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the Straus-Browder result.

AMS Classification 55P91, 57S17; 55R91, 55S15, 55S91

Keywords Blakers-Massey Theorem, deleted cyclic reduced product, dia-
gram category, diagram cohomology, equivariant mapping, Gap Hypothesis,
group action, homotopy equivalence, isovariant mapping, normally straight-
ened mapping

In order to motivate and explain our results more thoroughly, we shall begin
with various pieces of background material. Readers who would rather focus
on the main results and their proofs may go directly to Section 2.

1 Background

Ever since the topological classification of surfaces was discovered, one basic
theme in geometric topology has been the reduction of existence and classifica-
tion questions for manifolds to problems in algebraic topology. A collection of
techniques known as surgery theory has been particularly effective in this regard
(compare [38], pp. 375–378). For well over four decades topologists have also
known that such techniques also have far reaching implications for manifolds
with group actions (cf. [9] and [38], pp. 378–379). Not surprisingly, many of
the most striking applications of surgery theory require some assumption on the
manifolds, mappings or structures under consideration, and for group actions
the following restriction has been employed quite often:
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Standard Gap Hypothesis For each pair of isotropy subgroups H % K
and each pair of components B ⊂ MH , C ⊂ MK such that B $ C we have
dimB + 1 ≤ 1

2(dim C).

A condition of this sort first appeared explicitly in the unpublished Berkeley
doctoral dissertation of Sandor H. Straus [46], and the importance and use-
fulness of the restriction became apparent in work of T. Petrie ([34] and [35];
see also Dovermann-Petrie [17], Dovermann-Rothenberg [18], and Lück-Madsen
[30]). The reason for this is that the Gap Hypothesis automatically implies that
certain maps are isovariant (cf. [33]): A mapping of f : X → Y of spaces
with actions of a group G is said to be isovariant if it is equivariant — so that
f(g · x) = g · f(x) for all g ∈ G and x ∈ X — and for each x the isotropy sub-
group Gx of all group elements fixing x is equal to the isotropy subgroup Gf(x)

of the image point (in general one can only say that the first subgroup is con-
tained in the second). Specifically, surgery theory yields equivariant mappings
of the form G/K×Sq → G ·MK where q ≤ 1

2 dimMK , and at one crucial step
in the process one uses the fact that such maps are equivariantly homotopic to
isovariant maps by general position if the Gap Hypothesis holds. Usually this
is expressed in other terms (e.g., the image of {H} × Sq lies in G ·MH and is
disjoint from G ·ML for all isotropy subgroups properly containing a conjugate
of H ), but it is straightforward to verify that the usual version is equivalent to
the one stated here in terms of isovariance.

Applications of surgery to group actions that do not require the Gap Hypoth-
esis frequently assume that the underlying maps of manifolds are isovariant or
almost isovariant (cf. Browder-Quinn [11], the final section of Dula-Schultz
[21], the second part of [41], and Weinberger’s book [49]). The general notion
of almost isovariance is defined precisely on page 27 of [21], and the most im-
portant special case is reproduced below. For the time being, we merely note
that

(1) the sets of nonisovariant points (Gx 6= Gf(x) ) for such a map may be
pushed into very small pieces of the domain where they cause no problems,

(2) standard methods of homotopy theory extend directly to a suitably de-
fined category of almost isovariant mappings (cf. [21] and [20]),

(3) results of [21] show that almost isovariant homotopy and isovariant ho-
motopy are equivalent in many important cases (including all smooth
actions of finite cyclic p-groups), and a standard conjecture (believed by
most workers in the area) states that the same is true for arbitrary smooth
actions of finite groups.

2



In fact, isovariant techniques play a central role in classification results for group
actions when the Gap Hypothesis fails; in many cases where such machinery
is not used explicitly, the work can readily be interpreted in these terms. A
fundamentally important breakthrough in this area was due to Browder and
Quinn [11] (see also the commentary on the latter in [23]), and a more general
discussion of the situation in the smooth category — which also extends earlier
work on the smooth classification of topologically linear actions on spheres —
appears in Section II.1 of [41] (see also the final section of [21]). In the piecewise
linear and topological categories, there is a distinct body of results which is
largely based on techniques from controlled topology (e.g., Weinberger’s book
[49], the survey articles by Hughes-Weinberger [23] and Cappell-Weinberger
[12], and the doctoral dissertation of A. Beshears [8]). A full historical account
of the topic is beyond the scope of this paper, but some additional references
include the work of A. Assadi with Browder [2] and P. Vogel [3], the monograph
by L. Jones on symmetries of disks [26], and the material on symmetries of
aspherical manifolds in Weinberger’s paper on higher Atiyah-Singer invariants
[50].

Focus of this paper

In this paper we are particularly interested in the following unpublished result,
which is due to Straus [46] for actions that are semifree (the group acts freely
off the fixed point set) and W. Browder [10] more generally. It implies a fairly
strong, general and precise connection between almost isovariance and the Gap
Hypothesis.

Theorem 1.1 Let f : M → N be an equivariant homotopy equivalence of
connected, compact, unbounded ( = closed) and oriented smooth G-manifolds
that satisfy the Gap Hypothesis. Then f is equivariantly homotopic to an
almost isovariant homotopy equivalence.

