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Introduction

This is an expanded version of notes for lectures I had planned to give at
the Korea Advanced Institute of Science and Technology during the Seventh
KAIST Mathematics Workshop in Algebra and Topology at the Korea Ad-
vanced Institute of Science and Technology in Taejon, Korea, from August
11 to August 14, 1992.

There are three parts, with each corresponding to one of the planned
lectures. The first two discuss joint work with G. Dula on the foundations
of isovariant homotopy theory, the applications of this work to classifica-
tion problems for smooth manifolds with (smooth) group actions and its
relation to work on equivariant surgery over the past two decades; some
of the results in the second part have been obtained independently by M.
Dawson. The third part discusses joint work with S. Kwasik on a somewhat
different but related topic; namely, differentiable actions of finite groups
on homology 3-spheres. One common theme relating the second and third
parts is the problem of adapting equivariant surgery to cases where a stan-
dard technical condition (the Gap Hypothesis) does not hold. A second
relationship is that the 3-dimensional questions exhibit some basic features
of higher-dimensional problems with certain technical simplifications. Fi-
nally, advances in the geometrization theory of 3-manifolds over the past
two decades have suggested that suitably pseudo-geometric manifolds in
higher dimensions form an especially promising subject for future research
in geometric topology and transformation groups; perhaps ideas resembling
those of Part III will lead to progress in this direction.
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PART I

INTRODUCTION TO ISOVARIANT
HOMOTOPY THEORY

Background references and notation

Although we shall include a few remarks on the basic facts and concepts
of differentiable transformation groups, a detailed account of the subject’s
foundations is beyond the scope of this article. The following references

contain most if not all of the relevant background material:

(1) Chapters I-II and Sections V1.1-2 of Bredon, Introduction to Compact
Transformation Groups (:= [Bre3]).

(2) Chapter I and Sections I1.1-2 of tom Dieck, Transformation Groups
(:= [tD2]). '

(8) Chapters I-II and the Summary of Dovermann—Schultz, Equivariant
Surgery Theories and Their Periodicity Properties (:= [DoS2)).

Most of the algebraic topology that we use can be found in the standard
books by Spanier [Sp] and Milnor and Stasheff [MS].

We shall generally use standard notational conventions in transformation
groups including M@ for the fixed point set of a group G acting on a space
M, G; for the isotropy subgroup of G at z, and Mgy for the set of all
points whose isotropy subgroups are conjugate to H, and |G| for the order
of a finite group G. These (and many others) can be found in the references

listed above.

As indicated by the title of this article, we shall deal mainly with smooth

group actions. However, for purposes of comparison we shall occasionally
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most important property of bounded smooth G-manifolds is the existence

of collar neighborhoods for the boundary.

PROPOSITION 1.3. Let M be a smooth G-manifold with boundary OM.
Then OM has a neighborhood that is equivariantly diffeomorphic to 9M x
[0,1) — with trivial action on the second coordinate — such that M corre-

sponds to OM x {0}. If ¢; are two smooth equivariant collar neighborhoods
(where j = 0,1), then co|0M x [0, 1] and ¢,|0M x [0, 3] are ambient isotopic.

This result follows from the same sort of argument that appears in
M. Hirsch’s differential topology textbook [Hi, Thm. 4.6.1, pp. 113-114]. O

As noted in [Hi, Ch. 4, Sec. 6], the analog of the Tubular Neighborhood
Theorem for bounded manifolds requires a suitably refined notion of embed-
ding for manifolds with boundary. Specifically, one needs to work with neat
embeddings of (M,8M) in (N,dN) such that boundary goes to boundary
and interior to interior (i.e., a proper embedding of manifolds with bound-
ary) and some neighborhood of M in M meets ON orthogonally along the
boundary (say with respect to some collar neighborhoods). We then have

the following equivariant analog of the results for bounded manifolds in [Hi,
Thms. 4.6.3 and 4.6.5, pp. 114-116].

THEOREM 1.4. (i) Let (M,8M) and (N,0N) be smooth (finite dimen-
sional) G-manifolds with boundary, and let f : (M,0M) — (N,0N) be a
smooth equivariant embedding satisfying the neatness condition described
above (with respect to some invariant collar neighborhoods). Then there
is an equivariant vector bundle E | M and a neat smooth embedding
F: E — N whose restriction to the zero section is essentially f.

(#i) Suppose that f; : E; — N (where j = 0,1) satisfy (z), and suppose
we are given invariant riemannian metrics on E; with unit disk bundles
D(E;). Then there is a metric preserving G-vector bundle isomorphism
¢ : Ey — Ey covering the identity on M and a smooth equivariant ambient
isotopy H : N x [0,1] = N such that Hy°f, = fi®p. O

The equivariant Tubular Neighborhood Theorems imply that certain in-

variant subsets of a smooth G-manifold are also smoothly embedded sub-
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manifolds or unions of submanifolds (where the dimension may vary from
one component to the next). For example, this holds for the fixed point set
MFE and the constant orbit type set Mz). Since M is the pairwise disjoint
union of these subsets My, where (H) runs through the conjugacy classes
of subgroups of G, and the induced G-action on Mz is completely deter-
mined by fiber bundle considerations, we therefore have a decomposition
of M into G-invariant pieces that can be studied effectively by standard
topological methods. In order to understand things more thoroughly it is
necessary to determine how these pieces fit together; a fairly complete ac-
count of this can be found in work of M. Davis [Dav]. As indicated in [DoS2,
Sec. I1.4], the process can be viewed as a special case of the Thom-Mather

theory of smoothly stratified sets.

Convention on abuse of language. If we are given an invariant closed
subset N C M of a smooth G-manifold M such that N is a disjoint union
of smoothly embedded submanifolds V;, and the maps ¢; : E; — N; de-
fine pairwise disjoint tubular (i.e., vector bundle) neighborhoods as in the

preceding results, we shall often say that the disjoint union

He;:[1E; = [IN; (% N)

1s an invariant tubular neighborhood of N in M; if « is the disjoint union
of the associated vector bundles a; (whose fibers may have different dimen-
sions!), then D{a) and S(a) will denote the unions of the associated disk
and sphere bundles [] D(«;) and ][] S(e;) respectively.

2. Equivariant homotopy theory

One of the main themes in algebraic topology is the use of cohomology
groups to analyze the homotopy classes of maps from one space to another.
The classical approach to this general question involves obsiruction theory
(cf. [Whi]; for historical background see [EiL] and [Wh2]). Although several
new and powerful techniques for studying homotopy classes have emerged
over the past four decades, in many cases the obstruction-theoretic approach

is still the most useful or illuminating. The applicability of obstruction
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theory to equivariant homotopy was already understood by the mid nineteen
fifties (¢f. [Dg]), especially when the group action is FREE (i.e., all isotropy
subgroups are trivial). Systematic investigations of equivariant homotopy
theory began in the nineteen sixties. A historical summary appears in the
first part of [Sc10, Sec. 1]; we shall merely sketch the basic mathematical
points here.

In principle, classical obstruction theory yields an algebraic setting for

describing homotopy classes of maps provided one has the following data:

(1) Cellular decompositions for the source spaces.

(#) Suitably defined cohomology groups for the source spaces, in general
with twisted coefficients, that can be computed from small cochain
complexes reflecting the cell structure. The coefficients are determined
by the homotopy type of the target space and some information in-

volving fundamental groups.

In [Bre2] G. Bredon described general and usable equivariant analogs of
() and (7). The objects in (i) were forerunners of G — CW complexes
(e.g., see [tD2, Sec. IL.1]), and the cohomology functors in (i1} evolved into
the so-called Bredon (equivariant) cohomology groups; the latter were first
defined by Bredon [Bre2], and a close relation of these to ordinary singular
cohomology follows from an alternative definition due to Th. Brécker [Bro)
(in this connection also see [IL1]). Equivariant coefficient systems in Bre-
don cohomology are more complicated than ordinary coefficient groups and
require families of abelian groups indexed by the components of each fixed
point set Y# (where H is a subgroup of G), but one still has small cochain
complexes for computing the Bredon cohomology groups grH*(X, A).

The following results reflect the strong analogies between ordinary and

equivariant homotopy theory.

PROPERTY 2.0. (G-homotopy extension property) Let G be a compact Lie
group, let X be a G — CW complex, let A C X be a subcomplex, let

f: X 5 Y be a continuous equivariant map into some G-space Y, and
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let hy : A = Y be an equivariant homotopy such that hy = f|A. Then h,
extends to an equivariant homotopy Hy : X — Y such that Hy= f. O

PROPERTY 2.1. (Extension theorem) Let G, A, X, Y be as above, and let
h: A — Y be continuous and equivariant. Then f extends to a continu-
ous equivariant map from A to Y if a sequence of obstructions valued in
the i-dimensional Bredon cohomology groups of (X, A), with coeflicients in
the (i — 1)-dimensional homotopy groups of fixed set components of Y, is
trivial. [

ProPERTY 2.2. (Classification theorem) Let G, X, Y be as above, and
let h; : X — Y be continuous and equivariant for j = 0,1. Then hy and
hi are equivariantly homotopic if a sequence of obstructions valued in the
i-dimensional Bredon cohomology groups of X, with coefficients in the 1-

dimensional homotopy groups of fixed set components of Y, is trivial. [

Note the difference in coefficient groups between 2.1 and 2.2.

PROPERTY 2.3. (Barratt-Federer spectral sequence) Let G, X, Y be as
above, and also assume X is finite-dimensional. Modulo some mildly ex-
ceptional behavior in dimensions 1 and 0 there is a spectral sequence such
that

E}; = prHG (X; omi(Y))

where om;(Y') is a coefficient system derived from the homotopy groups of
components of fixed point sets Y (where H runs through subgroups of
G) and E% gives a series for miy;(Fg(X,Y)), where Fg(X,Y') is the space
of G-equivariant continuous maps from X to Y with the compact open

topology. O

Precise statements of 2.1-2.3 appear in [DuS, Sec. 1]. Unfortunately, the
preceding results are computationally less useful than their nonequivariant
counterparts because Bredon cohomology groups are far more difficult to
compute than ordinary singular cohomology. One the other hand, results
from [Sc2] yield alternatives to 2.1-2.3 that involve ordinary cohomology
groups; not surprisingly, there is a price to pay for this — roughly speaking,
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each Bredon cohomology group is replaced by a finite list of ordinary coho-
mology groups. In particular, the analog of Property 2.3 given by [Sc2] is
the Barratt-Federer/Fary spectral sequence in {DuS, Thm. 1.5].

One can in fact extend nearly all the basic concepts and results in alge-
braic topology to the category of G — CW complexes, including an equivari-
ant version of the Whitehead thegrem for recognizing equivariant homotopy
equivalences (see [Bre2]), Postnikov decompositions, and localization at a
subring of the rationals [MMT]. This can be interpreted as a special case
of a more general observation (see [DF, p. 131]; in this connection also see
[May] and [DuS, statement (1.8)]). There is also a corresponding analog
of equivariant stable homotopy theory; references for the latter include tom
Dieck’s book on the Burnside ring [tD1], an exhaustive account by G. Lewis,
J. P. May, and M. Steinberger [LMS], and a more recent survey article by
G. Carlsson [Car).

Application to smooth G-manifolds

Of course, if we wish to apply the preceding machinery to compact smooth
G-manifolds it is necessary to find appropriate interpretations of the latter
as G — CW complexes. There are two ways of doing this. Results of A.
Wassermann [Wa)] yield a version of Morse Theory for G-invariant smooth
functions on smooth G-manifolds, and from this it is elementary to show
that smooth G-manifolds have the G-homotopy type of finite-dimensional
G — CW complexes; in fact, for compact smooth G-manifolds one can choose
the G— CW complexes to be finite (also see [Ko] for a self-contained account
of these results). On the other hand, for many purposes it is more useful to
invoke a stronger result due to S. Illman [IL3}: Every smooth G-manifold (G
finite) has a G-equivariant triangulation that is smooth in the sense of J. H.

