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ABSTRACT. There are many pairs of nonisomorphic geometric objects
whose products with a third object are isomorphic. Examples of this sort
appeared frequently in the research of K. Kawakubo. This paper discusses
some examples that have applications to questions about transformation
groups of independent interest.

Both Katsuo Kawakubo and the second named author began their mathematical careers
with special cases of the following question.

Cancellation Problem: Let A, B and C be objects in one of the following categories:

(1) Topological spaces and continuous maps.
(2) Piecewise linear spaces and piecewise linear maps.
(3) Smooth manifolds and smooth maps.

Under what conditions are the products A × C and B × C equivalent (in the appropriate
category)?

If A is one of the three categories described above and A0 is a full small subcategory that
is closed under taking finite Cartesian products, then the set A0 of isomorphism classes
of objects in A0 has a monoid structure given by the product construction, and from
this viewpoint the noncancellation problem is to determine the extent to which algebraic
cancellation fails to hold in A0. Given objects A and B such that A × C and B × C are
isomorphic, we shall sometimes say that A and B are stably equivalent (with respect to
stabilization by C).

It is easy to find examples of topological spaces such that A × C and B × C are home-
omorphic but A and B are not; in particular, if Q is the Hilbert cube – a product of
denumerably many copies of the unit interval – then {0} × Q and Q × Q are homeomor-
phic. Clearly one can refine the question and make it more substantial by restricting the
types of objects allowed; for example, one can look at finite polyhedra or compact smooth
simply connected manifolds, but after some point it is also clear that relationships with
other problems are needed to motivate further study. The purpose of this article is to
illustrate that stable equivalence problems arise quite frequently in various contexts from
geometric topology, with particular attention to some questions about transformation
groups and remarks about problems of this sort that were studied by Kawakubo.

We shall focus on three types of problems. In Section 1 we discuss some ways in which
noncancellation results lend to the construction of exotic group actions in some contexts
and regularity principles in others. Noncancellation phenomena played an important role
in many constructions of exotic group actions from the nineteen sixties, and the earliest
work of Kawakubo figured in some of these advances. Subsequent work of the first author
and Kawakubo in the nineteen eighties showed some major differences between the the-
ory of equivariant stable equivalence and its more classical nonequivariant analog. The
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second section of the paper deals with conceptual issues in equivariant surgery. Both ordi-
nary surgery theory for manifolds and its generalizations to manifolds with group actions
have led to enormous advances in transformation groups, but the equivariant versions
of surgery theory often involve a general position condition called the Gap Hypothesis;
roughly speaking, this means that if we consider the partially ordered set P consisting
of connected components of fixed point sets for the various subgroups of the group G
that acts on a manifold, then the dimension of each subspace A in P is more than twice
that of every B ∈ P such that B < A. In Section 2 we shall describe how one can use
the periodicity results of [DoS] and multiplicative stabilization to construct infinite ex-
tensions of the “rather long” but finite exact equivariant surgery sequences of [DoR] and
[LM1, LM2] provided the group under consideration has odd order; the underlying idea
is that multiplicative stabilization provides a way to recapture a portion of equivariant
surgery theory when the Gap Hypothesis fails. Finally, in Section 3 we shall describe
some applications of multiplicative stabilization and controlled topology to the symmetry
properties of 4-manifolds. In particular, we shall prove that a particularly significant 4-
manifold called the Chern manifold (see Freedman-Quinn [FQ]) has no effective, semifree
topological action of the circle group S1 (semifree means S1 acts freely off the fixed point
set). In a subsequent paper these methods will be used to study further restrictions on
the symmetries of the Chern manifold.

Other notions of algebraic stabilization also arise naturally in algebraic and geometric
topology. In particular, Kawakubo’s work includes results on connected sum stabilization;
namely, the analysis of those (isomorphism classes of) manifold triples A, B, C of the same
dimension such that the connected sums A#C and B#C are isomorphic (in particular,
see [Kkb1]). One could write a separate article on this form of stabilization at least as
long as the present paper; some relatively recent results on the equivariant version of
this problem appear in [MaS1] and [MaS2]. Yet another form of stabilization that has
received attention is exponential stabilization; specifically, if n is a positive integer and
×nY denotes the n-fold product of Y with itself, then the problem is to determine when
×nA and ×nB are isomorphic. Results on this problem are described in [KwS5] and
[KwS6].

The books of G. Bredon [Bre], T. tom Dieck [tD] and Kawakubo [Kkb4] are standard
references for concepts in transformation groups that are not described explicitly in this
paper.

Acknowledgments. In a paper of this sort it is particularly difficult to decide who
deserves to be mentioned. For the sake of brevity we refer the reader to those papers of
ours that are cited in the bibliography for acknowledgments, and to these one should add
the coauthors of the joint papers cited here [DoS, DuS, Ksk1–2, KwS1–6, KV, MaS1–2,
Sc1–5]. Beyond this, our debt to K. H. Dovermann in connection with Section 2 is clear,
and we are extremely grateful to B. Hughes and S. Weinberger for numerous discussions
regarding Section 3 and also for supplying copies of their preprints. The second author
is also indebted to the University of Göttingen, Tulane University and Northwestern
University for their hospitality during many phases of the work on the topics in Sections
2 and 3.
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Last but definitely not least, the second author’s contacts with Katsuo Kawakubo began
in 1967, when both of us were graduate students. His impact on the research of both
authors is clearly visible in our publications.