As noted above, in some cases the results of [21] allow one to replace “almost
isovariant” by “isovariant” in the conclusion; in particular, this is true if the
isotropy subgroups are normal and linearly ordered by inclusion. Although

Theorem 1.1 is a purely homotopy theoretic statement, the proofs in [46] and
[10] require fairly deep results from Wall’s nonsimply connected surgery theory
[47], which in turn depends upon other deep geometric results such as the
classification theory for immersions (cf. Phillips [36]) and the Whitney process
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for geometrically eliminating pairs of double points that cancel algebraically
(cf. Milnor’s monograph on the h-cobordism theorem [32]). It is natural to ask
whether one can prove Theorem 1.1 without relying so extensively on such a
large amount of auxiliary material (this is a special case of the classical scientific
maxim called Ockham’s Razor). In particular, since one can construct a
version of obstruction theory for isovariant maps and define obstructions to
finding an isovariant deformation of a given equivariant map [21], it is natural
to search for a proof that is related to this obstruction theory. More generally,
one would also like to understand the obstructions to isovariance for arbitrary
equivariant mappings of degree ±1 from one smooth manifold to another. Some
basic test cases are examples of equivariant degree one mappings mentioned in
[10] which are not equivariantly homotopic to isovariant maps; results of K. H.
Dovermann on isovariant normal maps [16] also provide some motivation.

The main objective of this paper is to analyze the problem of deforming an
equivariant degree one map into an isovariant map when the Gap Hypothesis
holds, to use this criterion to provide an essentially homotopy-theoretic proof
of Theorem 1.1, and to see how the criterion applies to equivariant homotopy
equivalences and other basic examples. In contrast to [46] and [10], our approach
requires a minimum of input from geometric topology; namely, nonequivari-
ant transversality and standard results on smooth embeddings in the general
position range. For the sake of clarity we shall restrict attention to finite group
actions that are semifree in the sense described above; if G is cyclic of prime
order, then all actions are semifree. We shall also discuss some applications of
Theorem 1.1 to cyclic reduced products that were first considered in [46] and a
few positive and negative results just outside the range of the Gap Hypothesis
(further information on the latter will appear in sequels to this paper).

Acknowledgments I am extremely grateful to Bill Browder for helpful con-
versations and correspondence regarding his results on the questions treated
here, and especially for providing a detailed account of his counterexamples
that appear in Section 4 of this paper. I would also like to thank Heiner Dover-
mann for various conversations involving his work. Comments on the referee for
enhancing the exposition of the paper were also valuable and appreciated. The
research in this paper was partially supported by National Science Foundation
Grants DMS 86-02543, 89-02622 and 91-02711, and also by the Max-Planck-
Institut für Mathematik in Bonn, and sources are also gratefully acknowledged.
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2 Statements of main results

Suppose that M and N are closed, oriented, semifree smooth G-manifolds
satisfying the Gap Hypothesis such that all components of the fixed point sets,
and suppose that f : M → N is a G-equivariant map of degree 1. Let {Nα}
denote the set of components of the fixed point set N G , where we may as well
assume that α runs through the elements of π0(N

G), and suppose that the
associated map fG of fixed point sets defines a 1− 1 correspondence between
the components of MG and NG ; for each α let

Mα = f−1(Nα) ∩ MG

and let fα : Mα → Nα denote the partial map of fixed point sets determined by
f . Denote the equivariant normal bundles of Mα and Nα in M and N by ξα

and ωα respectively, and let S(ν) generically represent the unit sphere bundle
of the vector bundle ν (with the associated group action if ν is a G-vector
bundle).

Theorem 2.1 Suppose we are given the setting above such that dimMα =
dimNα for each α.

(i) If f is homotopic to an isovariant map, then for each α the map fα has
degree ±1, and S(ξα) is equivariantly fiber homotopy equivalent to S(f ∗ωα).

(ii) If the two conditions in the preceding statement hold, then f is equiv-
ariantly homotopic to a map that is isovariant on a neighborhood of the fixed
point set.

(iii) If f is isovariant on a neighborhood of the fixed point set, then f is
equivariantly homotopic to an isovariant map if and only if f is equivariantly
homotopic to a map f1 for which the set of nonisovariant points of f1 is con-
tained in a tubular neighborhood of MG .

Theorem 1.1 will follow immediately from Theorem 2.1 and the specialization
of the the latter to equivariant homotopy equivalences.

Theorem 2.2 In the setting of the previous result, suppose that f is an
equivariant homotopy equivalence. Then f is equivariantly homotopic to an
isovariant homotopy equivalence.
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Note. If f is an equivariant homotopy equivalence, then some of the as-
sumptions in the setting and statement of Theorem 2 are redundant because
an equivariant homotopy equivalence determines a 1–1 correspondence of fixed
point set components and the dimensions of corresponding components are also
equal because the components are homotopy equivalent.

Application to deleted reduced products

Given a topological space X and an integer n, the n-fold cyclic reduced product
is defined to be the quotient of the product space Xn (i.e., n copies of X )
modulo the action of Zn on the latter by permuting coordinates, and the deleted
cyclic reduced product is the subset of the latter obtained by removing the
image of the diagonal ∆(Xn) consisting of those points whose coordinates are
all equal. In his thesis [46] Straus used his version of Theorem 1.1 to obtain the
following homotopy invariance property for such spaces:

Theorem 2.3 Let M and N be closed smooth manifolds of dimension ≥ 2,
let p be an odd prime, and suppose that M and N are homotopy equivalent.
Let Zp act smoothly on the p-fold self products ΠpM and ΠpN (where ΠpX =
X×· · ·×X, p factors) by cyclically permuting the coordinates, and let Dp(M),
Dp(N) be the invariant subsets sets given by removing the diagonals from ΠpM
and ΠpN . Then the deleted reduced cyclic products Dp(M)/Zp and Dp(N)/Zp

are homotopy equivalent.

As also noted in [46], this result does not extend to compact bounded manifolds,
and in fact closed unit disks of different dimensions generate simple counterex-
amples. The results of [40] imply that Theorem 5 extends to simply connected
manifolds if p = 2, but recent results of R. Longoni and P. Salvatore [29] im-
ply that the result does not extend to 3-dimensional lens spaces when p = 2.
Further results on the relationship between D2(M)/Z2 and D2(N)/Z2 for ho-
motopy equivalent manifolds appear in a paper by P. Löffler and R. J. Milgram
[28].