C. Whitehead (seec [Mun] for the corresponding result in ordinary differential
topology).

3. Isovariant homotopy theory
Recall that a finite group action on a reasonable (say paracompact Haus-

dorff) space X is free if the isotropy subgroups at all points are trivial. Basic
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results in topology state that a free action of a finite group G on such a space
is determined by its orbit space X/G and a homotopy class of maps from
X /G to a universal base space BG ~ K(G,1). In [Pa] R. 5. Palais extended
this to a classification theory for G-spaces that are not necessarily free; this
involves a special class of maps that Palais called ISOVARIANT. Specifically,
a G-equivariant map f : X — Y is said to be isovariant if for all z € X
the isotropy subgroups satisfy G, = G(,); an equivariant map f automati-
cally satisfies Gy C Gy(s), but it is easy to see that equality often does not
hold. During the nineteen sixties and seventies isovariant maps were also
discussed in connection with various topological problems, and questions
about isovariant homotopy arose naturally; much of this is discussed at var-
ious points of [DuS]. The usefulness of isovariant homotopy for classifying
G-manifolds became explicit in the work of Browder and Quinn [BQ] on
stratified surgery theory. Various ad hoc techniques for dealing with isovari-
ant homotopy theory gradually emerged, and by the mid nineteen eighties
it was clear that one could analyze isovariant homotopy effectively by the
basic techniques of algebraic topology. The key idea is expressed in [DuS]

as follows:

Isovariant homotopy for smooth G-manifolds is essentially equivalent
to equivariant homotopy theory for suitable diagrams of smooth G-

manifolds.

We shall explain this statement in several steps, beginning with a discus-
sion of diagram categories. If I is a small category and & is some category of
topological spaces, then a D-diagram with values in S is merely a covariant
functor D — § and a morphism of D-diagrams is a natural transformation of
functors. Results of W. Dwyer and D. M. Kan [DK] show that one can ex-
tend much of classical homotopy theory and obstruction theory to categories
of D-diagrams with values in the category of CW complexes, and subsequent
generalizations of E. Dror Farjoun [DF] yield corresponding results for suit-
able categories of D-diagrams of G-CW complexes. More precisely, we need
to choose a small category associated to some finite partially ordered set P

that is closed under taking greatest lower bounds, and we also must restrict
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attention to P-diagrams satisfying a few simple admissibility conditions (see
[DuS, conditions (z) — (217) preceding (1.6)]. The basic results of equivari-
ant algebraic topology extend directly to such equivariant diagrams and are
summarized in [DuS, (1.6)-(1.10)].

Before discussing the types of diagrams we need, a technical remark is in
order. Strictly speaking, the results of [DuS] only deal with a restricted class
of group actions, but this class includes all actions of the cyclic groups Ly,
where p is a prime, and all fixed point free actions of Zipq, Where p and ¢ are
distinct primes. Extensions to more general actions will appear in a sequel
to [DuS). We shall first discuss the types of diagrams needed in an important

special case and then outline an inductive extension to the general case.

The semifree case

The conclusions of [DuS] apply directly to actions that are semifree (=
free off the fixed point set), so we shall describe the appropriate diagrams
of G-manifolds in this important special case. If M is a compact smooth
G-manifold, let M€ denote its fixed point set as usual, let aps be the equi-
variant normal bundle of M in M, let D(axr) and S(aas) be the associated
unit disk and sphere bundles respectively, and let M 2MS denote the closure
of M — D{an). Then the relevant diagram of spaces, which is denoted by
B(QF),) in [DuS], is the following partially ordered set:

S(aps) —— D{ay) —— MC

l !

MEMG — M

In the preceding special case the main result of [DuS, Sec. 4] can be

stated as follows:

THEOREM 3.1. (compare [DuS, Thm. 4.5]) Let G be a finite group, let
X and Y be compact smooth semifree G-manifolds, and let B(QF ) and
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B(QFy,) be the diagrams described above. Then there is a canonical iso-

morphism:

o -

G — equivariant G — isovariant

homotopy classes of homotopy classes of

i

continuous equivariant continuous isovariant

diagram morphisms maps of spaces
. B(QFx) — B(QFy) . L X —Y -

O

The proof of this result is a fairly straightforward application of standard
compactness considerations and the covering homotopy property for fiber

bundles; details appear in [DuS, Sects. 2-4].

Results of Dwyer and Kan [DK] and E. Dror Farjoun {DF] show that one
can “do algebraic topology” in the diagram category corresponding to the
left hand side of the correspondence displayed in the theorem. In particu-
lar, the associated obstruction theories in the diagram categories (¢f. [DuS,
Sec. 1]) are essentially obstruction theories for isovariant homotopy theory.
Furthermore, as noted in [DuS, (1.8)-(1.10)] one also has Postnikov decom-
positions, localization at subrings of the rationals, and spectral sequences
for the homotopy groups of isovariant function spaces analogous to those
of J. Mgller and the author [Mg, Sc2]. At the end of [DuS, Sec. 4] these
ideas are applied to prove isovariant analogs of the Whitehead Theorems for
recognizing (ordinary or equivariant) homotopy equivalences. Here is one

special case:

THEOREM 3.2. Let G be a finite group, let X and Y be compact, UN-
BOUNDED, semifree smooth G-manifolds, let f : X — Y be an isovariant
map, and also assume that all fixed point sets X* and Y¥ are orieniable.
Then f is an isovariant homotopy equivalence if and only if for each isotropy
subgroup H the map f induces homotopy equivalences from X* to Y¥ and
from X ¥ — Sing(X*) to Y# — Sing(Y#).

Notation and remark. The singular set of M¥, denoted by Sing(M*),
is the set of all points in M¥ whose isotropy subgroups PROPERLY contain H.
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By definition an isovariant map X — Y automatically takes X — Sing( X )
to Y# — Sing(YH). O

Related isovariant analogs of the Whitehead Theorem also appear in
[DuS, Thm. 4.10 and Cor. 4.11]).

Actions with more general isotropy structures

The preceding results extend to arbitrary compact differentiable G-mani-
folds (where G is finite as usual). In principle the argument combines the
techniques used in the semifree case with an inductive framework that we

shall describe below; details will appear in a sequel to [DuS].

DEFINITION. If GG is a compact Lie group acting with finitely many orbit
types (e.g., if G is finite), then-the isotropy depth of the action is the largest

nonnegative integer d such that one has a sequence of isotropy subgroups
H S H S - CH,

In particular, an action with only one isotropy type (e.g., a free action)
has isotropy depth zero, and a semifree action has isotropy depth one; the
results of [DuS] include extensions of 3.1 and 3.2 to actions with isotropy
depth one. Aside from semifree actions, the class with isotropy depth one
also includes fixed point free, effective actions of Z,,, where p and ¢ are
distinet primes (since the group in question contains exactly two nontrivial

proper subgroups, and neither contains the other).

One of the main steps in extending Theorem 3.1 is the description of an
analog to B(QF,,) for actions of isotropy depth greater than one. Suppose
we are given a compact smooth G-manifold M; we begin by choosing a
G-invariant metric on M and using it to construct a system of invariant
tubular neighborhoods of the fixed point sets M where H runs through the
isotropy subgroups of the action. If we are given an action of isotropy depth
zero, then the finiteness of GG implies that M splits into a disjoint union of

codimension zero submanifolds M¥ where K runs through the conjugates of
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H, and the isovariance diagram IsD{M) is given by the partially ordered set
whose members are the sets M¥. One then assumes that IsD(Y") has been
defined for smooth actions of isotropy depth less than d such that IsD(Y")
satisfies some appropriate conditions (e.g., it contains all fixed point sets
YH where H runs through the isotropy subgroups of the action).

Consider next a smooth action on M with isotropy depth equal to d, and
let F; C M be the set of points whose isotropy subgroups are maximal.
It follows that Fj is an invariant union of smooth submanifolds (neatly
embedded if M # @). Let S{d) and D(d) be the unit sphere and disk
bundles for an invariant tubular neighborhood of Fy (with the abuse of
language convention at the end of Section 1), and let C(d) :== M *F; be the
closure of the complement of D{d). The diagram IsD(M) of G-invariant
subspaces of M is then constructed in pieces as follows: Since $(d) and C(d)
have isotropy depth < d — 1 we can take IsD(M; M *Fy) to be the union
of IsD(S(d)) and IsD(C(d)). The set F; is a pairwise disjoint union of the
subsets M¥ where H runs through the maximal isotropy subgroups of the
action, so define IsD(M; Fy) to be the family of all such sets M(x). Next,
define IsD(M; D{d)) to be the family of all subsets D(d)”; the partially
ordered set IsD(M) is then defined to be a family of subsets generated from
IsD(M; M * F;) and IsD(M; D(d)) by adjoining suitable unions PUQ where
P ¢ IsD{M; M*Fy) and @ € IsD(C(d)).

With these definitions of isovariance diagrams Theorem 3.1 generalizes

to a similar canonical isomorphism:

G — equivariant - G — isovariant

homotopy classes of homotopy classes of

IR

continuous equivariant continuous isovariant

diagram morphisms maps of spaces
L IsD(M) — IsD(N) J L M-—N |

where M and N are compact smooth G-manifolds. Roughly speaking, this
can be done inductively by first adjusting the map on D(d) and then using
an inductive hypothesis to adjust the map on M2 F; leaving S{d) fixed.

4. Isovariance versus equivariance
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One basic question in equivariant homotopy theory is to determine
whether a continuous map between two G-spaces is homotopic to an equi-
variant map (¢f. [LW], [MP], and [La]). In this section we are interested in
a corresponding question for isovariant homotopy theory; namely, whether
a continuous equivariant map is equivariantly homotopic to an isovariant
map. Several special cases have been studied in by geometric methods. One
example will be discussed in Section II.2; other results include Illman’s work
on isovariance and equivariant general position [IL4] and results with appli-
cations to embedding manifolds in the metastable range (see Haefliger [Hae,
Prop. 2, p. 245/06] and Harris [Har, Prop. 13, p. 24]). Each approach
seems to yield insights not apparent from the others.

Default hypothesis: To keep the notation relatively uncomplicated we
shall only consider semifree actions on connected manifolds whose fixed point

sets are connected.

Similar results also hold for more general actions, but the terminology

quickly becomes far more complicated.

We begin with an elementary observation.

PROPOSITION 4.1. Let M and N be as above, let apr and ay be the equi-
variant normal bundles of the fixed point sets, let D(—) denote an associated
unit disk bundle, and let f : M — N be an equivariant map. Then fis
equivariantly homotopic to a map h such that h{(D(ap)) C D(ay). Fur-
thermore, if ho and hy are two equivariant maps with this property and
®, is an equivariant homotopy from hy to hy, then there is an equivariant
homotopy U, from hq to hy such that U(D(anr)) C Dlan) for all t € [0,1].

This is essentially a special case of [DuS, Prop. 5.1]. 0O

Theorem 3.1 and Proposition 4.1 combine to yield the following lifting

condition for finding an isovariant map in an equivariant homotopy class:
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THEOREM 4.2. Let M and N be as above, and let f : M — N be a con-
tinuous equivariant map satisfying the conditions of Proposition 4.1. Then
f is equivariantly homotopic to an isovariant map if the associated maps
S(aar) — D{(an) and M*M® — N lift - equivariantly and compatibly - to
S(an) and N=NC respectively.

This is a special case of [DuS, Thm. 5.3]. O

One can obtain cohomological isovariance obstructions by combining The-
orem 4.2 with obstruction theory in several different ways. Typical resulis
along this line are given in [DuS, Thms. 5.4-5.5]. The remarks at the end

of {DuS, Sec. 5] discuss variants and special cases of these theorems.

Comparative computations

Another way of studying the difference between equivariant and isovariant
homotopy is to compare the homotopy groups of an equivariant function
space Fg(X,Y) with those of the corresponding isovariant function space
IFy(X,Y), say if X and Y satisfy the basic assumptions of [DuS}. For
example, one could use the appropriate Barratt-Federer spectral sequences
from [Sc2] and [DuS] in each case, and as a first step it might be worthwhile
to take tensor products with the rationals and obtain information about
rational homotopy groups.

