiently close metrics have 
 

 (smoothly) ambiently isotopic souls.  

 

 
REFINED QUESTION.    How does the answer to the  
 

enumeration problem vary with the dimension and  
 

codimension of the soul? 

 
Restrict attention further to souls of dimension at least 5. 

 

 
THEOREM   2.        Let  E  be a riemannian manifold with a  
 

complete metric of nonnegative sectional curvature, and  
 

suppose that the codimension of the soul is  ≤  3.  Then there 
 

are only finitely many diffeomorphism classes of smooth  
 



manifolds which can be souls of complete,  nonnegatively 
 

curved metrics on  E.  

 
The codimension hypothesis in this result is best possible. 

 
THEOREM   3.     For every n  >  6,  there are compact  
 

nonnegatively curved  n – manifolds  M 
n  such that  M 

n × RRRR
4  

 

supports infinitely many complete nonnegatively curved  
 

metrics with pairwise nondiffeomorphic souls. 

 
By crossing with RRRR (equipped with the usual flat metric), we  
 

can also obtain examples in all higher codimensions.   The  
 

examples of both  Belegradek  and  Kapovitch – Petrunin –  
 

Tuschmann  are in fact products of the examples in the  
 

theorem with sufficiently many copies of RRRR. 

 
IDEAS OF PROOFS.    Low codimensions:  Codimension 1  

 

was already mentioned.    

 
In codimension  2, the bundle is determined by its Euler  
 

class, which is a fiber homotopy invariant, and this implies  
 

that all possible souls are tangentially homotopy equivalent  
 



(the stable tangent bundle pulls back under the homotopy  
 

equivalence).  By surgery theory, there are only finitely  
 

many diffeomorphism classes of closed simply connected  
 

manifolds in a given tangential homotopy type. 

 
Codimension  3  can be handled similarly using the fact that  

 

the first rational Pontryagin class is a fiber homotopy  

 

invariant for 3 – plane bundles  (but  NOT  for higher fiber  

 

dimensions!!).  Since there are only finitely many 3 – plane  

 

bundles with a given first rational Pontryagin class, one can  

 

proceed much as in the codimension  2  case. 

 
Codimension  4:   The earlier infinite families of examples  
 

were constructed by showing that the candidates for souls  
 

could be smoothly embedded in certain products of spheres  
 

crossed with  RRRR
k   for suitable values of  k.   We use an  

 

embedding theorem of   Browder – Casson – Haefliger –  
 

Sullivan – Wall  to show that in the earlier examples one can   
 

always take  k  equal to 4. 

 



Here is another type of exotic example in codimension 4: 

 
THEOREM   4.        There is a complete, nonnegatively curved  
 

metric on  S7 × RRRR
4  such that the soul is  S7  but the normal  

 

bundle of the soul is nontrivial. 

 
By Theorem 1,  this metric and the usual product metric  
 

must belong to separate components in the moduli space of  
 

complete nonnegatively curved metrics on  S7 × RRRR
4.   

 
This result is part topological and part geometric.  Results of  
 

J. Levine  and  A. Haefliger   that S7 embeds smoothly in  
 

RRRR
11  with a  nontrivial  normal bundle, and it follows that the  

 

latter’s total space is diffeomorphic to  S7 × RRRR
4.  On the other  

 

hand,   K. Grove  and  W. Ziller show that the total space of  
 

this vector bundle has a complete nonnegatively curved  
 

metric whose soul is the nontrivial bundle’s zero section. 

 
A  REMAINING QUESTION.   In the low codimension  
 

cases, is it possible to find examples of metric pairs for which  
 

the souls are not diffeomorphic?    By previous remarks, the  
 

only possibilities are codimensions 2 and 3 (and as usual a  



 

positive answer in the first case implies the a positive answer  
 

in the second). 

 
Candidates for souls.   Consider the manifolds  ΣΣΣΣ 

7 × CPCPCPCP
2k   

 

where the first factor is either the standard 7 – sphere or an  
 

exotic 7 – sphere.  Results of  Grove and  Ziller  imply  
 

that many such product manifolds admit nonnegatively  

 

curved metrics, and in particular this holds if  ΣΣΣΣ 
7  generates  

 

the Kervaire – Milnor group  ΘΘΘΘ    7  of homotopy  7 – spheres, 
 

which is cyclic of order  28.    