1. Stable equivalence

During the second half of the twentieth century, one recurrent theme in transformation
groups was the construction of exotic new symmetries on familiar spaces. Many such
examples arise from noncancellation phenomena. For example, consider the Bing dogbone
space X obtained by collapsing a wild arc in R3 to a point [Bi]. Although X is not a
topological manifold, its product with the real line is homeomorphic to R4. It follows
that the product S1 × X is a 4-manifold with a free action of the circle group S1 given
by multiplication on the first coordinate and the trivial action on X. One can use the
methods of Freedman-Quinn [FQ] to show that S1 × X is topologically equivalent to
S1 × R3, but the group action described above is intrinsically nonsmoothable because its
orbit space is the nonmanifold X.

During the nineteen fifties and sixties many other examples of nonisomorphic objects
X, Y with X × Rk ≈ Y × Rk were discovered (for example, see papers of B. Mazur such
as [Mz1], [Mz3] or Milnor’s article [Mi2]; additional examples are given by the interiors of
the compact bounded manifolds constructed by Mazur [Mz2] and Poenaru [Po1], [Po2]).
For our purposes one particularly noteworthy result involves the so-called exotic spheres.
These are smooth n-dimensional manifolds that are homeomorphic but not diffeomorphic
to the standard sphere Sn; the first of these were discovered by J. Milnor [Mi1] and all such
manifolds in dimensions ≥ 5 were subsequently classified up to oriented diffeomorphism
by M. Kervaire and J. Milnor [KM]. In this case the results of B. Mazur [Mz1, Mz3] imply
that for any exotic n-sphere Σn the product Σn × Rk is diffeomorphic to Sn × Rk for all
sufficiently large k.

In all such stable results it is natural to ask for the least possible value of k such that one
has an isomorphism. The earliest work of Kawakubo and the second author answered this
question for exotic spheres [Kkb1, Kkb2, Kkb3], [Sc1]; these results were also obtained
independently by R. DeSapio [DeS1], [DeS2]. Since the statement of the results is not
entirely elementary, we shall specialize to one particular noteworthy special case (that
also follows from other methods).

Theorem 1. Let n ≥ 7 and let Σn be an exotic n-sphere that bounds a parallelizable
(n + 1)-manifold (such exotic spheres exist if n is odd and n + 3 is not a power of 2).
Then Σn × R3 is diffeomorphic to Sn × R3 but Σn × R2 is not diffeomorphic to Sn × R2.
In fact, Σn × D3 is diffeomorphic to Sn × D3 where D3 denotes the unit disk.

The final statement in the theorem implies that Σn × S2 is diffeomorphic to Sn × S2.
Combining this with results of W. Browder [Br1], we obtain the following application to
constructing exotic group actions.

Theorem 2. Let Σn be as in the previous theorem. Then there is a smooth semifree S1

action on some smooth homotopy sphere Mn+4 whose fixed point set is diffeomorphic to
Σn.
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Notes. 1. A homotopy sphere is a smooth n-manifold Mn that is homotopy equivalent
to Sn. If n 6= 3 then Mn is a homotopy sphere if and only if Mn is homeomorphic to Sn.

2. Results of J. Levine [Lev] and the second author [Sc4] completely determine which
homotopy k-spheres admit semifree smooth S1 actions with (k − 4)-dimensional fixed
point sets.

One can also prove Theorem 2 using the Brieskorn description of Σn (e.g., see Hirzebruch
[Hi] or Hirzebruch-Mayer [HM]). However, the results of Kawakubo and the second author
also yield other examples.

Theorem 3. For each k ≥ 1 there is an exotic sphere Σ8k+2 such that
(i) Σ8k+2 does not bound a spin manifold (= one whose second Stiefel-Whitney class is
zero),
(ii) there is a smooth semifree S1 action on some homotopy sphere M 8k+6 with Σ8k+2 as
its fixed point set.

Once again this follows from Bredon’s paper and the existence of a diffeomorphism from
Σ8k+2 × S2 to S8k+2 × S2 as described in the example on page 322 of [Sc2].

Note. In the discussion of [Sc2], a crucial point is that the Adams elements µkη ∈
π8k+2 = πn+8k+2(S

n) (for n sufficiently large) can be desuspended to π8k+4(S
2), and the

reference for this is an unpublished announcement from the early nineteen sixties. For the
sake of completeness we shall explain how this result can be extracted from J. F. Adams’
seminal work on systematic families of elements in the homotopy groups of spheres [A1].
Let Pm(2) denote the cell complex Sm∪2e

m+1, which is also describable as the (m−2)-fold
suspension of the real projective plane. A central result of [A1] is the existence of maps

pm : Pm+8(2) → Pm(2)

(for m sufficiently large)

that induce isomorphisms in K-theory. In fact, one can define such a map for m = 4 using
results of H. Toda [T] and obtain similar maps for higher values of m by suspension. One
can form iterated compositions

p〈2〉
m = pm

opm+8

p〈3〉
m = pm

opm+8
opm+16

p〈k〉
m = pm

o · · · opm+8k

and for each of these composites the induced map in K-theory is again an isomorphism.
The Adams elements µk ∈ π8k+1 are presented on page 68 of [A1] as composites of the

form µk = η′ op
〈k〉
m

oi where η′ : Pm(2) → Sm−1 is an extension of the suspended Hopf
map η : Sm → Sm−1 (the existence of the extension follows because 2η = 0 in stable
homotopy) and i denotes inclusion of the bottom cell; in particular, this is a map from
Sm+8k to Sm−1. The stable homotopy classes µkη of interest to us are given by composites
of the µk with the suspended Hopf map from Sm−1 to Sm−2. We know that the periodicity
maps desuspend to m = 4, and in fact one can define the map η′ on P4(2) because
π4(S3) ≈ Z2. All of this combines to show that µk can be desuspended to π8k+4(S

3).
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Since the original, unsuspended Hopf map goes from S3 to S2, it follows that µkη does
desuspend to π8k+4(S2) as claimed.