The final section of [DuS] provides a comparison along these lines when
G = Z,,and X =Y = S(V), where p and ¢ are distinct odd primes and V' is
a linear G-representation such that V' contains at least two free irreducible
summands. if Fg(V) is the space of equivariant self maps of S(V') then the
Barratt-Federer spectral sequence of [Sc2] shows that m(Fe(V)) @ Q =0
for all but finitely many k. On the other hand, if IFg(V) is the space of
isovariant self maps of S(V) then the results of [DuS, Sec. 6] show that
each rational homotopy group m(IFe(V))® Q is finite dimensional, but the
sequence of dimensions dy, satisfies limsupy_,..dr/k™ = co for every positive
integer n. There is an explanation for this difference in terms of the Barratt-

Federer spectral sequences: In the equivariant setting one has cohomology
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groups with coefficients in the homotopy groups of spheres, and rationally
these vanish in all but at most two dimensions. On the other hand, in
the isovariant setting one has cohomology groups with coefficients in the
homotopy groups of wedges of spheres, and the ranks of these groups tend

to grow exponentially as the dimension increases.
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PART II

ISOVARIANT HOMOTOPY,
CLASSIFICATION PROBLEMS, AND GENERAL POSITION

Background material

As in Part I we assume basic concepts in algebraic topology and transfor-
mation groups in Bredon, tom Dieck, Dovermann-Schultz, Milnor-Stasheff,
and Spanier. Beyond this, we shall frequently mention the concept of simple
homotopy equivalence as presented in Milnor’s article [MLN2] or M. Cohen’s
book [Co], and we shall also use data from the Sullivan-Wall surgery exact
sequence. The standard reference for the latter is Section 10 of Wall’s book,
Surgery on Compact Manifolds (:= [WL]). Most of the material of imme-
diate interest in this article is summarized in [Brw2], and in particular the
Sullivan-Wall sequence is presented in [Brw2, p. 29] with a minimum of
technical diversions. However, we shall use notation that differs slightly
from that of [WL] and [Brw2], mainly because we shall also need to consider

variants of the structure sets described in those references.

Both [WL] and [Brw2] deal with structure sets SP//(X) of simple ho-
motopy structures on a simple Poincaré complex X and with certain alge-
braically defined surgery obstruction groups Li(7). As noted in Section 17
of [WL] one can define analogous homotopy structure sets, surgery obstruc-
tion groups, and exact sequences for homotopy structures on a Poincaré
complex; for this theory, equivalent structures are h-cobordant rather than
diffeomorphic. To distinguish between the two structure set theories in the
smooth category we shall denote the simple homotopy objects by P/ and

*(w,w), and we shall denote the ordinary homotopy objects by & hDiffand
L(m,w); here w refers to the homomorphism 7 — Z; defined by the first
Stiefel-Whitney class. We shall also use somewhat different notation for
the bordism classes of degree one normal maps that are called NP¥/(X)
in [Brw2). Standard results in algebraic and geometric topology imply that
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NDiI(X) is isomorphic to the set of homotopy classes [X, F/O], where F/O
is the space classifying stable fiber homotopy trivializations of stable vector
bundles of X; this space is considered in [Brw3, Sec. II.4] where it is called
G /O (we use F/O rather than G/O because the two names are essentially
used interchangeably in the literature and G will frequently denote a finite
group in the discussion that follows). A full discussion of the isomorphism
ND#I(X) = [X, F/O] appears in [Brw3, Thm. I1.4.4, pp. 46-49]. This de-
scription of NP /(X is useful because there is an exact sequence of abelian

groups
. = KO(EX) — {£X, §°} — [X, F/O] = KO(X) — K Sph(X)

where KO denotes reduced real K-theory, {—, $°} denotes stable cohomo-
topy, and K Sph denotes the analog of reduced K-theory for stable spherical

fiber spaces.

Finally, we shall also note the existence of relative structure sets S oD f(X,
0X) for Poincaré complexes with formal boundaries; here ¢ = s or h.
The basic idea is to take simple homotopy (resp. homotopy) equivalences
(M,8M) — (X,0X) such that the map of boundaries is a diffeomorphism.
There is an extension of the Sullivan-Wall exact sequence to such objects
modulo some adjustments; the Wall groups are simply those for the funda-
mental group and first Stiefel-Whitney class of X, but the normal bordism
set ND/S(X 8X) in this case is equivalent to [X U Cone(0X), F/O].

Recent work of M. Dawson [Daw] includes an independent proof of the
main results in Section 1 and applications to smooth variants of the Cappell-
Weinberger replacement theorems (e.g., sce Theorem 5.1 below for a state-
ment of one such result in the locally linear topological or PL categories).

Additional remarks on this work appear in Section 3.

1. Isovariant homotopy structures

The main ideas of surgery theory began to emerge in the nineteen fifties,
and they became well established with the work of M. Kervaire and J. Mil-
nor [KM] on classifying smooth manifolds that are homotopy equivalent to
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spheres (i.e., homotopy spheres). Subsequent work of W. Browder and S. P.
Novikov yielded far reaching extensions of [KM)] to existence and classifica-
tion questions for simply connected manifolds of a fixed homotopy type, and
still further work of Wall extended the theory to manifolds with arbitrary
fundamental groups [WL].

It soon became clear that surgery theory also yielded valuable informa-
tion on existence and classification questions for group actions on manifolds
(¢f. [Brwl]). In particular, many striking applications to free differentiable
group actions on spheres were made during the nineteen sixties {e.g., see
[(HH], [Hs], [LdM]}). Systematic efforts to study nonfree actions also began in
the nineteen sixties with work of Browder and Petrie [BP] and Rothenberg
and Sondow [RSo] on classifying smooth G-actions that are semifree and ho-
motopically linear — in other words, both A and M€ are closed manifolds
that are homotopy equivalent to spheres (see also [Brwl] and [Se3]). Actions
of this type can be viewed as smooth G-manifolds that are equivariantly ho-
motopy equivalent to a linear G sphere S(V) given by the unit sphere in
some orthogonal, semifree representation of G on a finite dimensional real in-
ner product space V. In analogy with the Browder-Novikov-Wall extension
of [KM] to arbitrary closed manifolds, it is natural to search for an exten-
sion of the Browder-Petrie and Rothenberg-Sondow work to more general

G-manifolds.

A major step in this direction was due to W. Browder, who presented
his ideas in a lecture at a conference in 1971 (see p. vi¢ in the book con-
taining {MnY1)). This work was later extended by F. Quinn and published
jointly in [BQ]. The basic idea was to consider manifolds that are isovari-
antly homotopy equivalent to a given model such that the isovariant equiv-
alence satisfies a transverse linearity condition. For the sake of simplicity
we shall only describe this for semifree actions. In such cases the isovari-
ant homotopy equivalence f : M — N is supposed to be a map of triads
from (M;M=M% D(ay)) to (N; N2NC, D(ay)), where ay refers to the
(equivariant) normal bundle of Y in ¥ as in Part I, and the induced map
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from D(ap) to D{ay) is assumed to be (orthogonally) linear and fiber
preserving. If one specializes this theory to G-manifolds modeled by linear
G-spheres, one obtains a theory that maps naturally into the Browder-Petrie
and Rothenberg-Sondow theories and includes many infinite families of ex-
amples from (both of) the latter.

One of the most important properties of the Browder-Quinn setting is
the existence of a surgery exact sequence that is formally parallel to the
Sullivan-Wall sequence (¢f. [BQ, Thm. 2.2, p. 29}):

o= LEPR(X) - S§PU(X) = [X/G, F/O] — L3P9(X)

In this sequence X is a closed smooth G-manifolds, the symbol ¢ denotes ei-
ther s (for equivariant simple homotopy; ¢f. lllman [IL2] or Rothenberg [Ro])
or h (for ordinary equivariant homotopy), and the groups LeBQ(X) are the
Browder-Quinn surgery obstruction groups as defined and studied in [BQ)
and [DoS2, Sec. 2]. Although these groups are written in terms of X, they
are in fact determined by weaker data that is summarized in the geometric
reference Ry of W. Liick and I. Madsen [L{iMa, Definitions (2.3) and (3.1),
pp. 512 and 516]. Asnoted in [BQ] and [DoS2], certain natural exact couples
determine spectral sequences converging to the groups L25#?(X) such that
the initial terms are ordinary Wall groups L?, and therefore one can view the
terms in the Browder-Quinn surgery sequence as computable up to determi-
nation of the homotopy groups of #/0 and the appropﬁa.te Wall groups. In
analogy with the Sullivan-Wall sequence, there are also relative versions of
the Browder-Quinn sequence involving structure sets $%B9(X, 8X) repre-
sented by transverse linear G-homotopy equivalences (M, M) — (X,8X),
with ¢ = h or s as usual, such that &M maps to X by a diffeomorphism.

The basic aim of isovariant surgery theory is to provide a setting that
is broad enough to include both the Browder-Quinn theory and the work
of Browder-Petrie and Rothenberg-Sondow, but is also more or less com-
putable, at least in some cases beyond those of [BP], [RSo}, and [BQ].
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We shall begin by relating [BQ] to [BP] and [RSo] in the case of homo-
topically linear semifree group actions on spheres. The tangential repre-
sentation at a fixed point will be assumed to have the form V ~ R* @ «a,
where the representation « has no trivial summands (hence G acts freely
on the unit sphere S(a)). Deviating slightly from the the notation of {Sc3],
let CSk(G,a) be the set of equivariantly oriented h-cobordism classes of
homotopically linear semifree group actions as described above, where the
tangent space at a fixed point is G-isomorphic to the representation V; as
noted in [RSo] these sets have natural abelian group structures if the di-
mension of the fixed point set is at least 2. There are also canonical abelian

group structures on the relative Browder-Quinn structure sets
Sg°2(D(V), S(V)),

and there is a natural forgetful map S¥F9( D(V), (V) — CSy(G, &), given
by gluing a copy of D(V) to the boundary, that is additive. As in Part I
let Fg(a) be the space of equivariant self maps of the unit sphere S(a).
The orthogonal centralizer of ¢ is a compact subgroup of the topological
monoid Fg(a) and will be denoted by Cg(«); it follows that the quotient

space construction defines a principal bundle
Cela) C Fg(a) — Fo(w)/Ca(a).
One can then define a knot invariant homomorphism
w: CSK(G,a) = m(Fg(a)/Cela))

as in [Sc3, top of p. 311] or [Sc4, Sec. 2].
PROPOSITION 1.1. In the notation of the preceding paragraph, there is a
long exact sequence of the following form:

-+ e (Fa(a)/Co(a)) = Sg7°(D(V), S(V))

s CSK(G, a) = m(Fa(e)/Cale))

In other words, the forgetful map from the Browder-Quinn groups to the
C5:(G, ) groups is the “homotopy fiber of the knot invariant.” O
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The next step in the comparison is to note that each element of CSi(G, «)
is canonically isovariantly homotopy equivalent to S(V @ R) ~ D4.(V) Us
D_(V'). This suggests that the groups C5(G, V) should be viewed as strue-
ture sets for relative G-isovariant homotopy structures on (D(V), D(V)).
In fact, it is possible to describe structure set theories for arbitrary smooth
semifree G-manifolds in the spirit of [BP] and [RSo]. As before there are two
versions IS% and IS} for isovariant simple homotopy and ordinary isovariant
homotopy equivalences respectively. There are also relative versions of these
structure sets for isovariant homotopy structures that are diffeomorphisms

on the boundary.

The exact sequenc.e of [Se3, (1.1), p. 311} plays an important role in
many studies of the groups CSi{G, ), and therefore one would like to have
analogs of this for the structure sets IS5(M). In order to do this it is
necessary to generalize the knot invariant, and this in turn requires a suitable
analog of the homotopy group #.(Fg(a)/Cs(a)). The approach below is
an adaptation of ideas from [Sc9, Secs. 2-3].

DEFINITION. Let X be a G-space, let A C X be G-invariant, and let £ be a
G-vector bundle over X. A G-isovariant fiber homotopy linearization of €is
a pair (£, k) consisting of a G-vector bundle w | X and a G-isovariant fiber
homotopy equivalence & : S(w) — S(£) that is an orthogonal isomorphism
over A. The set F/Og;.(€ rel A) is the set of Such objects modulo the
equivalence relation generated by fiber preserving orthogonal vector bundle
isomorphisms S(w’) — §(w) and isovariant homotopies H; : S(w) — S(§)
that are orthogonal over A,

Note. If G acts semifreely on M with X = M® and £ = ayy, then G
acts freely on §(£) and the isovariance condition merely requires that G act

freely on S(w).

If f: M — N is an isovariant homotopy equivalence of semifree smooth
G-manifolds, then one can define a generalized knot invariant of f in
F/Ogis0(ay) as follows: By the results of Section 1.3 we can deform f

isovariantly so that f maps S(aar) to S(ay), and the construction yields a
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unique isovariant homotopy class of maps S{ay) — S(an); this map can
be further deformed, again uniquely up to isovariant homotopy, to a map f’

such that the following diagram commutes:

S(an) —2— S(an)

Mé 2, NO©
Since f¢ is a homotopy equivalence there is a unique G-vector bundle 8
(up to isomorphism) such that ap & { f¢}*8, and it follows that f' factors
through an isovariant fiber homotopy equivalence n : S(8) — S(am); by
construction the class of (3,7) in the set #/Cg 0(an) is well defined, and

this is the generalized knot invariant of f.