 
Classifying such products up to diffeomorphism is “an  
 

interesting problem” with a long history. 

 

NOTE.    We restrict to even – dimensional complex  

 

projective spaces because ΣΣΣΣ 
7 × CPCPCPCP

2k+1 and S 
7 × CPCPCPCP

2k+1   
 

are always diffeomorphic (this was already well – known in  
 

the 1960s; in particular, it follows quickly from Sullivan’s  
 

product formulas for surgery obstructions).  

 
OBSERVATION.        If  ξξξξ  is a  2 – plane bundle over  CPCPCPCP    

q   
 



then  E(ξξξξ)  has a complete positively curved metric whose  
 

soul is the zero section.   —   The same will hold for many 
 

(and for most q, all)  products  ΣΣΣΣ7 × E(ξξξξ) [more on this later].   

 
Examples of   2 – plane bundles with nondiffeomorphic souls  
 

follow from the next two results. 

 
THEOREM   5.        If  the  2 – plane bundle   ξξξξ  is  nontrivial,  
 

then  ΣΣΣΣ 
7 × E(ξξξξ)   and   S 

7 × E(ξξξξ)  are always diffeomorphic.  

 
Note that the conclusion is  FALSE  if  ξξξξ  is trivial!  In fact, if   

 

M  and  N  are closed smooth simply connected manifolds of  

 

dimension at least  5  such that  M × RRRR
2  and  N × RRRR

2  are  

 

diffeomorphic, then  M  and  N  are diffeomorphic by a fairly  

 

standard argument using the  s – cobordism Theorem.   

 
 

THEOREM   6.        If    ΣΣΣΣ 
7  generates the Kervaire – Milnor  

 

group of homotopy  7 – spheres, then  for each   k  >  0   the  
 

manifolds   ΣΣΣΣ 
7 × CPCPCPCP

2k  and   S 
7 × CPCPCPCP

2k  are  not  diffeomorphic. 

 



PROOFS.   Both involve surgery theory.  The first is a fairly 
 

straightforward application of the Sullivan – Wall exact 
 

surgery sequence for manifolds with boundary.  The second  
 

requires a much deeper study of exact surgery sequences,  
 

and it has several parts.  First, one needs some insight into  
 

the (homotopy classes of) homotopy self – equivalences of    
 

S 
7 × CPCPCPCP

2k.  Next, it is necessary to determine which of these  
 

maps are homotopic to diffeomorphisms.   It turns out that  
 

one can answer this question in a complete and useful  
 

manner by a variety of homotopy and surgery techniques; in  
 

fact, a homotopy self – equivalence will be homotopic to a  
 

diffeomorphism if and only if it is normally cobordant to the  
 

identity.  Finally, one needs a result on the action of Wall  
 

group actions on structure sets in the surgery sequence.  In  
 

principle, the key result was originally due to  L. Taylor   
 

(some necessary embellishments of this go back to a 1980s 
 

paper by R.S. in the Michigan Mathematical Journal). 

 

 
THE SPECIAL CASE WHERE  k  =  1.     The product  
 

manifolds   ΣΣΣΣ7 × CPCPCPCP
2  yield exactly  three  diffeomorphism  



 

classes, and in fact every smooth structure on  S 
7 × CPCPCPCP

2  is  
 

diffeomorphic to one of these three products  (so every  
 

smooth structure on the latter supports a nonnegatively  
 

curved metric).   
 

 

Higher values of  k.     For the overwhelming majority of  
 

cases, the product manifolds  ΣΣΣΣ7 × CPCPCPCP
2k  also fall into exactly   

 

three diffeomorphism classes.  If  k  is not divisible by 3 then  
 

part of this essentially goes back to the 1960s, and it reflects  
 

the fact that the Kervaire – Milnor group  bP4k + 8 (homotopy  
 

4k + 7 – spheres which bound parallelizable manifolds) has  
 

order prime to 7, which one plays off against the fact that  
 

bP8   has order 28  =  7 × 4   (see W. Browder, 1967 Tulane  
 

Conference Proceedings).  A second important piece of input  
 

is a refinement of the RS proof of Taylor’s result to the cases  
 

of interest here — namely,  ΣΣΣΣ7 × CPCPCPCP
2k.   One key step here 

 

involves characteristic class computations for certain vector  
 

bundles over the eightfold suspension of  CPCPCPCP
2k, and this can  

 

be done using a variety of results from algebraic topology.    
 