More generally, if Σn is an exotic n-sphere then the existence of a smooth semifree circle
action on some homotopy sphere W n+2q with fixed point set Σn depends on whether
Σn × CPq−1 is diffeomorphic to Sn × CPq−1, at least if q is sufficiently large with respect
to n [Br1]. Although some general results on this question exist or can be extracted from
the literature, a complete answer to this particular stable equivalence problem involves
deep homotopy theoretic questions that are beyond the reach of existing techniques. On
the other hand, if q is very large with respect to n we have the following result.

Theorem 4. Given n ≥ 7 there is a positive integer k(n) with the following properties:
(i) If Σn is a homotopy sphere such that Σn × CPq is diffeomorphic to Sn × CPq for
q ≥ k(n), then Σn bounds a parallelizable manifold.
(ii) If Σn is the fixed point set of a smooth semifree S1 action on some homotopy sphere
W n+2q+2 for q ≥ k(n) then Σn bounds a parallelizable manifold.

These are variants of the results in [Sc3] on fixed point sets of smooth Zp actions on
homotopy spheres. In particular, (ii) follows because the fixed point set of a semifree
circle action is also the fixed point set of every cyclic subgroup of S1.

Equivariant stable equivalence

Both Kawakubo and the first author have studied equivariant analogs of Mazur’s stable
equivalence result [Mz3], which states that a pair of closed manifolds Mn and Nn satisfy
Mn × Rk ∼= Nn × Rk for sufficient large k (in the appropriate category) if and only
if Mn and Nn are tangentially homotopy equivalent (see [MTW] for more information
on the latter concept). Results from [Kkb3] and [Ksk1] yield an equivariant analog for
manifolds with a smooth action of a compact Lie group G provided one replaces Rk with
a judiciously chosen linear representation V .

It is natural to ask if one can take the representation V to be the trivial representation
on Rk for some large value of k. Examples of [Ksk1] show this is not possible in general,
but another result of [Ksk1] implies that one can take V to be Rk if the equivariantly
tangential homotopy equivalence f : Mn → Nn is isovariant (compare [DuS]); in other
words, for each g ∈ G and x ∈ M the relation g · f(x) = f(x) holds only if g · x = x (the
converse follows immediately from equivariance).

If G is finite and Mn and Nn satisfy the standard Gap Hypothesis

(GH) If P n = Mn or Nn and K, H are subgroups of G such that K ⊂ H
but Fix(H, P ) $ Fix(K, P ), then dim Fix(K, P ) ≥ 2 · dim Fix(H, P ) + 1.

then an equivariant homotopy equivalence from Mn to Nn can be equivariantly deformed
to an isovariant homotopy equivalence, (compare Straus [St], Browder [Br3] and [Sc5]),
and consequently we have the following result:

Theorem 5. Suppose that f : Mn → Nn is an equivariantly tangential homotopy equiva-
lence of closed smooth G-manifold and assume that Mn and Nn satisfy the Gap Hypoth-
esis. Then Mn × Rk is equivariantly diffeomorphic to Nn × Rk for some k, where G acts
trivially on Rk
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Addendum: Exotic finite H-spaces

A somewhat different application of noncancellation from the nineteen sixties completely
reshaped topologists’ perspective on finite H-spaces; i.e., finite complexes with maps
µ : Y × Y → Y whose restrictions to

Y ∨ Y ≈ Y × {y0} ∪ {y0} × Y

are the identity. A sequence of results from the middle third of the twentieth century
suggested that all examples of finite H-spaces were somehow constructible from S7 (with
multiplication given by the Cayley numbers) and compact Lie groups. However, results of
P. Hilton and J. Roitberg [HR] showed that the compact Lie group Sp2 ×S3 is diffeomor-
phic to M × S3 where M is quite distinct from any of the previously known examples of
finite H-spaces. The manifold M is retract of the compact Lie group Sp2 ×S3 ≈ M ×S3,
and M is an H-space because a retract of a topological group is always an H-space.
Subsequent constructions of finite H-spaces proceeded in quite different directions, but it
seems noteworthy that the original example arose from noncancellation results.

2. Periodic stabilization in equivariant surgery

During the nineteen sixties and early seventies the theory of surgery on manifolds [Br2,
Wa] proved to be a powerful tool for analyzing existence and classification questions about
group actions on manifolds. By the mid seventies it was clear that even more striking
results could be obtained using versions of surgery theory involving manifolds with, say,
smooth group actions (compare Davis- Hsiang [DH] or Petrie [Pt1, Pt2, Pt3, Pt4] as well as
Dovermann-Petrie [DP] and Masuda-Petrie [MP]). However, in many cases the extensions
of nonequivariant surgery theory worked well only if one assumed the Gap Hypothesis
(GH) formulated near the end of Section 1. If the group G of symmetries has odd
order, the results of [DoS], Ch. III, show that an arbitrary G-equivariant surgery problem
(f : X → M , other data) can be converted into a problem for which the Gap Hypothesis
holds by crossing with the identity on a certain type of r-fold product of the form ×rB
for all sufficiently large values of r; this is called periodic stabilization in [DoS]. A few
illustrations of this principle are described in Section III.5 of [DoS]; as indicated there, “one
would like an approximation to equivariant surgery theory that has the desirable features
implied by the Gap Hypothesis, but without assuming the Gap Hypothesis itself,” and
on page 101 of [DoS] the usefulness of periodic stabilization for constructing such an
appropriate surgery theory is discussed. In this section we shall describe the construction
of a stabilized equivariant surgery theory with the desired properties.