A similar construction is valid for relative homotopy structures on a com-
pact smooth semifree G-manifold with boundary, and in this case the knot
invariant lies in the relative set F/Og s(an rel ON). The following re-
sult is a natural extension of Proposition 1.1 to arbitrary smooth semifree

G-manifolds:

THEOREM 1.2. If X is a closed smooth semifree G-manifold such that each
component of X€ is at least 5-dimensional, then there is an exact sequence

of structure sets
c o F/Ogiso(ox x I rel X x {0,1}) — 8°B9(X) - IS5(X) — F/Ogslax)

that extends infinitely to the left. All objects to the left of $*39(X) are
groups, and all maps are compatible with group structures as in the Sullivan-

Wall exact sequence. [

Reminder. In the Sullivan-Wall exact sequence the source and target for
the surgery obstruction map [X, F/O] — L (x,w) are abelian groups but

the map itself is not additive in general.

The preceding sequence relates S“F2(X) to IS&(X). There is also an

exact sequence for ISE(X) that generalizes the exact sequence for homotopy
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linear actions in [Sc3, (1.1), p. 311). Before stating this result we need a

notational convention:

K'Y is a compact bounded manifold then &* : S(Y) — 8°(8Y) is

given by restriction to the boundary.

THEOREM 1.3. Let X satisfy the conditions of Theorem 1.2. Then there is

an exact sequence of sets

- SPUIX — Int(D(ax))/G, S(ax)/G) — IS8 (X)
l
SC’DUI(XG) X F/OG,,'SD(G}()
i
8§PUI(S(wy)/@)/Image &*

that extends infinitely to the lefi. All ob jects to the left of the raised dots are
groups and the corresponding maps are compatible with group structures

as in Theorem 1.2. O

As usual, there is a variant of this exact sequence for relative structure

gets.

Eztensions to more general actions

Theorems 1.2 and 1.3 provide a means for analyzing isovariant structure
sets in terms of ordinary structure sets and equivariant /isovariant homotopy
theory, provided the group action is semifree. Each of these extends to ac-
tions with more complicated orbit structure. In particular, a generalization
along the lines of 1.2 was considered in earlier work by the author [Sc13];
the necessary modifications include

(7) an extension of F[Og so(—) from vector bundles to the vector bun-
dle systems (known as II-bundles in the papers of Dovermann-Petrie-
Rothenberg [DP1-2, DR]) over Sing(X),

(1) the definition of a generalized knot invariant for an 1sovariant homo-

topy equivalence, taking its value in the set described above.




108 REINHARD SCHULTZ

With this machinery in place, it is a formal exercise to prove that the forget-
ful map SB°(X) — IS5(X) is essentially the homotopy fiber of the knot

invariant constructed by (%z).

Theorem 1.3 is essentially a means for analyzing isovariant homotopy
structures on X by splitting them into two pieces; namely, pieces over a
tubular neighborhood of X¢ and pieces over the free G-manifold X*XC.
There are several ways of extending this to more general actions; we shall
only discuss two extreme cases here. The first approach is to split an ar-
bitrary smooth G-manifold into a smooth equivariant regular neighborhood
Ry of the singular set Sing{X) and the free G-manifold X *Sing(X). This
approach was discussed in [Sc6]; we shall not attempt to provide a precise
description because it requires a notion of isovariant structure set for the
singular set Sing(X), which is generally not a smooth G-manifold (with a
possibly noneffective group action). To describe a complementary approach,
we shall assume for the sake of simplicity that all isotropy subgroups are
normal (e.g., this happens if G is abelian). Suppose that H is a maximal
isotropy subgroup, and let ay be the equivariant normal bundle of X¥ in
X. Then one has the following analog of Theorem 1.3:

THEOREM 1.4. Let X satisfy the conditions of the preceding paragraph.

Then there is an exact sequence of sets

184X — Int(D(ex)), S{ax)) — IS&(X)

!

IS&/H(XH) X F/Oc;,;go(ax)

l

185(S(ax))/Image 0"
that extends infinitely to the left. All objects to the left of the raised dots are

groups and the corresponding maps are compatible with group structures
as in Theorems 1.2 —1.3. O

This result provides a means for analyzing isovariant structure sets in-

ductively with respect to the number of orbit types, for the two structure
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sets in the sequence aside from ISZ?(X) have fewer orbit types than the
original action, and the same is true for the data in F/Og s(~). In subse-
quent work we shall study special cases of this sequence in connection with

questions from Section 3 below.

2. Isovariance and the Gap Hypothesis
During the nineteen seventies and early eighties, Petrie and several other
topologists (beginning with S. Straus [Str]) found many striking applications

of surgery to smooth G-manifolds satisfying the following basic condition:

GAP HYPOTHESIS. A smooth G-manifold M is said to satisfy the (stan-
dard version of the) Gap Hypothesis if for each pair of isotropy subgroups
H 2 K and each pair of components B C M7, ¢ ¢ M¥ such that B GC

we have

() dim B < 1(dim C).

This is basically a general position condition. Its usefulness arises because
surgery theory involves the existence of smoothly embedded spheres whose
dimensions are no more than half the dimensions of the ambient manifolds.
If the Gap Hypothesis holds, then one can choose the appropriate embedded
spheres in each fixed set component C C M¥ to miss all the components
D C M* such that D G C. This means that all the constructions involving
embedded spheres can be done equivariantly on the set M¥ N Mk, which
has only one isotropy type (namely, K). In effect, this reduces an equivariant
surgery problem to a sequence of nonequivariant problems over the orbit
spaces M)/G. A similar reduction arises in the Browder-Quinn theory
even if the Gap Hypothesis does not hold; this follows directly from the

isovariance and transverse linearity conditions of [BQ)].

Most of Petrie’s work dealt with the existence of smooth G-actions on
disks and spheres with properties quite unlike those of orthogonal actions
(compare [Pet1-2] and [DPS]). In a somewhat different direction, K. H.

Dovermann and M. Rothenberg modified Petrie’s approach to construct
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classification theories for G-manifolds in a given equivariant homotopy type
provided the Gap Hypothesis holds (see [DR] and [LiMal).

One of the central problems in equivariant surgery is to understand the
role of the Gap Hypothesis more clearly (cf. [Sc12, Sec. 4}), and thus it
is natural to seek relationships between the isovariant homotopy structure
theory of Section 1, which does not require the Gap Hypothesis, and equi-
variant surgery theories that somehow rely on the Gap Hypothesis as in
[DR] or [LiiMa)] (related examples are also discussed in [DoS2, Sec. 11.3]).
As noted in [Daw], the isovariant structure sets of Section 1 lie somewhere
between such equivariant surgery theories and the Browder-Quinn theories.
The following result of S. Straus [Str] and W. Browder [Brw4] establishes
a stronger and more precise relationship; in particular, the theories of DRI
and {LiiMa] are equivalent to the theories of Section 1 when the Gap Hy-
pothesis holds.

THEOREM 2.1. Let f : M — N be an equivariant homotopy equivalence
of closed smooth G-manifolds that satisfy the Gap Hypothesis. Then f
is equivariantly homotopic to an isovariant homotopy equivalence. Further-
more, if M x [0, 1] satisfies the Gap Hypothesis then this isovariant homotopy

equivalence is unique up to isovariant homotopy.

This result and the machinery of Sections 1.4 and 1.1 suggest a two step
approach to analyzing smooth G-manifolds within a given equivariant ho-
motopy type if the Gap Hypothesis does not necessarily hold; namely, the
first step is to study the obstructions to isovariance for an equivariant ho-
motopy equivalence and the second step is to study the isovariant siructure

sets of the preceding section.

Sketch of the proof of Theorem 2.1. We shall only deal with semifree
G-manifolds in order to illustrate the ideas without addressing the book-
keeping problems that arise for more general actions; furthermore, for the
sake of simplicity we shall use a slightly stronger version of the Gap Hypoth-
esis with dim B + ¢ < 1(dim C) for some small positive integer €. Finally,

we shall only consider the existence question; the uniqueness result follows
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by applying similar methods to M x [0, 1].

The original proofs of Straus and Browder rely heavily on methods and
results from nonsimply connected surgery. The argument presented here
does not completely eliminate geometric topology, but it only requires sim-
ple considerations involving embeddings in the general position range and
transversality. Of course it would be interesting to know if the proof can be

done entirely with homotopy theoretic machinery.

The first step in the proof is to deform f equivariantly so that it maps
D(apr) isovariantly to D(ay) such that S{aar) is sent to S(an). This will
follow quickly if S(an) and S({f¢}*an) are equivariantly fiber homotopy
equivalent. To prove the latter, one first uses a result of K. Kawakubo [Ka)
to show that the equivariant tangent bundle 77 is stably equivariantly fiber
homotopy equivalent to f*rn. Restricting to fixed point sets, we conclude
next that the restrictions of these bundles to N¢ are also equivariantly
stably fiber homotopy equivalent; in other words, {f“}*rye @ {f®} an is
equivariantly stably fiber homotopy equivalent to 756 @ aps. The classifying
space versions of the standard splittiﬁgs for equivariant stable homotopy
theory (e.g., the discussion at the end of [Se]) then imply that {f%}*ay is
equivariantly stably fiber homotopy equivalent to aps. Since the dimensions
of the latter bundles are at least somewhat larger than the dimensions of
M and N¢, the stable range theorems of [Sc1] and [Sc5] imply that the unit
sphere bundles of { f%}*ay and ajs are already equivariantly fiber homotopy

equivalent before stabilization.

The second step is to analyze the set of points where the modified map
fails to be isovariant. We can apply transversality on the complement of
D{apr), without changing the map on S{aps), so that a further equivariant
deformation of f is transverse to N on the complement of MC. It follows
immediately that the set ¥ of nonisovariant points is a smooth invariant
submanifold such that dimY = dim M®. Using general position and the
fact that f is an equivariant homotopy equivalence, one can then show that
Y lies in some tubular neighborhood of the fixed point set (the inclusion

of ¥ can be deformed into D(a) because f is an equivariant homotopy
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equivalence, and by general position one can modify this into an isotopy of

Y into D(a)).

The third step is to show that the map obtained in the previous step is
equivariantly homotopic to an isovariant map if and only if the class of the
nonisovariant set in an appropriate bordism theory vanishes. By the results
of Section 1.4, the obstruction to deforming the map f; obtained thus far
is the obstruction to finding an equivariant lifting of fo]M*MC from N to
N*N€. Because the Gap Hypothesis holds, one can use the Blakers-Massey
Theorem to view this lifting obstruction as the obstruction to finding an
equivariant nullhomotopy for the composite of fo|M*M ¢ with the collapse
map N — N/N:N® = D(an)/S(an).

The next to last step is to notice that the obstruction from the preceding
step need not vanish, but it has a canonical indeterminacy given by the
possible choices of the equivariant fiber homotopy equivalence from ap to
{f®Yan. In fact, since we are in the stable range the homotopy classes of
such equivalences are given by [N, Fg|. Finally, an analysis of the obstruc-
tions in the third step shows that one can kill the isovariance obstruction
by choosing & (possibly) different equivariant fiber homotopy equivalence on
the equivariant sphere bundles. O

3. Homotopy linear actions on spheres

As indicated in Section 1, the original interest in classifying smooth man-
ifolds in a given isovariant homotopy type involved certain smooth group
actions on homotopy spheres. In this section we shall discuss some basic
questions in this area that can be analyzed, at least to some extent, by the

methods of the preceding sections.

From a purely formal viewpoint we are interested in smooth G-manifolds
that are isovariantly homotopy equivalent to linear actions on spheres. How-
ever, for historical and practical reasons it is more useful to deal with actions
satisfying apparently weaker assumptions and to prove that all such actions
are isovariantly homotopy equivalent to the appropriate linear example.

The basic concepts and constructions for homotopy linear actions are
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summarized in [Sc10, Secs. 5-6]. We shall begin with a modified version of
the definition in [Sc10, Sec. 5, p. 274].

DEFINITION. Let o be a linear representation of G on R™ + 1 that splits
as ¢ @ R (with trivial action on the second summand). If H is a subgroup
of G let n(H) + 1 denote the dimension of the real vector space ol (hence
n(H) > 0). A smooth G-action 7 on a smooth manifold £" is said to be
strongly ¢-homotopy linear (= strongly w-homotopically linear or strongly
w-semilinear) if the following hold:

(1) For each H C G the fixed point set of H is homeomorphic (but not
necessarily diffeomorphic) to S™MH),

(2) fH C K C G and n(H) —n(K) = 2 then £F — £X is homotopy
equivalent to S,

(3) The induced G representations at the tangent spaces of points in ¢
are all equivalent to ¢.