Since the statement and proof of Theorem 4 have apparently not appeared
previously in print, we shall outline the (fairly straightforward) argument for
the sake of completeness.
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Sketch of proof We shall first prove the result when dimM = dimN ≥
3 and then dispose of the remaining cases afterwards. If f : M → N is a
homotopy equivalence then Πpf : ΠpM → ΠpN is an equivariant homotopy
equivalence of closed smooth Zp -manifolds. All actions of Zp are semifree if p
is prime, so this condition holds automatically. Furthermore, the fixed point
sets of the action on ΠpM and ΠpN are the respective diagonals ∆(ΠpM) ∼= M
and ∆(ΠpN)n ∼= N , and since

dim∆p(ΠpX) = dimX = (dimΠpX) /p ≤

1
3 dimΠpX < 1

2 dimΠpX − 1

if X = M or N is at least 3-dimensional and p is odd, then the Gap Hypothesis
also holds. Therefore Theorem 1.1 implies that Πpf is equivariantly homotopic
to an isovariant homotopy equivalence, and the latter in turn yields an equivari-
ant homotopy equivalence from Dp(M) to Dp(N). The induced map of orbit
spaces is the desired homotopy equivalence from Dp(M)/Zp to Dp(N)/Zp .

Suppose now that dimM = dimN ≤ 2. In these cases homotopy equiva-
lent manifolds are homeomorphic, so we can take the homotopy equivalence
f : M → N to be a homeomorphism. It follows immediately that Πpf is a
homeomorphism and as such is automatically isovariant. One can now complete
the proof as in the last two sentences of the preceding paragraph.

Further results

The results of [10] also include a uniqueness statement (up to isovariant homo-
topy) if M × [0, 1] and N × [0, 1] satisfy the Gap Hypothesis. One can also
use the methods of this paper together with some additional geometric and
homotopy theoretic input to prove such a uniqueness result. The necessary
machinery to do so will be developed in a subsequent paper.

Since the results of [10] also apply to actions that are not necessarily semifree,
it is natural to ask whether the methods of this paper extend. The answer is
yes, but a proof would require the introduction of a considerable amount of
extra machinery that would take time to develop and might obscure the main
ideas, and this is a major reason for sticking with the semifree case. A brief
discussion of some tools needed to carry out such extensions appears at the end
of Section 3, and we plan to pursue this further in another sequel to this article.
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Overview of the paper

We shall begin Section 2 by proving that the conditions in Theorem 2 are
necessary for a map f as above to be properly homotopic to an isovariant map.
The proof of sufficiency in Theorem 2 splits into two steps, which are carried
out in Sections 3 and 4. To motivate the first step, observe that an equivariant
map of semifree G-manifolds is automatically isovariant on the fixed point
set, so a natural starting point is to determine whether the given map can be
equivariantly deformed to a map that is isovariant on a neighborhood of the
fixed point set. If this is possible and we have a map with this additional
property, the next step is to determine whether such a map can be further
deformed to another one which is isovariant everywhere. Section 5 contains
the proofs of Theorems 1.1 and 2.2. Finally, in Section 6 we shall discuss a
variety of questions related to the main results. Some concern the interaction
between equivariance and isovariance when the Gap Hypothesis holds, while
others involve borderline situations in which the Gap Hypothesis inequalities
fail, but only by a small amount. There are obvious questions about the extent
to which Theorem 1.1 extends to such examples, and answers to such questions
turn out to have close connections to issues in equivariant surgery theory in such
borderline cases. Sometimes the latter yields generalizations of Theorem 1.1 to
situations where the conclusion is not particularly obvious from a homotopy
theoretic viewpoint, and in other cases homotopy theory has implications for
equivariant surgery theory.

3 Preliminary adjustments and necessity

It will be convenient to begin with some notational conventions and elementary
observations in order to simplify the main discussion and the proofs.

Let P be a closed smooth G-manifold, where G is a finite group. By local
linearity of the action we know that the fixed point set P G is a union of con-
nected smooth submanifolds; as before, denote these connected components by
Pα . For each α let D(Pα) denote a closed tubular neighborhood. By construc-
tion these sets are total spaces of closed unit disk bundles over the manifolds
Pα , so let S(Pα) and denote the associated unit sphere bundles; it follows that

∂[D(Pα)] = S(Pα) .

Suppose now that M and N are smooth semifree G-manifolds and f : M → N
is an equivariant mapping.
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The “only if” direction of Theorem 2.1

Assume that we have the setting and notation introduced in order to state
Theorem 2.1:

(1) M and N are compact, oriented, semifree smooth G-manifolds satisfying
the Gap Hypothesis.

(2) f : M → N is a G-equivariant map of degree 1.

(3) {Nα} denotes the set of components of NG where we may as well assume
that α runs through the elements of π0(N

G).

(4) The associated map fG of fixed point sets defines a 1−1 correspondence
between the components of MG and NG .

(5) If for each α we let

Mα = f−1(Nα) ∩MG

then fα is the continuous map from Mα to Nα determined by f .

(6) If the equivariant normal bundles of Mα and Nα in M and N are ξα

and ωα respectively, and let S(ν) and D(ν) generically represent the unit
sphere and disk bundle of the vector bundle ν (with the associated group
action since ν is a G-vector bundle).

Not surprisingly, we shall also use the notational conventions we have previously
developed and mentioned.

Necessity proof for Theorem 2.1 Each of the first two basic conditions in
Theorem 2.1 depends only on the equivariant homotopy class of a mapping of
manifolds, so without loss of generality we may replace f by any map in the
same proper equivariant homotopy class. In particular, since we are assuming
that f is properly equivariantly homotopy to an isovariant map, we might as
well assume that f itself is isovariant.