One of the main features of ordinary surgery theory is the so-called long exact surgery
sequence of D. Sullivan and C.T.C. Wall [Wa], Section 10. For a closed smooth n-manifold
Mn with n ≥ 5, the sequence in the smooth category terminates on the right with

Lx
n+1(π1(Mn), w1) → SDIFF,x(Mn) → [Mn, F/O] → Lx

n(π1(M
n), w1)

and it extends infinitely to the left with pieces of the following form:

Lx
n+k+1(π1(M

n), w1) → SDIFF,x(Dk × Mn, ∂) → [SkMn ∨ Sk, F/O] → Lx
n+k(π1(Mn), w1)
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Explanation of notation: In the exact sequences SDIFF ,x(. . .) refers to x-restricted smooth
homotopy structures represented by pairs (f, M) where f is a homotopy equivalence
X → M with X a compact manifold and the Whitehead torsion of f [Mi3] is regulated
by x. If ∂M is nonempty we assume f is a homotopy equivalence of pairs from (X, ∂X)
to (M, ∂M), and in this case SDIFF,x(M, ∂M) refers to homotopy structures that are
diffeomorphisms on the boundary. The group [M, F/O] is a homotopy theoretic object
that classifies degree 1 normal maps into M (= surgery problems) up to a suitable equiva-
lence relation, and Lx

n+ε(π1(Mn), w1) is the Wall surgery obstruction group with twisting
w1 : π1(M

n) → Z2 determined by the first Steifel-Whitney class [Wa], a group that can be
defined purely algebraicially. The sequence is an exact sequence of abelian groups except
near the end, where it behaves like the final terms of the homotopy exact sequence of a
fibration; as noted below, this is not a coincidence.

In [DoR] K.H. Dovermann and M. Rothenberg constructed a partial equivariant surgery
sequence that terminated on the left after finitely many steps, and this construction was
refined and generalized by W. Lück and I. Madsen [LM1, LM2]. If we assume that
N × Dk+1 satisfies a strong version of the Gap Hypothesis then one has an analogous
exact sequence with the following replacements:

Surgery groups: Lx
n+ε(π1(Mn), w1(M

n)) 7−→ Lκ
n+ε(π

G(M), other data). (L de-
notes the Lück-Madsen equivariant L-group, κ is an equivariant analog of x, and
πG(M) is a tabulation of the fundamental groups of the components of fixed point
sets of subgroups of G)

Structure sets: SDIFF,x(N, ∂N) 7−→ ST
G(N, ∂N) ( = T -restricted equivariant ho-

motopy structure)
Normal maps: [N/∂N, F/O] 7−→ N T

G (N, ∂N) ( = suitably defined equivariant
surgery problems)

The sequence terminates near Lκ
n+q(−) where q is the largest positive integer such that

Mn × Dq satisfies the Gap Hypothesis (note that Mn × D` only satisfies this condition
for finitely many values of `).

So long as the Gap Hypothesis holds the equivariant Wall groups satisfy a fourfold peri-
odicity relation

Lκ
n+ε(π

G(M),−) ∼= Lκ
n+ε+4(π

G(M),−)

given geometrically by crossing with the complex projective plane CP2 as in ordinary
surgery theory. Therefore one usually can define Lκ

n+ε(π
GM,−) formally for all ε ≥ 0.

Also, one can define the set of (equivalence classes of) equivariant surgery problems

N T
G (Dk × Mn, Sk−1 × Mn)

even if the Gap Hypothesis does not hold. Therefore it is natural to ask if one can define
homomorphisms

N T
G (Dk × Mn, Sk−1 × Mn) → Lκ

n+k(πGM,−)

for all k > 0 and embed them into an exact sequence which ends with the sequence of
[LM2] on the right but extends infinitely to the left.

The results of [DoS] imply that such an infinite exact sequence exists in most cases if G
has odd order. To avoid some technical complications we shall restrict our attention to
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the case G = Zp where p is an odd prime. As indicated at the beginning of this section,
the process for constructing the infinite extension is the periodic stabilization of [DoS],
Section III.5.

Given a finite group G, let |G| denote its order. If X is a topological space, then X ↑ G is
defined to be the product of |G| copies of X with G acting by permuting the coordinates
in the standard fashion; if X is a smooth manifold, then the action of G on X ↑ G (viewed
as a smooth product) is a smooth action.

Assume now that G = Zp where p is an odd prime, and also assume that we are considering
equivariant surgery problems with nonempty fixed point sets (if the fixed sets are empty,
then the actions are free and everything reduces to ordinary surgery over the orbit spaces).

Earlier in this section we mentioned that the long exact surgery sequence behaved like the
long exact homotopy sequence of a fibration and that this was more than coincidental.
In fact, the methods of Rourke [Ro] or Quinn [Q1] show that one can construct ∆-sets
(essentially simplicial sets without degeneracies); see Rourke-Sanderson [RS] for more
information) so that the surgery sequence is equal to the homotopy sequence of a Kan
fibration up to homotopy

SDIFF,x
• (Mn) → F•(M

n, F/O) → Lx
• (π1(M), w1(Mn))

where a k-simplex in SDIFF ,x
• (Mn) is represented by a suitable homotopy equivalence of

manifold n-ads into the standard n-ad given by ∆k ×M (this is Wall’s terminology [Wa]),
the set F•(M

n, F/O) is the simplicial function set as defined in May [My] (see Definition
I.6.4, p. 17) or Goerss-Jardine [GJ] (see p. 20), and a k-simplex of Lx

•(−) is represented
by a suitable surgery problem of manifold n-ads.

This extends to the equivariant surgery sequences of [LM2] as follows. First of all, there
is no problem defining a ∆-set N T

G•

(Mn) whose q-th homotopy group is

N T
G (Dq × Mn, Sq−1 × Mn).