It is fairly elementary to show that each such action is G-homotopy equiv-
alent to the unit sphere S(po), or equivalently to the one point compactifi-
cation of v (¢f. [Scl0, Prop. 5.1]); in fact, T" is usually G-homeomorphic
to this linear sphere (see the remarks on [Sc10,p. 274] following Proposition
5.1), and in the remaining cases the results of [DuS, Sec. 4] show that ¥ is

isovariantly homotopy equivalent to the linear action.

Connected sums. If G = {1} then a strongly homotopy linear G-
manifold is a manifold homeomorphic to S (i.e., an exotic sphere) by the
Generalized Poincaré Conjecture [MLN1, p. 109]; a diffeomorphism clas-
sification of such objects was developed in the previously mentioned work
of Kervaire and Milnor during the late nineteen fifties and early nineteen
sixties [KM]. An elementary but highly useful step in their program was the
use of objects with orientations and the introduction of an abelian group
structure on the oriented diffeomorphism classes of exotic spheres by means
of connected sums (see [Sc10, p. 275] and the references cited there). One
can proceed similarly with strongly homotopy linear y-spheres: Given two
such G-manifolds ; and 3, let D; C &; be G-diffeomorphic to the disk
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D(yp) and glue T; — Int(D;) to Ty — Int(D;) equivariantly along the common
boundary; once again one needs a suitable concept of orientation to ensure
this construction is well defined, and this can be done as in [Sc9, Sec. 1].
As noted in [Sc10, Prop. 5.2, p. 276], this yields a monoid structure on the
set of all (suitably equivariantly oriented) diffeomorphism classes of strongly
-semilinear spheres, the resulting monoid is abelian if the fixed point set
dimension is at least 2, and if we factor out the submonoid of actions that
bound equivariantly contractible G-manifolds, then the resulting quotient is
a group (abelian if the fixed point sets are at least 2-dimensional). Following
[Sc10] we shall denote this group by ©%(y).

Digression—some motivation

Although one can certainly study the groups ©%(y) for their own sake,
these groups also arise naturally in connection with certain questions of
independent interest. Before proceeding with further results on such actions

we shall describe some of these contexts.

EXAMPLES. 1. Smooth actions of arbitrary p-groups on exotic spheres. In
fact, as noted in [Sc6)] this was one of the original motivations for studying
the classification of smooth G-manifolds in a given isovariant homotopy type.
If one is given an action of a finite abelian p-group on an exotic sphere, then
Smith theory shows that all the fixed point sets are mod p homology spheres.
This implies that an arbitrary such action admits an isovariant map to a
linear model with degree prime to p. If the dimension of the fixed point set
of G is at least 2, then one can use these maps and the methods of Section 1
to define p-localized versions of the knot invariant with values in the abelian
groups
F/OG.isO(S(Q"H G R) x [‘P/@"H] rel {basept.}),)

where H is an arbitrary isotropy subgroup of the action. For the special case
of eyclic p-groups where H is the minimal nontrivial isotropy subgroup, this
was done previously in [Sc4] and [Sc9, Sec. 4], where the invariants were used
to obtain restrictions on the fixed point structure of smooth Z,--actions on

exotic spheres. In subsequent work the more general invariants will be used
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to study actions of other abelian p-groups on exotic spheres in relatively low

dimensions.

2.  Fixed point sets of differentiable actions on spheres. Results of
L. Jones [Jo], A. Assadi [As] and others show that certain variants of the
groups O%(y) carry the obstructions to realizing a mod p homology k-sphere
as the fixed point set of a smooth semifree Z,--action on some homotopy
{k 4+ 2m)-sphere, where m > 2 (¢f [As]). The basic idea is simple: If A
is the homology sphere, let Ay denote A with the interior of a closed disk
removed. Then one can realize 4y as the fixed point set of a smooth semifree
Z,»-action on D*+?™ . The induced action on the boundary then determines
an element of the appropriate variant groupVar®%(y), and one can extend
the action to an action on a homotopy sphere if and only if this element
is zero. Related ideas are used in [Scl4] to construct examples of smooth
Z,q-actions on spheres, where p and ¢ are distinet odd primes, such that the

Pontrjagin numbers of the fixed point set are nontrivial.

3.  Equivariant smoothings of topological G-manifolds.  Results of
Lashof and Rothenberg [LaR] show that the smoothability of a G-manifolds
and the classification of equivariant smoothings reduce to equivariant bundle-
theoretic questions, at least if there are no 4-dimensional components in the
fixed point sets of the isotropy subgroups. This is formally parallel to or-
dinary smoothing theory for topological manifolds (¢f. [KiSh]). However,
in ordinary smoothing theory the results of [KM] and [KiSb] translate the
bundle-theoretic problems into well known questions of homotopy theory,
but comparable insights into equivariant smoothing theory only exist in spe-
cial cases. This is already evident in known results on the topological classi-
fication of linear representations (e.g., see [CS1-3, CSSW, CSSWW]), which
is the first step in analyzing the bundle-theoretic problems in [LaR]. Partial
results on the higher order steps appear explicitly in {LaR] and [MR], and
implicitly in [Sc7], [KL], and [KwS6]. Standard techniques of engulfing the-
ory ([Hud, Ch. VII] or [RSa, Ch. 7]) imply that a strongly ¢-homotopically
linear G-manifold is equivariantly homeomorphic to S(p @ R) if the dimen-
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sion of ¥ is sufficiently large [CMY, IL5, Ro, Sc7], and thus information
about the groups 8%(y) has immediate implications for equivariant smooth-
ing theory (cf. the results on rational characteristic classes in [Sc7]). It is
conceivable that information on the groups ©%(p) can also shed light on
equivariant smoothing theory for more general G-manifolds; in particular,
the results of [LaR, pp. 215 and 264-265] suggest this.

4. Rational invariants for classifying smooth G-manifolds up to finite
ambiguity. In a sequence of papers culminating with [RT], Rothenberg
and Triantafillou described an equivariant analog of D. Sullivan’s rational
invariants for diffeomorphism classification of certain smooth simply con-
nected manifolds up to finite ambiguity [Su]. However, their invariants only
provide an equivariant almost diffeomorphsim classification up to finite am-
biguity in many cases; in other words, to complete the picture one needs a
smooth equivariant classification up to finite ambiguity for all G-manifolds
that are equivariant connected sums Mo#ZE, where My is fixed and ¥ is
a homotopy linear G-sphere. Questions of this type have been studied by
M. Masuda [Ms] and will be considered further in joint work of Masuda and
the author [MSc].

Ezact sequences

Of course, the usefulness of the groups ©%(i») depends on the extent to
which they can be computed. The original work of [KM] can be summarized

in a long exact sequence
M A 2 | ““}@n'_)ﬂ'n(F/O)_)

where the groups Py are 0 if k is odd, infinite cyclic if k is divisible by 4,
and cyclic of order two if £ =2 mod 4 (compare [Lev] or [Sc10, Thm. 6.1,
p. 277)). One particular consequence of this sequence is the finiteness of
the groups ©, if n > 4. The subsequent work of [BP] and [RSo] yielded
somewhat different exact sequences for ©%() when G acts semifreely on ¢
(see [Sc3, (1.1)]; also compare [Sc10, Thm. 6.3, p. 277]). As indicated in
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[Sc10, Sec. 6] one can use these exact sequences to obtain fairly complete
information on the rationalized group ©%(¢)®Q. In particular, the following
conclusion is an elementary consequence of the exact sequences in [Sc10,

Thm. 6.3]:

PROPOSITION 3.1. If G acts semifreely on ¢ such that dimy > 5 and

dim p —dim ¢ > 3, then the dimension of the rational vector space 0% p)®
Q is at most |G| +3. O

This estimate is not really the best possible, but it shows that the ranks
of the rationalized groups have uniform bounds depending only on the order

of the group.

In [Sc9] the approach for semifree actions is extended to a more general
class of actions that are called ultrasemifree; precise descriptions of the basic
exact sequences appear in [Sc9, (6.2), p. 275], and rational computations
with these exact sequences are discussed in [Sc9, Sec. 7]. For these cases one
again obtains bounds for the ranks of the groups ©%(¢) that only depend
upon the order of G.

The machinery of Section 1 allows one to extend everything to more

general actions in a straightforward manner:

THEOREM 3.2. Let ¢ be a G-representation such that all isotropy subgroups
are normal (e.g., suppose G is abelian) and dimp® > 2. Let H be an
isotropy subgroup for the action on ¢, and let py = @ /o™, Then there is

the following long exact sequence of abelian groups:

ISAH(D(e" ®R) x S(om), 8(—))
!
%)

: !

O (oY@ F/Og 00 (S(0? @ R) X ¢, basept.)
i

ISE(D(") x S(pu), 3(—))

1]
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In particular, it seems likely that the preceding exact sequence should
imply that the abelian groups ©%(¢) are finitely generated, but we have not
verified this.

Although the exact sequence in Theorem 3.2 has not yet been used to
do many computations beyond those for semifree and ultrasemifree actions,

the following result from [Sc16] indicates the potential usefulness of Theorem
3.2.

PROPOSITION 3.3. Let p and ¢ be distinct odd primes, and let w be an
orthogonal representation of Z,, such that the following hold:

(¢) If w, and w, are the fixed sets of Z,, and Z, respectively, then each has
dimension at least 4 and their intersection is the zero subspace.

(#4) The dimension of wy = w/(wp + w,) is at least 4.
Then there are finitely generated subgroups Vi, C ©%(R* +w) such that if
vy = dimVi ® Q then for all positive integers n the sequence {vi/k"} is
unbounded. 0O

This contrasts sharply with the results on dim ©%(y) in the semifree and

ultrasemifree cases (refer back to Proposition 3.1).

The groups @G(go)- and the Gap Hypothesis

Tf the G-manifold ¢ satisfies the Gap Hypothesis, then the “rather long”
equivariant surgery sequence of Dovermann and Rothenberg [DR] provides
another means for computing ©%(p). In particular, the methods and re-
sults of [DR] yield a canonical bound on the dimensions of the rational
vector spaces O%(p) ® Q in terms of |G|; consequently, Proposition 3.3
shows the existence of many new rational classification invariants for G-
homotopically equivalent smooth G-manifolds beyond the usual invariants
that appear when the standard Gap Hypothesis holds.

4. Borderline cases of the Gap Hypothesis
To simplify the discussion, in this section we shall only consider degree

one equivariant normal maps (f : M — X, bundle data) such that f maps
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the singular set of M to the singular set of X by an equivariant homotopy
equivalence. Since the key inductive step in equivariant surgery involves
situations of this type, our hypothesis is basically a way of concentrating
on a single inductive step. In any case, for such maps the appropriate Gap
Hypothesis assumption is that

dim X > 2 - dim(Sing(X)) + 2.

In this section we are interested in examples that lie just outside this Gap
Hypothesis range but have been studied effectively by the standard tech-
niques of equivariant surgery. There are two reasons for our interest in such
cases. First of all, some are needed in Part III. Second, special cases of
these results have implications for equivariant and isovariant homotopy the-
ory that are not presently obtainable by purely homotopy-theoretic meth-
ods; needless to say, it would be enlightening to have intrinsically homotopy

theoretic proofs for such results.

Following [DoS2, Section IIL.2] we define the Gap Hypothesis balance to
be A(X) := dim X —2-dim(Sing(X)); with this terminology the appropriate
version of the Gap Hypothesis is A(X) > 2. The cases of interest here
are A(X) = 0 or 1; as one might expect, the similarities with the Gap
Hypothesis range decrease as A(X) gets smaller. In particular, examples of
M. Rothenberg and S. Weinberger (described in [DoS2, Sec. 1.6]) indicate
that the situation becomes even more complicated if A(X) is negative. We

begin by discussing the situation when the Gap Hypothesis holds.

The cases A(X) > 2

In thesé cases the methods of equivariant surgery yield the following
conclusion (compare [DR] or [DoS2, Sec. 1.5]):

THEOREM 4.1. Suppose that f: M — X and appropriate bundle data de-
termine an equivariant degree one normal map of closed smooth 1-connected
n-manifolds (n > 5) such that the associated map of singular sets is an equi-

variant homotopy equivalence and A(X) > 2. Then f is normally cobordant
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to an equivariant simple homotopy equivalence if an ordinary Wall surgery
obstruction a(f) € L3 (Z{G],w) is trivial.