By the results of [21] (in particular, see Proposition 4.1 on page 27), the map f is
isovariantly homotopic to a map f0 such that for each α we have f(D(Mα) ) ⊂
D(Nα), f(S(Mα )) ⊂ S(Nα), and

f ( M − ∪α IntD(Mα) ) ⊂ N − ∪α Int D(Nα) .

For each choice of α let

hα :
(

D(Mα), S(Mα)
)

−→
(

D(Mα), S(Mα)
)
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be the associated map of pairs defined by f0 . Since the latter has degree 1,
the same is true for each of the maps hα . We have already noted that D(−)
and S(−) are disk and sphere bundles over the appropriate components of
fixed point sets, and therefore a simple spectral sequence argument implies
that (a) the degrees of the maps fα are all equal to ±1, up to an equivariant
homotopy of pairs the map hα sends a spherical fiber in S(Mα) to a spherical
fiber in S(Nα) by a map of degree ±1. Therefore an equivariant analog of
a classical result due to A. Dold [14] (cf. Waner [48]) shows that there is a
g -equivariant fiber homotopy equivalence from S(ξα) to S(f ∗

α ωα), where as
before ξα and ωα denoted the corresponding equivariant normal bundles for
Mα and Nα . This completes the proof that Condition (i) holds. Since the set
of nonisovariant points for an isovariant map is empty by definition, Condition
(iii) is automatically true, so the proof is complete.

Some examples

It is not difficult to construct equivariant maps of degree 1 which satisfy the
Gap Hypothesis but do not satisfy the statements in Condition (i) of Theorem
2.1 on degrees and equivariant normal bundles.

Example 3.1 Let V be a nontrivial semifree real representation of G such
that dimV G > 0 and the Gap Hypothesis holds, and let SV be the one point
compactification, which is equivariantly homeomorphic to the unit sphere in
V ⊕R. It is well known that for each positive integer k there is a G-equivariant
map hk : SV → SV such that deg hk = 1 and deg hG

k = k|G|+ 1 (e.g., this is a
very special case of the equivariant Hopf Theorem stated in tom Dieck’s book
on the Burnside ring and equivariant homotopy theory [13]; see Thm. 8.4.1, pp.
213–214]). Since the fixed point set is connected and the degree of the map on
the fixed point set is not ±1 if |G| > 2 or k 6= 0, it follows that hk cannot be
homotopic to an isovariant map. However, the map hk does satisfy the second
part of Condition (i) involving pullbacks of equivariant normal bundles because
the equivariant normal bundle of (SV )G in SV is a product bundle.

Example 3.2 Let G be a cyclic group, assume that k , m and r satisfy
k ≡ 0(4), k,m > 0 and 2r > m + k , and let γ be a complex r -dimensional
vector bundle over Sk which represents a generator of πk(BUr) ∼= Z. Take M
to be the associated (2r + m)-sphere bundle over Sk . Then G acts smoothly
and fiber preservingly on M with fixed point set Sk×Sm , and each point has an
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invariant open neighborhood on which the action of G is smoothly equivalent
to the linear representation V = Rk+m ⊕Cr . If we collapse everything outside
such a neighborhood to a point, we obtain an equivariant map of degree 1 from
M to SV . This map also has degree 1 on the fixed point sets, but we claim it
does not satisfy the pullback condition for equivariant normal bundles. Since
the equivariant normal bundle in M is the pullback of γ under the coordinate
projection map from Sk × Sm → Sm , it will suffice to check that γ is not
equivariantly fiber homotopically trivial. In fact, the underlying nonequivariant
vector bundle is well known to be stably fiber homotopically nontrivial (e.g.,
see Adams [1]).

4 Normal straightening and relative isovariance ob-

structions

In this section we shall prove the implication of Theorem 2.1 in the other di-
rection; namely, if Conditions (ii) is satisfied then one can make f isovariant
near the fixed point set, and if (iii) is satisfied then the map f is equivari-
antly homotopic to an isovariant mapping. The first step is to examine the
consequences of Condition (ii).

Proposition 4.1 In the setting of Section 1, suppose that f : M → N is
a continuous equivariant degree 1 map. Assume that each of the associated
maps of fixed point components fα : Mα → Nα has degree ±1 and that S(ξα)
is equivariantly fiber homotopy equivalent to S(f ∗ ωα) for each α. Then there
are closed, pairwise disjoint, equivariant tubular neighborhoods D(Mα) of the
fixed point set components Mα and an equivariant mapping f0 such that f0

is equivariantly homotopic to f and for each α the restriction f |D(Mα) is
isovariant.

Proof For each α choose an equivariant fiber homotopy equivalence hα :
S(ξα) → S(f∗

α ωα), and let kα be the composite of hα with the canonical
induced bundle mapping S(f ∗

α ωα) → S(ωα). Define a map Hα : D(Mα) →
D(Nα) using kα and fiberwise radial extension. It follows that Hα is equiv-
ariantly homotopic to f |D(Mα) for each α, and hence by the equivariant Ho-
motopy Extension Property we may deform f equivariantly to a map f0 such
that f0|D(Mα) = Hα for each α. Since each Hα is isovariant, it follows that
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the restriction of f0 to a neighborhood of the fixed point set is isovariant as
required.

We shall conclude this section by proving the sufficiency of the condition in (iii).
A key step in the proof of Theorem 1.1 will be to prove that an equivariant
homotopy equivalence has this property.

Proposition 4.2 Let M and N be as before, and suppose that f : M → N is
a continuous equivariant map that is isovariant on a neighborhood of the fixed
point set. If there is a system of closed tubular neighborhoods Wα of MG such
that the set of nonisovariant points lies in the interiors of the sets Wα , then f
is equivariantly homotopic to an isovariant map.