Furthermore, if k is so small that Dk−n×Mn satisfies the appropriate form of the Gap Hy-
pothesis, then one can define k-simplices of Lκ

•(πG(M),−) in analogy with the nonequiv-
ariant case; for our purposes it will not matter how we define simplices in higher dimen-
sions. For sufficiently low values of k there is an equivariant surgery obstruction map of
∆-sets

σ : N T
G•(M) → Lκ

•(πG(M),−)

such that the surgery sequence of [LM2] is the homotopy exact sequence of the Kan
fibration associated to σ. In analogy with the nonequivariant case, the homotopy fiber of
σ is homotopy equivalent to the ∆-set ST

G•(M
n) in the appropriate range of dimensions.

The key to extending the finite equivariant surgery sequence into an infinite one is to con-
struct an enhancement of σ, and a crucial step in this process is to replace Lκ

•(πG(M),−)
with a new ∆-set whose homotopy groups behave in the right fashion. This can be accom-
plished by taking products with CP2 ↑ G. The latter is equivariantly 1-connected, and
consequently πG(M) is isomorphic to πG(M × (CP2 ↑ G)). Since the product manifold
Dk−n+1×M×(CP2 ↑ G) satisfies the Gap Hypothesis if Dk−n×M does, the good range of
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dimensions for Lκ
•

(
(πG(M × (CP2 ↑ G)),−

)
is greater than the analog for Lκ

•(πG(M),−).
Let

P1 : Lκ
•(πG(M),−) → Lκ

•(πG(M × (CP2 ↑ G)))

be the (partial) map of ∆-sets given by taking products with CP2 ↑ G.

Notational convention. We shall denote CP2 ↑ G by B for the sake of conciseness.

The reason for taking products with B = CP2 ↑ G is the following: If ` is the largest
positive integer such that D`−n × Mn satisfies the Gap Hypothesis, then the partial map
of ∆-sets given by P1

oσ is only defined for simplices of dimension ≤ `. In this range there
is a commutative diagram

N T
G•(M)

Q1

−→ N T
G•(M × B)

↓ σ ↓ σ′

Lκ
•(πG(M),−)

P2−→ LG
• (πG(M × B),−)

in which Q1 is given by taking products with the identity on B and σ′ is a surgery obstruc-
tion. On the other hand, the composite σ′ oQ1 can be defined for simplices of dimension
≤ ` + 1, so we have an extension of P1

oσ to simplices of (at least) one higher dimension.
More generally, if Pr and Qr denote products with Br, then the same considerations yield
an extension of Pr

oσ to the (` + r)-simplices of N T
G•(M), and consequently we can pass

to (co)limits and obtain a well defined map of ∆-sets

σ[∞] : N T
G•(M) → Lκ

•(πG(M),−)[∞] := colimr→∞Lκ
•(πG(M × Br),−)

where the connecting maps

Lκ
•

(
πG(M) × Br),−

)
→ Lκ

•

(
πG(M) × Br+1),−

)

are defined using multiplication by B.

There is also no problem in defining a ∆-set ST
G•

(Mn) whose q-th homotopy group is

ST
G(Dq × Mn, Sq−1 × Mn)

and there is also a map of ∆-sets

η• : ST
G•

(Mn) → N T
G•

(Mn)

which essentially views an element in the source as a “solved equivariant surgery problem”
over Mn. The composite σ[∞] oη• is nullhomotopic by construction and hence η• factors
up to homotopy through the homotopy fiber of σ[∞], which we shall denote by

η̂• : ŜT
G•

(Mn) → N T
G•

(Mn).

Take j• : ST
G•

(Mn) → ŜT
G•

(Mn) to be a map of ∆-sets such that η̂•j is homotopic to η•.

We claim that σ[∞] is the desired modification of σ. Among other things, this means that
σ and σ[∞] should essentially be the same map in homotopy for small values of ` and
that the homotopy groups of Lκ

•(πG(M),−)[∞] should be equivariant surgery obstruction
groups in the sense of [DoR] or [LM1, LM2]. These properties are implicit in the following
result, which is an immediate consequence of the periodicity theorems for equivariant
surgery groups in [DoS], Ch III.
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Theorem 6. Suppose that D` ×Mn satisfies the Gap Hypothesis. Then the partial maps
of ∆-sets

P1 : Lκ
•

(
πG(M × Br),−

)
→ Lκ

•

(
πG(M × Br+1),−

)

P∞ : Lκ
•

(
πG(M × Br),−

)
→ Lκ

•

(
πG(M),−

)
[∞]

are (` + r − 1)-connected.

This means that the q-th homotopy group of Lκ
•(πG(M),−)[∞] is isomorphic to the

previously considered group Lκ
n+q(π

G(M),−), where the latter are defined by fourfold
periodicity if the Gap Hypothesis fails for, say, Dq × Mn. We can now state the main
result.

Theorem 7. Suppose that D`×Mn satisfies the Gap Hypothesis. Then there is an infinite
exact sequence with pieces of the form

Lκ
n+q+1(π

G(M),−)
∆∞−→ ŜT

G(Dq × M, ∂)
η̂
→ N T

G (Dq × M, ∂) → Lκ
n+q(π

G(M),−)

that coincides with the surgery sequence of [LM2] when q ≤ `− 1. Furthermore, there are
canonical maps

j : ST
G(Dq × M, ∂) → LT

G(Dq × M, ∂)

such that
(i) the composite η̂ oj is the normal invariant map,
(ii) the map j is bijective if q ≤ ` − 1,
(iii) ∆∞ has a canonical factorization of the form j o∆BQ.