As indicated in [DoS2, Sec. 1.4], the crucial idea in the proof is that the
pair (M, M —Sing(M)) is highly connected, and this allows one to deform all
surgical constructions into the complement of the singular set. It follows that
the equivariant surgery problem essentially reduces to an ordinary surgery
problem on the orbit space of the free part of the action. [

The case A(X) =1

The crucial new insights in this case are due to M. Morimoto. In [Ba] A.
Bak defines a quotient of the Wall group LS, ., (Z|G], w) that is denoted by

2x11(Z]G), I'G(X); w); the set I'G(X) is a set of order two elements g € G
such that dim X¢ = k (c¢f. [Mtol, p. 467]) and w denotes the first Stiefel-
Whitney class. Following Morimoto, we shall call the group Wi(—) the Bak
group associated to the given data. Frequently the Bak group is isomorphic
to the corresponding Wall group. In particular, this is true if G has odd
order or k is even and the orientation homomorphism is trivial. However,
the example in [Mtol, Corollary C, page 468] shows that the projection from
the Wall group to the Bak group has a nontrivial kernel in some cases, and
the results of [BaMo] yield additional examples.

THEOREM 4.2. Suppose that f : M — X and appropriate bundle data de-
termine an equivariant degree one normal map of closed smooth 1-connected
(2k + 1)-manifolds (k > 2) such that the associated map of singular sets is
an equivariant homotopy equivalence and A(X) = 1 (hence the singular set
is k-dimensional). Then f is normally cobordant to an equivariant simple
homotopy equivalence if the image of an ordinary Wall surgery obstruction
o(f) € L:(Z[G),w) in the Bak group Wiy, (Z[G], G(X);w) is trivial.

An analogous result holds for equivariant homotopy equivalences if one
replaces L* by L* and W* by wWh,

Under the hypotheses of Theorem 4.2 the pair (M, M — Sing(M) ) is not

quite so highly connected, and one can deform some but not all surgical
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constructions back to the free part of the action on M. The methods em-
ployed in the proof of Theorem 4.1 still yield a surgery ebstruction in the
appropriate Wall group, but this obstruction is not necessarily well-defined.
However, if one passes to the Bak group, then one does obtain a well-defined

obstruction.

Results of Dovermann [Do2] relate the preceding to questions involving
isovariance. Namely, if f is isovariant on the singular set then the given con-
ditions allow one to surger f into an isovariant map that is an equivariant
homotopy equivalence on the singular set. In this setting the Wall group
element represents the obstruction to surgering f into an isovariant homo-
topy equivalence. Thus the kernels of the maps from Wall groups to Bak
groups carry obstructions for transforming certain equivariant equivalences

into isovariant equivalences.

The case A(X) = 0

In this case results are only known for the case G = Z,, and the main
results are due to Dovermann [Dol] (see also [DoS1] and [Sc15, Thm. 2.5]).

THEOREM 4.3. Let f : X — Y come from a suitably defined degree one
Zy-normal map of smooth 1-connected 2k-dimensional Zy-manifolds, where
f induces a homotopy equivalence of fixed point sets and the latter are k-
dimensional. Then f is normally cobordant to a Zy-homotopy equivalence,
relative to the fixed point sets, if and only if the following hold:

(¢) If k is even, the Zy-signatures of X and Y are equal.

(#¢) If k is odd, the ordinary Kervaire invariant of f is trivial and a mod

2 rank invariant of the surgery kernel of f is also trivial.

Unlike the preceding cases, one must now -consider homotopy classes in
mo(M) that cannot be deformed into the complement of singular set; the
obstruction to doing this is measured by a homological intersection number.
One needs a modified concept of Hermitian form (called quasi-quadratic in
[Dol}); the invariants of such forms turn out to be the algebraic invariants
described in the statement of the theorem. {1
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Theorem 4.3 has some curious homotopy theoretic implications that are
not yet derivable from other techniques. As indicated earlier, it would be
enlightening to have intrinsically homotopy theoretic arguments, both for
the sake of making everything more self contained and also in the interests

of proving further results along the same lines.

The first implication involves equivariant function spaces. Following
[BeS], if the finite group G acts freely and orthogonally on the unit sphere
S(V) in the Euclidean space V', let Fg(V) be the space of G-equivariant self
maps of S(V). Of course, if H is a subgroup of G there is a natural forgetful
map p from Fe(V) to Fi(V). Also, there is a stabilization map from F(V')
to a space Fg := lim Fg(V & W) where W runs through all isomorphism
classes of free G-representations. The main results of [BeS] state that Fg is
homotopy equivalent to the free infinite loop space Q°S*(K(G,1);) and
the forgetful map from Fz to F is induced by the transfer map in stable
homotopy (¢f. [BG]). In particular, by the Kahn-Priddy Theorem [KP] the
map Fg — F induces a split surjection in positive dimensional homotopy
groups if G & Z,. Dovermann’s results yield the following unstable analog
of the Kahn-Priddy theorem.

PROPOSITION 4.4. In the terminology above, suppose that G =~ Z, and
V = R" with the antipodal involution. If j : Fe(V) — Fg — F is the
composite of stabilization with the forgetful map, then the image of j. :
Tn(Fe(V)) = 7 (F) & m, contains all positive-dimensional elements whose

Hopf invariants are even and whose Kervaire invariants are zero.

In particular, it follows that the image of j, has index at most two in every
dimension and the index is one except for a very sparse set of dimensions
(recall that an element can have an odd Hopf invariant only in dimensions
1, 3, and 7, and an element can have a nonzero Kervaire invariant only in

dimensions of the form 2™ — 2).

Proposition 4.4 follows by combining the results of [Sc4] on knot invariants
with the results of [Sc8] on realizing exotic spheres as fixed point sets of

involutions on homotopy spheres {in this connection also see [L6}); the role
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of Dovermann’s work is that the crucial results from [Sc8] and [L&] depend

upon [Doll].

Questions: Can one eliminate the condition on Kervaire invariants in
Proposition 4.4?7 Basic results in homotopy theory show that the condition
on Hopf invariants CANNOT be eliminated. Also, can one prove a result
similar to 4.4 for the image of 7,(Fg(V)) — m(F) when V = R*™'? An
answer to this question would have implications for realizing exotic n-spheres

as fixed point sets of smooth involutions on homotopy (2n — 1)-spheres.

Here is another consequence of Theorem 4.3 to a question of interest in

nonequivariant homotopy theory (compare [Stz], [Sc15]):

PROPOSITION 4.5. Let M and N be closed, homotopically equivalent 1-

connected n-manifolds where n > 3. Then the deleted symmetric squares
{MxM-—Apn}/2; and {N x N —An}/Z; are homotopically equivalent. [

Question: Can one eliminate the simple connectivity hypothesis in this
result? Straus proves an analogous result for deleted reduced cyclic p-th
powers where p is an odd prime, and the latter result has no hypothesis on
the fundamental group [Str]. Results of P. Loffler and R. J. Milgram [LSMi]
suggest that the answer to the question is yes. An obvious suggestion for
approaching this is to prove a version of Dovermann’s result for involutions

on nonsimply connected manifolds with A(X) = 0.

5. Isovariance and nonsmoothable group actions
Many questions arising in Parts I and II are also meaningful and interest-
ing for group actions that are not smooth. In this section we shall describe

some results along these lines.

Beginning in the mid nineteen eighties Cappell and Weinberger developed
a variety of surgery-theoretic techniques for constructing exotic topological
or PL group actions with a given isovariant homotopy type. Some of their
results for circle actions are summarized in {CW1]. The following replace-
ment theorem is a simple but basic example of their results for finite group

actions:
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THEOREM 5.1. Let G = Z, where p is an odd prime, and let W™ be a
closed simply connected manifold with a locally linear topological or PL
G-action ® such that M + WE is also simply connected and diim M > 5. If
h: M' — M is a homotopy equivalence, then there is another locally linear
topological or PL (resp.) G-action &' on W such that

(¢) the two actions are equivalent on the complements of their fixed point
sets,

(i2) the fixed point set of @' is M’,

(73¢) the G-manifolds (W, ®) and (W', ®') are G-isovariantly homotopy
equivalent (but the equivalence is not necessarily isovariantly homotopic to

a transverse linear map in the sense of Browder and Quinn). O

Cappell and Weinberger also obtain several extensions and refinements
of Theorem 5.1; details of this work appear in [CW2], and further results
on obstructions to replacement appear in [DW]. In [Daw] Dawson uses his
version of the results in Section 1 to study similar replacement questions for
smooth actions when the codimension of the fixed point set is small. Dawson
has also obtained results on replacement of tangential representations up to
homotopy, where one replaces the G-representation {2 at the tangent space
of a fixed point by an isovariantly homotopy equivalent representation ('
and attempts to find an action G-homotopy equivalent to the orignal one

with the same fixed point set and the modified tangential data.

In a forthcoming book [Wbl] Weinberger develops powerful and fairly
general machinery for classifying certain topological actions up to isovariant
homotopy equivalence. Specifically, his results apply to group actions for
which the fixed point sets of subgroups define a weak analog of a Thom-
Mather stratification {e.g., a CS stratification in the sense of Siebenmann
[Si2] or a homotopy stratification in the sense of Quinn [Q2]). Since this
work involves several deep concepts that are not needed in the smooth cat-
egory (for example, results on ends of maps [Q1]), we shall not attempt to
explain the main ideas here. This work has already produced some further

developments and applications due to Weinberger and M. Yan [Wb2, WY,
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Y], including counterexamples to equivariant analogs of the Borel rigidity
conjecture for aspherical manifolds [Wb2].

In view of [Wb1] it would be useful to have an extension of the results of
Part I to isovariant maps of G-manifolds with weak stratifications of an ap-
propriate type. Perhaps the most obvious complication is that fixed point
sets need not have closed tubular neighborhoods (e.g., see the examples
near the beginning of [Q1]). An extension of the results in [DuS] to nons-
moothable actions will probably require diagrams involving Quinn’s notion
of homotopy collar [FQ, pp. 214-215] for the sets My associated to a G-
manifold M (homotopy collars are called homotopy completions in [Q1, Sec.
7.8]) and homotopy links of 0o in the one point compactification in [Q2)).

Finally, we note that the Browder-Straus proof of Theorem 2.1 goes
through for certain classes of nonsmoothable actions; for example, the proof
applies to semifree PL actions on manifolds such that the fixed point sets
are also manifolds. Of course, it would be enlightening to have an alternate

proof as in the smooth category, with little or no input from surgery theory.
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PART III

FINITE GROUP ACTIONS
ON HOMOLOGY 3-SPHERES

Background references

In contrast to Parts I and II, the emphasis in this final part will be on
specific geometric problems involving transformation groups on 3-manifolds.
The following references contain most of the background material we shall

need:

(1) Article by M. Davis and J. Morgan in Bass—-Morgan (eds.), The Smith
Conjecture (:= [DaMo]).

(2) Article by Edmonds in Contemp. Math. Vol. 36 (1985) (:= [Ed]).

(3) Article by Raymond in Transactions Amer. Math. Soc. Vol. 131
(1968) (:= [Ral}).

(4) Notes from lectures of Thurston on the geometry and topology of 3-

manifolds (:= [Th1]; the main points are summarized in [Th2]).

During the past fifteen years the concepts of orbifold and orbifold funda-
mental group have become fairly standard in 3-dimensional topology. Since
both arose from considerations involving transformation groups, we shall
use these concepts as needed. The basic definitions and examples can be
found in Thurston’s notes [Th1l, Ch. 13, especially p. 13.5] or the first few
sections of [DaMo].

1. A survey of known results
For several decades topologists have known that dimensions 3 and 4 form

a transitional range from the geometric rigidity of line and surface topology
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to the freedom of movement one has in dimensions > 5. References on this
topic are numerous and include an old article of Siebenmann [Sil], work of A.
Casson and C. Gordon [CG], and books of M. Freedman and F. Quinn [FQ],
S. Donaldson and P. Kronheimer [DK], and S. Akbulut and J. McCarthy
[AM]. Our interest in this article lies with transitional properties of group
actions on spheres and manifolds closely resembling spheres (e.g., manifolds
homeomorphic but not necessarily diffeomorphic to the standard sphere).
As indicated by the title above, we shall concentrate on the 3-dimensional
case; some references for the 4-dimensional case include [Ed] for work done
through the early nineteen eighties, [BKS] and [DM] for results about the
fixed point sets of smooth actions on 5, [Kw52-4] for results on topological
actions on S* with isolated singular points, and [KwS1] and [KwS5] for
results concerning topological circle actions on §* and other 4-manifolds.
In 1- and 2-dimensional topology all group actions on manifolds are equiv-
alent to smooth actions that preserve nontrivial geometric structures (cf.,
[Ed, p. 341]). For example, all compact Lie group actions on S and S°
are equivalent to orthogonal actions. On the other hand, it is well known
that a smooth action of a finite cyclic group on S* need not be orthogonal
because the fixed point set can be a nontrivially knotted 2-sphere (see Giffen
[Gi] and Gordon [Gol]). The known results for dimension 3 lie somewhere

between these two adjacent cases.