Note that we make no assumption about the images of the sets Wα , and in
particular we do not assume that they lie in the tubular neighborhoods of the
components of the fixed point set of N .

Proof By assumption f is already isovariant on the closed complement of a
submanifold T of the form ∪α S(Mα) × [12 , 1] where as usual S(Mα) denotes
the boundary of a tubular neighborhood. Let Tα be the portion lying over
Mα and denote the boundary components corresponding to S(Mα)× {1

2} and
S(Mα × {1} by ∂0Tα and ∂1Tα respectively. Let

Bα = M − ∪β 6=α Mβ Cα = N − ∪β 6=α Nβ

let Sα be the spherical fiber of S(Mα), and let Aα correspond to the annulus
Sα × [12 , 1]. For each value of j the map f determines a map of triads

fα : (Tα; ∂0Tα, ∂1Tα) −→ (Cα;D(Nα), N −NG)

and by the results of Section 4 in [21] it suffices to show that each such map
of triads can be compressed equivariantly rel ∂1Tα ∪ Aα into the triad (N −
NG;S(Nα), N − NG). The methods of Sections 1 and 5 in [21] imply that
the obstructions to compression lie in diagram-theoretic Bredon equivariant
cohomology groups of the form BRHi(T;Πi), where T is the diagram associated
to the triad (Tα; ∂0Tα, ∂1Tα ∪ Aα) and Πi is the following diagram of abelian
groups:

πi(D(Nα), S(Nα))
∂
#
0−−−−→ πi(Cα, N −NG)

∂
#
1←−−−− {0}
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If qα = dimM − dimFα then (D(Nα), S(Nα)) is (qα − 1)-connected by the
identity πs(D(Nα), S(Nα)) ∼= πs−1(Sα), and a standard general position argu-
ment shows that (Cα, N − NG) = (Cα, Cα − Nα) is also (qα − 1)-connected.
Therefore the Blakers-Massey Theorem (e.g., see page 143 of [22]) implies that

the map ∂#
0 is bijective if i ≤ 2qα− 3 and surjective if i = 2qα− 2. In particu-

lar, this means that the equivariant diagram cohomology groups BRHi(T;Πi)
reduce to ordinary Bredon cohomology groups BRHi(Tα, ∂1Tα;πi(Cα, N−NG))
if i ≤ n − 1 or if i = n and dimFα + 3 ≤ qα . Since Tα

∼= ∂1Tα × [0, 1] it fol-
lows immediately that the relative cohomology groups vanish in all such cases.
Since dimTα = dimM = dimN , this implies that the isovariance obstructions
vanish in all cases except perhaps when i = n = 2qα − 2. In such cases the
value group fits into the following exact sequence, which arises by restricting
diagram-theoretic cochains in C(X ′ → X;π′ → π) to ordinary cochains in
C(X ′;π′):

(?) Hn−1 (∂0Tα;πn(D(α′
α), S(α′

α)) )
∆

−−−−→ Hn(Tα, ∂Tα;πn(Nα, N −NG))




y

BRHn(T;Πn)




y

Hn (∂0Tα;πn(D(α′
α), S(α′

α)) )

The map ∆ in this sequence is given by combining the coefficient homomor-
phism for the map δ#

0 in dimension n with the suspension isomorphism

Hn−1(∂0Tα;π) −→ Hn(Tα, ∂Tα;π) .

Therefore the Blakers-Massey Theorem, the (n − 1)-dimensionality of ∂0Tα ,
and the Bockstein exact sequence for the short exact sequence

0 −−−−→ Kernel −−−−→ πn(D(α′
α), S(α′

α))
∂
#
0−−−−→ πn(Cα, N −NG) −−−−→ 0

imply that ∆ is onto. But the last object in (?) is zero because dim ∂0Tα =
n− 1, and it follows by exactness that BRHn(T;Πn) is also trivial. Therefore
the isovariance obstructions always vanish.

The following examples due to Browder [10] show that it is not always possible
to deform an equivariant degree 1 map so that it is isovariant near the fixed
point set and the set of nonisovariant points lies in a tubular neighborhood of
the fixed point set.
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Examples 4.3 Let k and q be distinct positive integers such that q is even
and G has a free q -dimensional linear representation (i.e., the group acts freely
except at the zero vector). Let N = Sk × Sq with trivial action on the first
coordinate and the one point compactification of the free linear representation
on the second, let M0 be the disjoint union of N and two copies of the space
G×Sk×Sq (where G acts by translation on itself and trivially on the other two
coordinates), and define an equivariant map f0 : M0 → N by taking the identity
on M , the unique equivariant extension of the identity map on Sk × Sq over
one copy of G×Sk×Sq , and the unique equivariant extension of an orientation
reversing self diffeomorphism of Sk × Sq over the other copy. By construction
this map has degree one, and one can attach 1-handles equivariantly to M0 away
from the fixed point set to obtain an equivariant cobordism of maps from f0 to a
map f on a connected 1-manifold M that is nonequivariantly diffeomorphic to
a connected sum of 2 · |G|+1 copies of Sk×Sq . Since the fixed point sets of M
and N are k -dimensional and the manifolds themselves are (k+q)-dimensional,
it follows that the Gap Hypothesis holds if we impose the stronger restriction
q ≥ k + 2. By construction the map f determines a homotopy equivalence of
fixed point sets and is isovariant on a neighborhood of the fixed point set.

Assertion It is not possible to deform f equivariantly so that the set of non-
isovariant points lies in a tubular neighborhood of the fixed point set. In par-
ticular, it is also not possible to deform f equivariantly to an isovariant map.