The long exact sequence is merely the exact homotopy sequence of a Kan fibration as-
sociated to σ[∞], and as noted before the map j arises from the homotopy triviality of
σ[∞] oη. Properties (i) and (ii) for j follow immediately, and the factorization in (iii) is
essentially given by the transverse linear, isovariant surgery theory developed by Browder
and Quinn [BQ] (cf. Chapter II of [DoS]).

One important feature of the long exact sequence in ordinary surgery theory is that the
two thirds of the groups can be described by other means. Specifically, the Wall groups
have purely algebraic definitions (and can be analyzed quite effectively by algebraic means
if the strata of the G-manifold M are all simply connected), and the terms of the form
[−, F/O] are intrinsically homotopy theoretic. Similarly, the groups N T

G (Dq × M, ∂) can
be computed by homotopy theory (although this is substantially more difficult than in
the nonequivariant case), and the (stabilized) equivariant Wall groups Lκ

∗(πG(M),−) can
be studied by means of spectral sequences whose E1 terms are ordinary Wall groups (in
fact, since G is of odd order the equivariant groups split into sums of the nonequivariant
groups by [LM2], Thm. 2.11). Therefore, in analogy with the nonequivariant case, the
stabilized equivariant structure sets of Theorem 7 fit into long exact sequences in which
the adjacent terms can all be studied by other means.

Note. In [LM2] an infinite long exact sequence for the normal invariant map η =
η̂ oj is constructed. One major difference between the formal geometric analogs of the
surgery obstruction groups in these sequences and the standard surgery obstruction groups
appearing in Theorem 7 is that the former depend upon more than the data needed to
define the latter. This reflects the relationship between the Gap Hypothesis and the
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extendibility of the π − π theorem of surgery theory (see [Wa], Ch. 3) to equivariant
surgery theory. Specifically, there is an equivariant π − π theorem if the Gap Hypothesis
holds (see [DoR], [LM1] and [LM2]) but examples of Rothenberg and Weinberger show
that such a result does not necessarily hold if the Gap Hypothesis fails (see [DoS], Section
I.6).

Extensions to other groups

If G is an arbitrary group of odd order, the preceding discussion generalizes directly
provided the G-manifold Mn has strongly saturated orbit structure in the sense of [DoS],
p. 87; in other words, if x ∈ Mn has isotropy subgroup Gx, then every subgroup of Gx

can be realized as an isotropy subgroup in arbitrarily small neighborhoods of x. This
condition is needed to ensure that M × B does not have more isotropy subgroups than
M , which in turn is needed to guarantee that Lκ

∗(πG(M),−) and Lκ
∗(πG(M × B),−) are

isomorphic (see [DoS], Thms. III.2.5 and III.2.7–9). It is possible to prove extensions
of Theorem 2.2 without the restriction on orbit structure, but some additional steps and
constructions are needed. On the other hand, if G = Z2 the situation is considerably
more complicated. Results of Dovermann [Do] imply that similar procedures do not work
as well for Z2 as for odd order groups but results of M. Yan ([Y1], [Y2]) imply that there
are periodicity results for all finite groups if one works in the isovariant stratified surgery
theory developed by S. Weinberger [Wb] (see also Weinberger-Yan [WY]).

Final Remarks

It is natural to expect that a great deal of information is lost under the periodic stabi-
lization map

ST
G(Dq × M, ∂) → ŜT

G(Dq × M, ∂)

if the Gap Hypothesis does not hold for Dq × M . Explicit examples of this sort follow
from [DuS], Section 8, with G = Zpr, where p and r are distinct odd primes, and M is the
unit disk D(W ) in a suitably chosen G-representation W ; strictly speaking this requires a
relative version of the preceding for bounded manifolds such that the restriction of every-
thing over ∂M is a diffeomorphism, but the surgery sequences of [LM2] are formulated in
these cases and everything we have done can be generalized directly to cover structures
relative to ∂M . If we take the restriction type T to be ordinary or simple equivariant
homotopy equivalence then the results of [DuS], Section 8, yield an increasing sequence
of positive integers q(k) for which the rational vector spaces

ST
G(Dq(k) × D(W ), ∂) ⊗ Q

contain finite-dimensional subspaces Ωk such that dimQΩk grows exponentially. On the
other hand, the dimensions of the stabilized groups

ŜT
G(Dq × D(W ), ∂) ⊗ Q

are uniformly bounded.

For over a quarter of a century the Gap Hypothesis has been formidable obstacle in the
application of surgery theory to group actions. Usually progress outside the range of the
Gap Hypothesis has involved isovariance assumptions as in the transverse linear, isovariant
surgery theory of Browder and Quinn [BQ]. The relation between the Gap Hypothesis
and isovariance is strengthened by the previously mentioned result that an equivariant
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homotopy equivalence can be deformed to an isovariant one if the Gap Hypothesis holds
(see the discussion before Theorem 4). The obstruction theoretic approach to isovariant
homotopy theory in [DuS] should allow one to apply homotopy theory more effectively
to equivariant surgery outside the Gap Hypothesis range. Certainly some problems are
likely to translate into very hard questions in unstable homotopy theory, but it also seems
likely that a great deal of interesting and useful information can be extracted.

3. Controlled topology, stabilization and 4-manifolds

In Section 1 we noted that multiplicative stabilization yields examples of exotic, nons-
moothable free circle actions on 4-manifolds. However, in some respects a circle or finite
group action on a 4-manifold is still relatively well behaved. For example, many basic
restrictions on the fundamental groups of closed 4-manifolds with smooth circle actions
have strong analogs for arbitrary topological circle actions [KwS4]. Furthermore, in sharp
contrast to higher dimensions, for orientation preserving actions the fixed-point sets are all
manifolds (which may be wildly embedded), and there is a Lefschetz fixed point formula
for finite cyclic group actions on closed 4-manifolds that is identical to the corresponding,
well known formula for smooth actions [KwS2]. A quite different local regularity result is
obtained in [KwS3].