FacT 1.1. There is a continuum of pairwise inequivalent topological Zy

actions on S° for every prime k.
~ As noted in [Ed], this is due to Bing [Bi] and Alford [AL]. O

FACT 1.2. All smooth actions of compact Lie groups on S° with nonempty
fixed point sets are orthogonal. Modulo some possibly exceptional cases, all
actions of compact Lie groups on $* with positive-dimensional singular sets

are orthogonal.

If G = $? this result is contained in {Ra], and for larger Lie groups the
result is a straightforward exercise. When G is finite cyclic and the fixed

point set is a circle this was conjectured by P. A. Smith and solved in the
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late nineteen seventies by the combined efforts of several mathematicians
(see the book containing [DaMo)). Results for other finite groups appear in
several different places, including papers of M. Davis and J. Morgan [DaMo],
M. Feighn [Fn], and S. Kwasik and the author [KwS6]. About ten years
ago W. Thurston announced that the second assertion in 1.2 holds without
exception [Th3]; although workers in the area have few doubts about the
correctness of this statement, it is not clear when a complete written proof

will be available.o

FacT 1.3. There are many smooth group actions on integral homology 3-
spheres that are analogous tcﬁwportant examples of smooth actions on

higher-dimensional spheres.

A similar—and related—phenomenon occurs in the theory of isolated sin-
gularities of complex hypersurfaces {¢f. Mumford [Mum)): Given a complex
polynomial f(z) in n + 1 variables such that the origin is an isolated singu-
larity, let I; be the intersection of the zero set {z € C**!|f(z) = 0} with
a sphere of sufficiently small radius; it follows that ¥ is a closed smooth
(2n — 1)-manifold. Mumford’s result deals with the case n = 2 and states
that a 3-dimensional manifold of the form ¥; is diffeomorphic to S° if it
is simply connected; on the other hand, there are many examples where
E; is a nonsimply connected integral homology sphere. The analogs of the
latter in higher dimensions are homeomorphic but not necessarily diffeomor-
phic to the standard (2n — 1)-sphere (see Milnor’s book [MLN3] for further

information on this topic).

EXAMPLES FOR FacT 1.3. (1) Perhaps the most basic of these are the
pseudofree smooth circle actions on Seifert homology 3-spheres. These ac-
tions are free on the complement of a finite set of pairwise disjoint circles,
and the isotropy subgroups for points on these circles are pairwise relatively
prime integers d; > 1. The family of such actions includes all fixed point
free orthogonal circle actions on S3; in fact, the orthogonal actions are pre-
cisely those for which there are at most two exceptional circles, and in all
remaining cases the underlying homology spheres are not simply connected.

In contrast to the orthogonal case, the number of exceptional orbits for an
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arbitrary action on a Seifert homology 3-sphere can be an arbitrary positive
integer. There are several excellent descriptions of these manifolds in the
literature, including Raymond’s article [Ra], the book by P. Orlik [Or], and
lecture notes by M. Jankins and W. Neumann [JN]. In higher dimensions
one also has orthogonal pseudofree circle actions on $2°-1: If (dry-++ ,dn)
is a sequence of pairwise relatively prime positive integers, then the unit

sphere in C* for the linear action
t- (21,' v :zn) = (tdlzls e ’tdnzn)

is free on the complement of m circles, where m is the number of integers d;
that are greater than one. Of course, it follows that the number of excep-
tional circles for an orthogonal pseudofree circle action on S2°~! is at most
n, and it is natural to ask if it is possible to construct pseudofree smooth
circle actions on $*"~! with larger numbers of exceptional circles for larger
values of n. In [MnY1-2] D. Montgomery and C.-T. Yang succeeded in
producing such examples when n = 3; a survey of this and analogous work
in dimensions (2n + 1) > 9 appears in [DPS, Sec. 2] (also see [Petl]). To
complete the picture, we note that the case n = 2 (i.e., the 5-dimensional
case) reflects the basic difficulties of 4-dimensional topology. One can use
M. Freedman’s work on 4-dimensional topological surgery [FQ] to construct
topological pseudofree circle actions on §° that are locally linear, and appli-
cations of gauge theory to smooth pseudofree circle actions on S° have also
been considered (cf. [FS); see also Math. Reviews 88e:57032).

(2) Let p be an odd prime, and let D;, be the dihedral group of order
2p. If we are given a fixed point free, linear action of Dy on S(V) = §271,
then the fixed point sets of the order two subgroups are all (n — 1)-spheres,
and if H and K are two distinct subgroﬁps of order two then S(V)¥ and
S(V)¥ have linking number +1. I we are given an arbitrary fixed point free
Dap action on M = §%~* such that the fixed point set of every (equivalently,
of some) order two subgroup is an (n — 1)-sphere, then Smith theory implies
that the linking numbers of M¥ and M¥X are congruent to +1 mod p; results
of J. Davis and T. tom Dieck [DtD, tD3] show that one can realize exotic
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linking numbers by smooth D, actions on the (2n — 1)-sphere ifn>3 In
contrast, special cases of Fact 1.2 imply that no such examples can exist if
n=2and p> 5 (e.g., see [DaMo}]). Despite this, C. Livingston has shown
that fixed point free, smooth Dg,-actions with exotic linking numbers exist

on integral homology 3-spheres [Liv].

(3) T A; denotes the alternating group on 5 letters, then As can be
viewed as the group of isometries of a regular dodecahedron or icosahedron,
and consequently there are natural realizations of 45 as a subgroup of SOs.
The homogeneous space SO3/As is the well-known Poincaré homology 3-
sphere that we shall denote by £(2,3,5); summaries of the properties of
this manifold appear in [Bre3, Sec. 1.8] and [KiSc]. As noted in [Bre3,
pp. 55-56], the action of A5 on I(2,3,5) obtained by restricting the tran-
sitive action of SO has exactly one fixed point. Although smooth actions
with one fixed point cannot exist on a smooth homotopy 3-sphere [BKS],
the methods of geometric topology have produced numerous examples of
smooth actions on higher dimensional spheres with one fixed point during
the past two decades; the first examples were due to E. V. Stein [Stn}, with
additional families of examples due to T. Petrie [Pet1-2] appearing shortly
afterwards. We shall not atfempt to summarize subsequent work here, but
many further references appear in [BKS], applications to algebraic group ac-
tions are discussed in [DMP], and an article by E. Laitinen, M. Morimoto,
and K. Pawatowski [LMP] provides the most recent information available at

this time.

In the remaining sections of Part III we shall concentrate on the following

question:

(1) What is the role of the standard one fixed point action on ¥(2,3,5) in

the family of all smooth one fixed point actions on homology 3-spheres?

Standard considerations involving P. A. Smith cohomological fixed point
theory, the local linearity of smooth actions near fixed points, and the sub-
groups of O3 show that As is the only group that can act on a closed
integral homology 3-sphere with exactly one fixed point.
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One motivation for studying such actions is that symmetry considerations
have led to interesting classes of 3-manifolds such as Seifert manifolds. On
the other hand, smooth group actions with one fixed point have been stud-
led extensively over the past two decades, both as test cases for the sorts
of exotic smooth group actions that can exist on spheres and in connection
with questions from algebraic transformation groups. In particular, recent
work has shown that smooth one fixed point actions on nonsimply connected
homology 3-spheres are rather exceptional low-dimensional examples. Stan-
dard geometrization results (¢f [Ed]) imply that finite group actions with
a single fixed point do not exist on (homology) spheres of dimension 1 or 2,
and more recent results of [BKS], [DM], and [Mto2] show the nonexistence of
smooth actions with exactly one fixed point on homology 4- and 5-spheres.
In contrast, such smooth actions exist on genuine spheres in all dimensions
> 6 (e.g., see [Stn], [Pet2], [Mto2], [BaMo)|, and related examples of [BKS]).

A result of G. Bredon [Brel] states that (2, 3, 5) is the only integral ho-
mology sphere that admits a transitive action of a compact Lie group that is
not equivalent to an orthogonal action on a standard sphere. Since the one
fixed point action of A5 on 3(2,3,5) is the restriction of this exceptional
transitive action, the evidence in this and the preceding paragraph may
suggest that all one fixed point actions on homology 3-spheres are closely
related to the standard examples in some fashion (e.g., perhaps there is an
equivariant degree one map into £(2, 3, 5)). However, our main results show
the existence of many smooth one fixed point actions on irreducible homol-
ogy 3-spheres. Some of these actions are clearly related to the standard
actions on X(2,3, 5), but others are quite different.

2. Equivariant surgery in three dimensions

Our objective is to construct exotic examples of smooth one fixed point
actions on homology 3-spheres by means of equivariant surgery and other
techniques. Of course, it is well known that many basic results of surgery
theory fail in dimension three; the purpose of this section is to summarize

some aspects of surgery theory that are both valid and useful for 3-manifolds.
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For many years geometric topologists have known that surgery theory ap-

plies to dimension three if one is willing to settle for homology equivalences
rather than genuine homotopy equivalences; informal discussions of this ap-
pear in the writeup by F. Quinn on page 225 of the book containing [Brw2]

and also in [FQ, p. 200, lines -3 to —1]. Here is a more formal statement

that “homology surgery works for 3-manifolds.”

FoLK THEOREM 2.1. Suppose that f : (M,3M) — (X,0X) and appropri-
ate bundle data determine a degree one normal map of compact 3-manifolds
with boundary such that 8f : &M — 0X induces a Z[m(X)]-homology
equivalence (with possibly twisted coefficients). Then f is normally cobor-
dant rel boundaries to a simple Z[r;(X)]-homology equivalence if the ordi-
nary Wall surgery obstruction o{f) € L§(Z[m(X)], w) is trivial.

The proof of this follows directly from the methods of Wall’s book for
(2n+1)-manifolds with n > 2 subject to one complication: If one removes
an embedded n-sphere from a (2n+1)-manifold, the fundamental group does

not change if n > 2 but it usually changes drastically if n = 1. This means

that one loses control of the fundamental group of the source manifold for
the normal map, but the underlying homological arguments remain valid if
we we work with twisted coefficients in the group ring Z[=(X)]. O

In [BaMo] Bak and Morimoto formulate a version of this for equivariant

surgery on 3-manifolds with orientation-preserving actions.

THEOREM 2.2. Let M and X be closed smooth G-manifolds with orientation-
preserving actions of a finite group G, let f : M — X and suitable bundle
data define a degree one equivariant surgery problem, where X is simply

connected and f maps Sing{M) to Sing(X) by an equivariant homotopy

equivalence. Furthermore, assume that the projective class group I?O(Z[G})
is zero. Then f is equivariantly normally bordant to a G-homotopy equiva-

lence if an obstruction in the Bak group
Wi(Z[G], IG(X); 1)

is trivial. O
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As noted in Section 2.4, the Bak group W2(Z[G], I'G(X); 1) is defined in
[Ba] as a quotient of the Wall group LA(Z[G, 1).

We shall need a slight extension of the preceding result:

COMPLEMENT 2.3. The preceding result remains valid if one merely as-
sumes that X is obtained from a compact smooth 3-manifold by attaching
G-free equivariant cells on the free part of X. [

We shall also need some computational results for Bak groups and certain
other algebraic K-theoretic groups. These are all established in [BaMo)].