To prove the assertion, assume that one has a map h equivariantly homotopic
to f with the stated property, and let U be a tubular neighborhood of M G

that contains the set of nonisovariant points. Let X be a submanifold of the
form {g} × {v} × Sq in M that arises from one of the copies of G × Sk × Sq

in M0 . Although X and U may have points in common, by the uniqueness of
tubular neighborhoods we can always isotop X into a submanifold X ′ that is
disjoint from U . By the hypotheses on h we know that h(X ′) is disjoint from
NG = Sk × S0 , and therefore h(X ′) is contained in

N −NG ∼= Sk × Sq−1 × R

so that the image of the generator of Hq(X
′) = Z maps trivially into Hq(N).

However, h is supposed to be homotopic to a map which is nontrivial on the
latter by construction, so we have a contradiction, and therefore it is not possible
to find an isovariant map h that is equivariantly homotopic to f .
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A refinement of the preceding argument shows that if Y is a subset of M such
that the image of Hq(Y ) in Hq(M) is equal to the image of Hq(X), then Y must
contain some nonisovariant points of any equivariant map that is equivariantly
homotopic to f .

Remark By construction, Browder’s examples are normally cobordant to the
identity; an explicit normal cobordism from the identity to f0 is given by

W = N × [0, 1] q G× Sk × Sq × [0, 1]

where ∂−W = N ×{0} and ∂+W is the remaining 2|G|+1 components of the
boundary, and one can obtain a normal cobordism to f by adding 1-handles
equivariantly along the top part of the boundary. More generally, results of
K. H. Dovermann [16] imply that one can always construct equivariant normal
cobordisms to equivariant normal maps if the Gap Hypothesis holds and the
map is already an equivariant homotopy equivalence on the singular set as in
Browder’s examples.

However, it is also possible to construct examples like Browder’s that are not
cobordant to highly connected maps. It suffices to let k ≡ 0(4) and replace
G × Sk × Sq by G× S(γ), where the latter is the sphere bundle of a fiber ho-
motopically trivial vector bundle γ over Sk with nontrivial rational Pontryagin
classes; one must also replace the equivariant folding map from G × Sk × Sq

to N by its composite with the identity on G times a fiber homotopy equiva-
lence from S(γ) to Sk × Sq . Characteristic number arguments imply the map
obtained in this fashion is not cobordant to a k -connected map. Of course, a
degree 1 map of this type does not have the bundle data required for a normal
map in the sense of equivariant surgery theory.

Generalizations to nonsemifree actions

We have assumed our actions are semifree in order to keep the discussion of
normal straightening as simple as possible. In fact, the main obstruction to
proving analogs of Theorems 1.1, 2.1, and 2.2 for arbitrary actions is to prove
a suitable generalization of the result on normal straightening. One step in
carrying this out is to develop some methods for analyzing the equivariant fiber
homotopy type of certain equivariant vector bundles. In the semifree case the
base spaces for these bundles all have trivial G-actions, and we were able to
study the bundles directly with a minimum of equivariant homotopy theoretic
machinery. However, if the action on the ambient manifold is not semifree, then
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we must also consider equivariant vector bundles over the various fixed point
sets of proper subgroups of G, and these bases will usually have nontrivial
group actions. Working with such objects requires the sorts of constructions
developed in [42] and [43] as well as the full force of S. Waner’s work on the
equivariant fiber homotopy types of equivariant fiber bundles [48]. If g = Zpr

where p is prime, then the generalization is particularly direct, and with such
results one can prove complete generalizations of Theorems 1.1, 2.1, and 2.2 for
actions of such groups (assuming the Gap Hypothesis as usual).

5 Equivariant homotopy equivalences

In this section we shall show that an equivariant homotopy equivalence can be
deformed to satisfy the conditions in parts (ii) and (iii) of Theorem 2.1 and
thus must be equivariantly homotopic to an isovariant map, which we shall
prove must be an isovariant homotopy equivalence.

Proposition 5.1 Let f : M → N be a homotopy equivalence of closed,
oriented, semifree G-manifolds which satisfy the Gap Hypothesis such that all
components of all fixed point sets are also orientable. Then f is equivariantly
homotopic to a map that is isovariant on a neighborhood of the fixed point set.

Proof We shall prove that f satisfies the conditions in part (ii) of Theorem
2.1. Since f defines a homotopy equivalence of fixed point sets, it follows
immediately that for each component Mα of MG the restriction fα of f defines
a homotopy equivalence from Mα to Nα and hence has degree ±1. In order to
apply part (ii) of Theorem 2.1, we also need to verify the homotopy pullback
condition on the equivariant normal bundles of the fixed point set components.

Let τM and τN be the equivariant tangent bundles of M and N . We claim that
the sphere bundles of τM and f∗τN are stably equivariantly fiber homotopically
equivalent. The nonequivariant version of this statement is well known (cf.
Atiyah [4]) and the equivariant case is due to K. Kawakubo [27].

Consider next the restriction of the stable equivariant fiber homotopy equiva-
lence S(τM ) ∼ S(f∗τN ) to MG . The classifying maps for the two equivariant
fibrations go from MG to a space B such that π∗(B) ≈ πG

∗−1 , where the latter
denotes an equivariant stable homotopy group as in [45]. On the other hand,
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by [45] we also know that B is homotopy equivalent to the product BF ×BFG

where BF classifies nonequivariant stable spherical fibrations and BFG is de-
fined as in [7]. In terms of fibrations the projections of the classifying maps
M → B onto BF and BFG correspond to taking the classifying maps of the
fixed point subbundles and the orthogonal complements of the fixed point sub-
bundles respectively. Therefore it follows that the corresponding subbundles
for τM and f∗τN are stably equivariantly fiber homotopy equivalent. In par-
ticular, this means that S(αM ) and S([fG]∗αN ) are stably equivariantly fiber
homotopy equivalent because they induce homotopic maps from M G into BFG .