There are (at least) two reasons why controlled topology is particularly useful for analyzing
group actions on 4-manifolds. One is given by the following result:

Proposition 8. If M ∗ is the orbit space of a nontrivial topological circle action on a
4-manifold M , then M ∗ × R2 is a topological manifold.

Proof. Without loss of generality we may assume the action is effective (by hypothesis
the ineffective kernel K is finite, so that one obtains an effective action of S1/K ≈ S1).
Let N ⊆ M be the set of points where the action is free and let N ∗ be its orbit space.
Then every point of N ∗ has a neighborhood U ∗ such that the inverse image of U ∗ in N
is equivariantly homeomorphic to S1 × U∗, so it follows that N ∗ × R is a manifold. This
implies that the Quinn invariant of N ∗ from [Q2] is 1; since M ∗ is a generalized manifold
containing N∗ as an open subset, it follows that the Quinn invariant of M ∗ is also 1. But
now the results of [Q2] imply that M ∗×R has a resolution (i.e., there is a map from some
topological manifold onto M ∗ × R with acyclic fibers), and if one takes products with R
again then the results of [Q2] imply that M ∗ × R2 is a genuine topological manifold.

A somewhat different connection between controlled topology and symmetries of 4-mani-
folds comes from the fact that the nested fixed point sets of orientation preserving actions
are submanifolds. In other words, the orbit space is somehow built out of open strata
that are manifolds. These are generally not homotopically stratified sets in the sense of
Quinn [Q3] or Weinberger [Wb], but they often become homotopically stratified if one
takes products with suitable linear actions on Euclidean space. Thus one can use the
methods of stratified surgery theory [Hu, HW, Wb] to study the stabilized actions. In
this paper we shall focus on one application of the first type and simply mention some
applications involving stratified surgery and stabilization.
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During the past two decades our knowledge of finite group actions on 4-manifolds has
increased dramatically (e.g., see papers of Edmonds or Wilczyński such as [E2], [E3] or
[Wi]). Much of this progress involves applications of M. Freedman’s extension of topo-
logical surgery theory to certain 4-manifolds [FQ]. One particularly striking consequence
of Freedman’s work is the existence of a topological 4-manifold Ch (the Chern manifold)
that is homotopy equivalent but not homeomorphic to CP2. One criterion for distinguish-
ing these is that CP2 × Rk has a canonical smooth structure for each k ≥ 0 but Ch ×Rk

has no smooth structures whatsoever.

Finite group actions on Ch have been studied extensively (for example, by the first author
[Ksk2] and D. Wilczyński [Wi]) and the results show that Ch admits topological Zk actions
for every odd positive integer k. On the other hand, the results of the first author and
P. Vogel [KV] imply that Ch does not admit a locally linear involution, and the question
of whether nontrivial circle actions exist on Ch has been discussed for some time (see
Adams [A2] or Kirby [Ki]). In this section we shall show that Ch has no semifree circle
actions; we shall study further problems along this line elsewhere.

Our result for Ch depends upon a taming principle for semifree circle actions on 4-
manifolds; this is weakly analogous to a result of A. Edmonds for free circle actions on
higher dimensional manifolds [E1].

Theorem 9. Let M be a closed 4-manifold with a semifree circle action Φ. Then the
product manifold (M, Φ) × (T 2, trivial action) is equivariantly h-cobordant to a semifree
S1 manifold N such that
(i) the h-cobordism is a product on the fixed point set,
(ii) all 4-dimensional components of the fixed point set of N have equivariant linear tubular
neighborhoods.

Proof. Let M∗ be the orbit space, let F be the fixed point set, and let F ∗ denote the
image of F in M∗. By the results of [KwS4], Section 1, the set F is a disjoint union of
finitely many points and compact surfaces, and the surface components map bijectively
to ∂M∗. Let F0 ⊆ F be the set of isolated fixed points and let F ∗

0 be its image in M∗.

Since S1 acts freely on M −F it follows that the orbit space projection defines a principal
S1 bundle

ω : M − F → M∗ − F ∗.

Duality considerations imply that ω extends to a principal bundle

ω′ : M ′ → M∗ − F ∗
0 .

Let N∗ = M∗ ∪∂ (∂M∗ × [0, 1]), where ∂M ∗ is identified with ∂M∗ × {0}, and form the
S1 space

N = M ′ ∪∂ D(ω′|∂M∗),

where D denotes the associated ∂-disk bundle. By construction N ∗ ∼= N/S1. Results of
[Bo] and [CF] show that N and N ∗ are compact ANRs, and results of [Ra] show that
both are also generalized 4-manifolds, with ∂N = ∅. Let J be the 2-simplex

{(s, t) ∈ I × I|s ≤ t}
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(i.e., the isosceles right triangle with vertices (0, 0), (0, 1) and (1, 1) ) and let W ∗ be the
union of M∗× I with ∂M∗ ×J where ∂M∗ × I in M∗× I is identified with ∂M ∗ ×{0}× I
in ∂M∗ × J . Then W ∗ is an h-cobordism of generalized manifolds from M ∗ to N∗, and it
lifts to an S1 equivariant h-cobordism of generalized manifolds W from M to N that is a
product on the fixed point set. If we take the product of W with T 2, then it follows that
W × T 2 is an S1 equivariant h-cobordism that is a genuine topological manifold, and the
desired properties follow from the construction.

We can now prove the result for Ch.

Theorem 10. If M is a 4-manifold that admits a nontrivial semifree circle action and is
homotopy equivalent to CP2, then M is homeomorphic to CP2.