One can also combine this with results of   J. F. Adams  on  
 

splitting real  K – theory at odd primes to show that one  
 

obtains three diffeomorphism classes provided  k  is not  
 

congruent to  3  mod 21.  On the other hand, simple  
 

characteristic class computations for k  =  3  show that there  

 

are a (maximal) number of  15  different diffeomorphism  
 

classes of manifolds of the form   ΣΣΣΣ7 × CPCPCPCP
6.   It follows in this 

 

case that one has least  10  different possible diffeomorphism  
 

classes of souls; this is because Grove – Ziller shows that  10   
 

out of the 15  unoriented diffeomorphism types of homotopy  
 

7 – spheres have riemannian metrics with nonnegative  
 

sectional curvature.   

 
Note.   There always are at least three diffeomorphism types  
 

which have such metrics. 

 
The first unresolved case is to determine the number of  
 

diffeomorphism types determined by products of the form    
 

ΣΣΣΣ7 × CPCPCPCP
48.     

 

 



 FINAL  REMARKS  

 
Some open questions, some additional work in progress. 

 
 

Relation to questions about positive scalar curvature.  

 
The preceding results yield lower bounds on numbers of  
 

components in moduli spaces of complete metrics with  
 

nonnegative sectional curvature.  It is natural to ask what  
 

happens if we look instead at moduli spaces for metrics with  
 

nonnegative  Ricci  or scalar curvature.  The answers may  
 

depend upon the choices of topologies for the moduli spaces. 

 
Non – simply connected examples with large numbers of  
 

diffeomorphism types of codimension two souls. 

 
The simplest question here is whether one can ever have  
 

infinitely many diffeomorphism types of such souls.   For the  
 

examples constructed here, the number is fairly small.  On  
 

the other hand, it is possible to construct examples with an  
 

arbitrarily large finite number of diffeomorphism types of  
 

codimension two souls, and this can be done in every odd 
 



dimension.  Specifically, one can do this by taking suitable 
 

classes of lens spaces and crossing them with complex line 
 

bundles over even – dimensional complex projective spaces 
 

or products of such spaces.   This uses the previously cited 
 

results of  E – M – S – S   together with some basic facts 
 

about product formulas for surgery obstructions, all in the 
 

context of surgery on bounded manifolds. 

 
Fixed point sets of smooth semifree circle actions on  
 

homotopy spheres.  

 
One original motivation for interest in some key points of  
 

the study of products of exotic spheres with complex  
 

projective spaces.  Such actions have proven to be very  
 

useful  “toy models”  for more general classification  
 

problems (this parallels the transition from  Kervaire and  
 

Milnor’s  work to that of  Browder and Novikov and … ).   
 

The fixed point sets of such actions are integral homology  
 

spheres, and topologically every integral homology sphere of  
 

dimension at least 5 can be realized as the fixed point set of  
 

such an action.  However, separate results of  Becker – RS  
 



and  Kh. Knapp  yield some nontrivial restrictions on the  
 

diffeomorphism types of such fixed point sets.  In fact, if  
 

their codimensions are sufficiently large then the fixed point  
 

sets must bound parallelizable manifolds by consequences of  
 

the Segal Conjecture (if  G is finite, the stable cohomotopy    
 

of  BG  is the completed Burnside ring of G).  The results of  
 

the work in this talk also yield some additional restrictions,  
 

and it would be enlightening to understand the situation in  
 

greater depth.   This is also related to some earlier joint  
 

work with  M. Masuda  on smooth semifree actions of  S 
3  

 

(Osaka J. Math., 1994). 

 

 

Link for these notes: 
 

http://math.ucr.edu/~res/miscpapers/Muenstertalk.pdf  