As usual, write MG as a disjoint union of components Mα , and for each α let
qα be the codimension of Mα . Furthermore, denote the fiber representation
at a point of Mα by Vα . The stabilization map FG(Vα) → FG is (qα − 2)-
connected by the considerations of [Sc1], and the Gap Hypothesis implies that
dimMα ≤ qα − 2. Therefore we can destabilize the stable fiber homotopy
equivalence from S(ξα) to S([fG]∗ωα) and obtain a genuine equivariant fiber
homotopy equivalence. Choose such an equivariant fiber homotopy equivalence,
say Φ. It is then an elementary exercise to deform f | ∪α D(Mα) equivariantly
relative the zero section so that one obtains the radial extension of Φ at the
other end of the deformation. By the equivariant homotopy extension property
one can extend this homotopy to all of M .

Our choice of fiber homotopy equivalences was arbitrary, but it is possible to
find a canonical choice up to homotopy using equivariant S -duality [51] and
Kawakubo’s result; in fact, one must work with the latter to prove a uniqueness
result for isovariant deformations as in [10], and we shall explain this in a
subsequent article.

The preceding result and part (iii) of Theorem 2.1 reduce the proof of Theorems
1.1 and 2.2 to the following two results:

Proposition 5.2 Suppose that f satisfies the conditions of the previous result,
including the condition that f is isovariant on a neighborhood of the fixed point
set. Then f is homotopic to an almost isovariant map.

Proposition 5.3 If f as above is isovariant, then f is an isovariant homotopy
equivalence.
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We shall prove these results in order.

Proof of Proposition 5.2 The first step is to construct an equivariant homo-
topy from f to a mapping f1 such that the homotopy is fixed on a neighborhood
of the fixed point set and f1 is smoothly equivariantly transverse to the fixed
point set; there are no problems with equivariant transversality obstructions
because the relevant part of the domain has a free G-action. By construction
the transverse inverse image of the fixed point set is the set of nonisovariant
points, and it splits into a union of smooth submanifolds Vα = f−1

1 (Nα). Note
that dimVα = dimNα = dimMα which is less than half the dimensions of M
and N .

By construction the image of f1|Vα is contained in Nα , so let kα be the asso-
ciated map from Vα to Nα ; if hα : Nα → Mα is determined by a homotopy
inverse to f1 , then the map hα

okα is equivariantly homotopic to the inclusion
of Vα in M . By general position it follows that the latter is also equivariantly
homotopic to a map into D(Mα)−Mα and in fact can be approximated by a
smooth equivariant embedding eα ; in fact, the numerical condition in the Gap
Hypothesis is strong enough to guarantee that eα is equivariantly isotopic to
the inclusion. Since the image of eα is contained in a tubular neighborhood of
Mα , the Equivariant Isotopy Extension Theorem implies the inclusion is iso-
topic to a smooth equivariant embedding of Vα in a tubular neighborhood and
hence the image of the inclusion itself must also be contained in some tubular
neighborhood. Since this is true for every α, it is also true for the entire set of
nonisovariant points.

By Theorem 2.1 and the preceding propositions we know that f is equivariantly
homotopic to an almost isovariant mapping, and by [21] it is also equivariantly
homotopic to an isovariant mapping.

Proof of Proposition 5.3 By [21] (see Prop. 4.1, p. 27), the map f is
isovariantly homotopic to a map f0 such that for each α we have f(D(Mα) ) ⊂
D(Nα), f(S(Mα )) ⊂ S(Nα), and

f ( M − ∪α IntD(Mα) ) ⊂ N − ∪α Int D(Nα) .

Furthermore, using Theorem 4.4 on pp. 29–31 of [21] one can further deform
this map to some f1 that is fiber preserving on the tubular neighborhoods and
maps disk fibers to disk fibers by cones of maps over the boundary spheres

18



(i.e., the map is normally straightened in the sense of [21], p. 31). It will
suffice to prove that f1 is an isovariant homotopy equivalence, so without loss
of generality we might as well assume that f itself is normally straightened.

By the isovariant Whitehead Theorem established in Section 4 of [21], the map
f is an isovariant homotopy equivalence if f defines a homotopy equivalence
from M−MG to N−NG . General position considerations imply that f induces
an isomorphism of fundamental groups, and therefore it suffices to check that f
defines an isomorphism in homology with twisted coefficients in the group ring
of the fundamental group. Exact sequence and excision arguments show that
the latter holds if f induces homotopy equivalences from M to N , from M G

to NG , and from
∐

S(ξα) to
∐

S(ωα). The first two of these follow because f
is an equivariant homotopy equivalence. To prove the third property first note
that for each α the homotopy fibers of S(ξα) ⊂ D(ξα) and S(ωα) ⊂ D(ωα) are
simply the fibers of the sphere bundles; since each D(ξα) maps to D(ωα) by a
homotopy equivalence, it suffices to know that a fiber of S(ξα) maps to a fiber
of S(ωα) with degree ±1. This follows directly from the construction of the
isovariant map; the first step was to make an equivariant homotopy equivalence
normally straightened near the fixed point set, and the equivariant deformation
in part (iii) of Theorem 2 is constant near some fiber of S(ξα).

Recognizing isovariant homotopy equivalences

One can combine Proposition 5.3 with Theorem 1.1 to obtain the following
specialization of the Isovariant Whitehead Theorem:

Theorem 5.4 Let f : M → N be a continuous isovariant mapping of oriented
closed semifree smooth G-manifolds that satisfy the Gap Hypothesis. Then f
is an isovariant homotopy equivalence if and only if f is an ordinary homotopy
equivalence (forgetting the group action), and the associated map of fixed point
sets fG : MG → NG is also a homotopy equivalence.