Proof. Suppose M satisfies the given hypotheses, and let M ∗ be its orbit space. Then
M∗ is a contractible generalized 3-manifold with ∂M ∗ = S2, and the fixed point set is
homeomorphic to a disjoint union ∂M ∗ q {pt.}. There is an S1 equivariant homotopy
equivalence ϕ from M to CP2 with a linear semifree circle action (which is unique up to
equivalence), and if W is the equivariant h-cobordism constructed in Theorem 9, then
the map ϕ extends to an equivariant homotopy equivalence W → CP2 whose restriction
to N is transverse to the standardly embedded CP1 ⊆ CP2 that is fixed under the circle
action and maps ∂M ⊆ N homeomorphically to CP1.

If we take products with T 2 we obtain a manifold h-cobordism from f × id : M × T 2 →
CP2 × T 2 to g × id : N × T 2 → CP2 × T 2, and by construction the restriction of the
normal invariant of g × id to CP1 ×{e} ⊆ CP2 × T 2 is trivial. On the other hand, if M is
homeomorphic to Ch then the restriction of the normal invariant of f × id to CP1 × {e}
is nontrivial; in fact, this normal invariant is the means for distinguishing CP2 and Ch.
It follows that M must be homeomorphic to CP2.

Some further results

Theorem 9 is just one example of how group actions on 4-manifolds simplify after stabi-
lization. Here are two results that follow from work of B. Hughes, L. Taylor, S. Weinberger
and B. Williams [HTW].

Theorem 11. If S1 acts semifreely on a 4-manifold M and D(C) is the unit disk in the
complex plane with the S1 action given by scalar multiplication then the product action
on M × D(C) is locally linear.

Theorem 12. If Z2 acts nontrivially on a 4-manifold M and x ∈ M lies in a 2-dimen-
sional component of the fixed point set, then (x, 0) ∈ M × D(C) has an invariant neigh-
borhood that is equivariantly a product R2 × U , where U is a neighborhood of an isolated
fixed point of an involution on R4.

The possibilities for U up to germ equivalence can be described fairly well by means
of surgery theory (compare [KwS1]). Specifically, they are given by taking the universal
coverings of topological manifolds X homotopy equivalent to S1×RP3 and adding a point
at infinity to one end. The results of [FQ] completely determine the possibilities for X.
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Theorem 12 will figure in a subsequent paper by the authors on involutions of Ch (see
[E2] for some background information).

The methods of controlled topology have yielded a great deal of new information about
group actions during the past two decades. An excellent overview of this work is given in
an article of Cappell and Weinberger [CW].
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“Proc. Internat. Congr. Mathematicians (Stockholm, 1962),” Inst. Mittag-Leffler,
Djursholm, Sweden, 1963, pp. 481–489.

[Q1] Quinn, Frank. A geometric formulation of surgery. “Topology of Manifolds (Proc.
Inst., Univ. of Georgia, Athens, GA, 1969),” Markham, Chicago, IL, 1970, pp.
500–511.

[Q2] Quinn, Frank. An obstruction to the resolution of homology manifolds. Michigan
Math. J. 34 (1987), 285–291.

[Q3] Quinn, Frank. Homotopically stratified sets. J. Amer. Math. Soc. 1 (1988), 441–
499.

[Ra] Raymond, Frank. Separation and union theorems for generalized manifolds with
boundary. Michigan Math. J. 7 (1960), 7–21.

[Ro] Rourke, C. P. The Hauptvermutung according to Casson and Sullivan. ”The
Hauptvermutung book,” K-Monogr. Math., 1, Kluwer Acad. Publ., Dordrecht,
1996, pp. 129–164.

[RS] Rourke, C. P.; Sanderson, B. J. ∆-sets. I. Homotopy theory. Quart. J. Math.
Oxford Ser. (2) 22 (1971), 321–338.

[Sc1] Schultz, Reinhard. Smooth structures on Sp × Sq. Ann. of Math. (2) 90 (1969),
187–198.

[Sc2] Schultz, Reinhard. Homotopy decompositions of equivariant function spaces. I.
Math. Zeitschrift 131 (1973), 49–75.

[Sc3] Schultz, Reinhard. Differentiability and the P. A. Smith theorems for spheres.
I. Actions of prime order groups. “Current trends in algebraic topology, Part 2



19

(London, Ont., 1981),” Canad. Math. Soc. Conf. Proc. 2, Amer. Math. Soc.,
Providence, R.I., 1982, pp. 235–273.

[Sc4] Schultz, Reinhard. Exotic spheres admitting circle actions with codimension four
stationary sets. “Proceedings of the Northwestern Homotopy Theory Conference
(Evanston, IL, 1982),” Contemp. Math. 19. Amer. Math. Soc., Providence, RI,
1983, pp. 339–368.

[Sc5] Schultz, Reinhard. Isovariant homotopy theory and the Gap Hypothesis, preprint.
(See also http://www.math.ucr.edu/∼res/papers.html).

[St] Straus, S. “Equivariant codimension one surgery”. Ph. D. Thesis, University of
California, Berkeley, 1972.

[T] Toda, Hirosi. “Composition Methods in Homotopy Groups of Spheres.” Annals
of Mathematics Studies, No. 49. Princeton University Press, Princeton, NJ, 1962.

[Wa] Wall, C. T. C. “Surgery on compact manifolds (Second edition; edited and with a
foreword by A. A. Ranicki).” Mathematical Surveys and Monographs, 69. Amer-
ican Mathematical Society, Providence, RI, 1999.

[Wb] Weinberger, Shmuel. “The topological classification of stratified spaces.” Chicago
Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1994.

[WY] Weinberger, Shmuel; Yan, Min. Equivariant periodicity for abelian group actions,
preprint.
(See also http://www.math.ust.hk/∼manyan/research/papers.html).
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