THEOREM 2.4. Let G be the alternating group As. Then the projec-
tive class group of Z[G), the Whitehead group of G, and the Bak group
WE(Z[G],'G(X); 1) are all trivial. [

In contrast to the preceding result, the Wall group L%(Z[As),1) is non-
trivial, for L%(Z[Z,],1) ~ Z, implies that LYZ|Zy x Z4),1) D Zy x Zs, and
by transfer considerations it follows that L(Z [A5], 1) also contains a copy
of Zy x Zy. 0O

3. Construction of exotic examples

Elementary considerations show that the one fixed point action on
£(2,3,5) is not the only smooth action on a homology 3-sphere with ex-
actly one fixed point. For example, one can construct many examples by
taking an equivariant connected sum of 60 = |45} copies of some homo-
topy sphere P? over the free part of the action on ¥(2,3,5); this yields an
infinite family of pairwise inequivalent one fixed point As-actions on homol-
ogy 3-spheres. More generally, if H is an isotropy subgroup of the action
on %(2,3,5) and P? has a smooth action of H , then one can often form a
stratumwise equivariant connected sum of %(2,3,5) with |G/ H| copies of P
along the fixed point sets of the conjugates of H; constructions of this type
are used extensively by Meeks and Yau in [MeY1, Sec. 9]. In particular,
one can take H = A; and obtain a one fixed point action on a connected

sum of 6 copies of £(2,3,5); we mention this because it appears to be the
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simplest example of an integral homology 3-sphere that supports a smooth

one fixed point action and has a vanishing Rochlin invariant.

The preceding examples are all obtainable from ¥(2,3,5) by familiar
sorts of constructions. In fact, there have been some informal regularity
conjectures that all one smooth fixed point actions on homology 3-spheres
are somehow modeled after ¥(2,3,5). Perhaps the weakest of these con-
jectures is that the singular set of such an action is always equivalent to
Sing (£(2,3,5) ). The main result of this section provides a negative answer

to this particular question and describes all possible fixed point sets.

THEOREM 3.1. There are exactly four equivariant homeomorphism classes
of singular sets for smooth As-actions on Z-homology 3-spheres with exactly

one fixed point.

The possibilities for the singular set may be described as follows: Suppose
we are given a smooth action of A; on the homology 3-sphere ¥° with
exactly one fixed point. For each subgroup C of order 2 the fixed set of C
is the union of two semicircles with two endpoints in common; one of the
endpoints is the fixed point of the A;s-action, and the other is fixed under the
unique subgroup of A5 that contains C and is isomorphic to the alternating
group on four letters. Each semicircle also contains a point that is fixed
under a subgroup of order 6 containing C' and a point that is fixed under
a subgroup of order 10 containing C. The union of all fixed sets of order
2 subgroups consists of 30 semicircles, and A; acts transitively on this set
of semicircles. On the other hand, a direct analysis shows that there are
exactly four ways of constructing an As-orbit of data (T'¢; ze, He, Z10, H10),
where C is a subgroup of order 2, T'¢ is homeomorphic to [0,1], the points
z¢ and z10 belong to {3,2}, and Hg and Hyo are subgroups of order 6 and
10 respectively containing C. Furthermore, Smith theory implies that for
each class of semicircles there is a unique l-complex with cell-preserving
As-action that is a potential singular set for a smooth action on a homology

3-sphere with one fixed point.

Sketch of proof of Theorem 3.1. Each of the 1-complexes K in the
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preceding paragraph can be realized as the singular set of a smooth action on
some closed oriented 3-manifold by an elementary “rewiring” construction
on (2, 3,5) with its standard one fixed point action. Let A be the manifold
so obtained; it follows from the construction that Hi(Ax;Q) # 0. One
can then use machinery developed by R. Oliver [O1] to add equivariant
cells along the free part of Ax and obtain an equivariant CW complex Bg
with the same structure on and near the singular set and such that By is
homotopy equivalent to $%; if we split Ax equivariantly as DUs E where D 1s
a linear disk about a fixed point, the equivariant cells can all be added over
E and one obtains a corresponding splitting DUy E' where E’ is contractible.
Therefore the inclusion of Ax in Bx can be viewed as a map of triads, and
from this it follows that the inclusion is an isomorphism on Hz(—;Z) and can
be viewed as a map of degree one. In order to make this into an equivariant
surgery problem, it is necessary to introduce some equivariant bundle data;
the details of the rewiring construction imply that the equivariant tangent
bundle is stably isomorphic to a product bundle on the complement of a
finite invariant subset F, and it follows that equivariant bundle data can be
given by crossing the map Ax—F — Bk with the identity on § for a suitable
As-representation 2. This suffices for surgery-theoretic purposes because the
latter involve maps from positive-codimensional manifolds into A and such
maps can always be deformed to avoid a finite subset (similar considerations
arise in [DR], where bundle data with deficiencies are discussed in greater
detail). The results of Bak and Morimoto {BaMo] (cited in Section 2) now
show that

(i) one can do equivariant surgery away from the singular set of Ay to con-
vert the map Ax — By into a Z-homology equivalence if an obstruc-
tion in some quotient group of the Wall group L!(As; 1) — specifically,
the associated Bak group Wl(4s, 'G(X);1) - is zero,

(i) the Bak group in (i) is equal to zero.

Therefore one can modify Ax by equivariant surgery away from the singular

set to obtain a homology sphere with a smooth one fixed point action. 1
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Fized point free actions on homology 3-spheres

The methods of this section also yield results about fixed point free
actions of finite groups on homology 3-spheres. Some of this is work in
progress, but the results for G = A5 can be stated fairly simply. There is
a unique linear action of this type; namely, let ¥V be the orthogonal com-
plement of the diagonal in R® where A5 acts on the latter by permuting
the coordinates, and take the induced action on the unit sphere S(V). It is
immediately clear that one can find examples with exotic orbit structures;
in particular, this can be done by taking an equivariant connected sum of
two one fixed point actions on homology 3-spheres at the fixed points. The
methods of this section show that the singular set of a fixed point free As-
action on an integral homology 3-sphere can be an arbitrary 1-dimensional
As-complex that satisfies the necessary conditions imposed by Smith theory;
the list of all such possibilities is fairly short, but it does contain more than
the singular set of the linear action and the singular sets obtained from the
equivariant connected sums described above. One reason for interest in such
actions involves the linearity question for smooth actions of finite groups on
S% (¢f. [DaMo], [Fn], [KwS6]); fixed point free As-actions represent one
basic type that is included in Thurston’s announcement [Th3] but has not

yet been verified elsewhere.

4. Actions on hyperbolic homology spheres

One obvious drawback of Theorem 3.1 is that the argument does not
vield explicit examples of actions with exotic singular sets. In particular, it is
natural to ask if such examples can be found on homology 3-spheres that are
irreducible and geometric in the sense of Thurston [Th2]. More specifically,
Thurston’s hyperbolization theorem [Th4] implies that one can often find
hyperbolic 3-manifolds with certain topological or geometric properties by
applying suitable conversion procedures to general 3-manifolds with such
properties, and in this connection one would like to know if smooth one fixed
point actions can be found on hyperbolic homology 3-spheres. According to
the main result of this section (Theorem 4.3), such examples can be found.

The results of this section generate a variety of questions; some examples
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are presented after the proof of Theorem 4.3.

One can interpret Theorem 3.1 as a negative answer to questions about
the existence of a single basic model for one fixed point actions on homology
3-spheres. However, the following result shows that the one fixed point
actions on irreducible homology 3-spheres form a family of models for all

such actions.

THEOREM 4.1. If 3 is a closed integral homology 3-sphere with a smooth
one fixed point action of As, then %3 is equivariantly diffeomorphic to an iter-
ated equivariant connected sum along strata of the form g # |G/H|Z, -
# |G/H.|Z,, where %; is an irreducible homology 3-sphere with a smooth
action of H; if i > 1 and ¥4 is an irreducible homology 3-sphere with a
smooth.one fixed point action of As;.

In particular, it follows that every one fixed point action on a homology
3-sphere has an dirreducible nucleus given by a smooth one fixed point action

on some connected summand of T,

The proof of Theorem 4.11 follows from the standard equivariant analogs
of the Papakyriakopoulos Sphere Theorem [MeY2, JR] and an analysis of
the ways in which the invariant separating spheres in £ can meet the singular
set of the action; this set turns out to be a 1-dimensional finite cell complex
with a cell-preserving group action (that can be equivariantly subdivided to
yield an equivariant regular simplicial action in the sense of, say, [Bre3, Ch.
o). O

In view of Theorem 4.1 and Thurston’s Geometrization Conjecture [Thl-
2], it is natural to ask next about one fixed point actions on irreducible geo-
metric homology spheres. These manifolds fall into three distinct classes;
namely, Seifert fibered, non-simple Haken (in other words, containing an in-
compressible torus), and hyperbolic. Since the Poincaré homology 3-sphere
%(2,3,5) is an example of a Seifert fibered 3-manifold (in fact, it is a

Brieskorn variety), the most immediate question is whether other Seifert
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fibered homology 3-spheres support smooth one fixed point actions. This

question has a simple negative answer:

PROPOSITION 4.2. Let I3 be a Seifert fibered homology 3-sphere. Then X°
admits a smooth action of a finite group with one fixed point if and only if
3 is diffeomorphic to the Poincaré homology 3-sphere £(2,3,5).

This follows from considerations involving the fundamental group of %

and the orbifold fundamental group associated to the group action. [

In contrast to the preceding result, situation is completely different for

hyperbolic and Haken homology 3-spheres:

THEOREM 4.3. (¢) There exist infinitely many irreducible non-simple Haken
homology 3-spheres that support smooth actions of As with exactly one fixed
point.

(i%) There exist infinitely many irreducible hyperbolic homology 3-spheres

that support smooth actions of A; with exactly one fixed point.

Sketch of proof of Theorem 4.3. The constructions of examples depend
heavily on Theorem 3.1, Theorem 4.1, and the nonexistence of smooth one
fixed point actions on homotopy 3-spheres BKS]. When combined, these
imply that every possible singular set is realized by a smooth one fixed

point As-action on a nonsimply connected, irreducible homology 3-sphere.

To prove statement {z), one first takes a simple closed curve in the free
part of £(2,3,5) that represents a nonzero element of 71(£(2,3,5)), then
forms a connected sum with a knot in some small coordinate 3-disk, and
afterwards deforms it to be disjoint from all its translates under the action
of As. Next, one takes a closed invariant tubular neighborhood U of these
|A5| pairwise disjoint curves and replaces the interior of U with the |As]
copies of the interior of some nontrivial knot complement. One can do this
such that the manifold in question becomes an irreducible homology sphere

and the components of the boundary of U become incompressible tori.

The proof of statement (4i) is somewhat more delicate. As in the preced-

ing discussion, one removes a suitably chosen union Int U of invariant open
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solid tori from the free part of the action to obtain a bounded Haken mani-
fold V with a smooth one fixed point action and 8V = A5 xT?. Next one uses
the splitting theorems of W. Jaco and J. H. Rubinstein [JR] to construct an
equivariant splitting of V' along incompressible tori into Seifert fibered and
hyperbolic pieces; the hyperbolicity assertion uses Thurston’s recognition
principle for hyperbolic 3-manifolds ([Th4]; also see C. McMullen’s article
[McM] and the references cited there). The equivariant geometrization re-
sults of W. Meeks and G. P. Scott [MS] then imply that the fixed point of
the induced action on V lies in a hyperbolic piece, say V;, and an argument
involving the dual graph of the splitting implies that one can attach solid
tori to the boundary components of ¥ (nonequivariantly) to obtain a homal-
ogy 3-sphere. Thurston’s results on Dehn fillings [Th1-2] then imply that
infinitely many such attachments yield a hyperbolic manifold; furthermore,
elementary considerations imply that these Dehn fillings will yield integral
homology spheres, and a more detailed analysis also shows that infinitely

many of these constructions can be done equivariantly. O

The preceding results generate a variety of questions. Here are two ex-

amples:

(1) If T is an irreducible homology 3-sphere with a smooth As-action with
one fixed point, is the Rochlin invariant always equal to 17 This is true
for all examples checked thus far. Similarly, one can ask about the Casson

invariant [AM] or other invariants from topological quantum field theory.

(2) In [Th3] Thurston announced results implying that the one fixed point
actions on the hyperbolic homology 3-spheres of Theorem 4.3 are hyperbolic
structure preserving. There are many examples of one fixed point actions on
spheres in dimensions > 6. Can one use equivariant surgery to convert such
actions into one fixed point actions on hyperbolic homology spheres that
preserve a hyperbolic structure? Results of M. Davis and T. Januszkiewicz
[DJ] provide a means for converting manifolds and orbifolds to objects that
are hyperbolic in the sense of M. Gromov [Gr} (also see [Bow], [GH]), and

these suggest that one can find at least some hyperbolic one fixed point
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actions on higher dimensional integral homology spheres. More generally, it
would be interesting to know which of the many exotic smooth finite group
actions on spheres are simply connected analogs of hyperbolic actions on

hyperbolic homology spheres.
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