Proof of Theorem 5.4 The necessity of the conditions is immediate, so we
only need to check that the latter are also sufficient. Since smooth G-manifolds
have the equivariant homotopy types of G-CW complexes (cf. Illman [25]), the
Equivariant Whitehead Theorem of S. Illman [24] and T. Matumoto [31] and the
hypotheses imply that f must be an equivariant homotopy equivalence. Since
f is an isovariant map, it follows from Proposition 5.3 that f is an isovariant
homotopy equivalence.
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Remark Extension to nonsemifree actions. We have mentioned that The-
orem 1 extends to at least some smooth actions that are not semifree, and in
fact the same is true for Proposition 5.3. Given these, one can also extend
Theorem 5.4 provided the final clause about f G is replaced with the following:
... and for each subgroup H ⊂ G the associated map of H -fixed point sets
fH : MH → NH is also an ordinary homotopy equivalence. [NOTE: Since
the group G acts trivially on its fixed point set, there is no difference between
equivariant and ordinary homotopy equivalences of the singular sets — i.e., the
points where the action is not free — in the semifree case.]

6 Final remarks

Questions about the role of the Gap Hypothesis in transformation groups have
been around for some time (cf. [44]). Such questions rarely have clear cut
answers, but the main results of this paper strongly suggest that the usefulness
of the Gap Hypothesis is closely related to

(1) the strong implications of isovariance for analyzing existence and classi-
fications questions for group actions,

(2) some very close relationships between isovariant homotopy and equivari-
ant homotopy when the Gap Hypothesis holds.

We shall discuss a few aspects of these points in this section.

Extending Theorem 1 to other cases

Since the Gap Hypothesis was used at several crucial points in the proof of our
main theorems, one might reasonably expect that these results do not neces-
sarily hold if the Gap Hypothesis fails. Despite this, there are some situations
in which one can prove analogs of Theorem 1.1, particularly when G is cyclic
of prime order and the difference dimM − 2 dim M G is equal to 1 or 0. In par-
ticular, if we also assume that G is cyclic of prime order and there is only one
component with maximal dimension, then one can use surgery theory to prove
generalizations of Theorem 1. If G has order 2 and the dimension difference
is zero, then this is established in [40], and the other cases will be shown in a
forthcoming paper by K. H. Dovermann and the author. On the other hand,
the previously quoted results of results of Longoni and Salvatore [29] imply that
the analog of Theorem 1.1 does not necessarily hold if G has order 2 and M is
not simply connected.
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In a subsequent paper we shall use equivariant function spaces as in [39] and
[7] to construct systematic families of equivariant homotopy equivalences that
are not homotopic to isovariant maps in situations where the Gap Hypothesis
fails. In particular, we shall construct connected examples where G is cyclic
of prime order, dimM = 2dimMG , and there are two components with the
maximal dimension.

Implications for equivariant surgery

The methods and results of [21] provide a means for analyzing isovariant homo-
topy theory — and its relation to equivariant homotopy theory — within the
standard framework of algebraic topology. Therefore Theorem 1.1 and the con-
clusions of [21] suggest a two step approach to analyzing smooth G-manifolds
within a given equivariant homotopy type if the Gap Hypothesis does not nec-
essarily hold; namely, the first step is to study the obstructions to isovariance
for an equivariant homotopy equivalence and the second step is to study one
of the versions of the isovariant surgery theories in [41] or [49]. This approach
seems especially promising for analyzing classification questions by means of
surgery theory and homotopy theory.

There are also other indications of very close ties between the validity of Theo-
rem 1.1 and potential extensions of equivariant surgery to cases outside the Gap
Hypothesis range. The extensions of Theorem 1.1 mentioned in the preceding
paragraphs use results on equivariant surgery just outside the Gap Hypothe-
sis range, and in particular they heavily on some corresponding extensions of
results from equivariant surgery. Of course, one would also like to have more
homotopy theoretic proofs for such results. On the other hand, the counterex-
amples to Theorem 1.1 in certain cases also imply that one cannot expect to
have purely algebraic obstructions to equivariant surgery (based upon data like
the equivariant fundamental group) in some situations that are very close to
those considered by Dovermann [15] or by A. Bak and M. Morimoto (cf. [5]
and [6]). This seems to reflect the failure of the equivariant π − π theorem
(compare [18]) in certain cases where the Gap Hypothesis is not valid (see the
last section of Chapter I in [19] for quite different examples along these lines).

A dual approach

The results of this paper also raise questions about a priori descriptions for
isovariant homotopy types of semifree action in equivariant terms when the gap
hypothesis holds. Theorem 5.4 is a simple observation in this direction. An-
other way of looking at the question is to consider the implications of the main
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theorem for a dual approach to the problem in which one begins by trying to
work with the free parts of the group actions on the manifolds; suh an approach
might be particularly useful if one wishes to generalize the main result to non-
smoothable actions using tools from controlled topology. If we are given two
finite equivariant CW complexes M and N with semifree actions of the group G
that are equivariantly homotopy equivalent and their orbit spaces are given by
M∗ and N∗ respectively, then purely formal considerations imply that the one
point compactifications of M ∗ −MG and N∗ − NG are homotopy equivalent
because these spaces are homeomorphic to the quotient spaces M ∗/MG and
N∗/NG respectively. If M and N are smooth manifolds and the Gap Hypoth-
esis holds, then Theorem 1.1 implies that this canonical homotopy equivalence
of one point compactifications comes from a proper homotopy equivalence be-
tween M ∗ −MG and N∗ −NG and this mapping can be compactified in the
sense of Quinn’s work on ends of maps [37]. A good understanding of this
from the viewpoint of controlled topology as in [37] would be extremely useful
for studying possible extensions of Theorem 1.1 to group actions that are not
necessarily smooth but are still somehow well behaved topologically.
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