
Legendrian curves in 3–dimensional contact manifolds

Definition. Let Mn be a smooth n-manifold without boundary, and let ω be a nowhere zero
smooth 1-form on M . A piecewise smooth curve γ : [a, b] → M is said to be tangent to ω if
ω( γ′(t) ) is identically zero. Here we assume γ ′ is the usual tangential lifting of γ to a smooth curve
in the tangent space T(M), and at the finite set of nonsmooth points we assume that the one-sided
tangent vectors γ ′(t+) and γ′(t−) satisfy ω( γ′(t+) ) = ω( γ′(t−) ) = 0.

Given M and ω, there is a natural equivalence relation R = Rω on M such that two points p

and q are R-related if and only if they can be joined by a piecewise smooth curve in M which is
tangent to ω; it is straightforward to verify this is an equivalence relation.

If the form ω comes from a codimension 1 foliation of M , then a piecewise smooth curve γ

is tangent to ω if and only if γ is contained in a single leaf of the foliation. It follows that the
R-equivalence classes in this case are simply the leaves of the foliation (check this carefully). On
the other hand, if ω comes from a contact structure on a connected smooth 3-manifold, then we
have the following result:

THEOREM. Let ω be a contact 1-form on the connected smooth 3-manifold M . Then every
pair of points in M can be joined by a regular piecewise smooth curve which is everywhere tangent
to ω.

Regularity means that the tangent vectors γ ′(t) at smooth points and one-sided tangent vectors
γ′(t±) of nonsmooth points are all nonzero. A curve which satisfies the conditions of the theorem
is said to be a (regular piecewise smooth) Legendrian curve.

Reduction to a special case

We begin by showing that the theorem will follow from a purely local result.

LOCAL THEOREM. Suppose that ω0 = dx − z dy is a standard contact form on R
3, and let

U0 be an open neighborhood of 0 in R
3. Then there is an open subneighborhood V0 ⊂ U0 of 0 such

that every point in V0 can be joined to 0 by a regular piecewise smooth Legendrian curve in U0.

Proof that the Local Theorem implies the main result. Suppose that M 3 is a connected
smooth manifold with a smooth contact form ω, and let p ∈ M . By the Darboux Lemma for contact

structures, there is an open neighborhood U of p in M and a diffeomorphism h from U to an open
subset U0 ⊂ R

3 such that h(p) = 0 and h∗(ω0|U0) = ω|U . By the Local Theorem there is an open
subneighborhood V0 ⊂ U0 such that all points in V0 can be joined to 0 by regular piecewise smooth
Legendrian curves in U0. If V = h−1[V0], then it follows that every point in V can be connected to
p by regular piecewise smooth Legendrian curves in U .

If we now define a binary relation R on M as before, then the preceding paragraph shows that
the resulting equivalence classes are open. Since M is connected, it follows that there is a single
equivalence class for R.

Proof of the Local Theorem

A typical vector field on an open subset W ⊂ R
3 has the form

X(x, y, z) = P (x, y, z)
∂

∂x
+ Q(x, y, z)

∂

∂y
+ R(x, y, z)

∂

∂z
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where P , Q and R are smooth real valued functions on W . This vector field is tangent to ω0 if and
only if P = z · Q. There are no restrictions on the smooth functions Q and R, and at every point
v0 = (x0, y0, z0) a basis for the kernel of ω0(v0) is given by the vector fields

∂

∂z
and z

∂

∂x
+

∂

∂y
.

We shall analyze the integral curves for certain specific vector fields on R
3, and pieces of these curves

will define the piecewise smooth curves we need. By construction, such curves are Legendrian. In
our examples the functions Q and R will depend only on the y and z variables; this will make it
fairly easy to solve the systems of differential equations we shall consider.

The first class of examples. Let α be a fixed real number, and consider the vector field

X(x, y, z) = z cos α
∂

∂x
+ cos α

∂

∂y
+ sinα

∂

∂z
.

These vector fields are tangent to ω0, and we can easily find their integral curves with initial
conditions of the form (c, 0, 0) as follows: The last two coordinates satisfy y ′ = cos α and z′ = sinα,
and since y(0) = z(0) = 0 it follows that y(t) = t cos α and z(t) = t sinα. These in turn imply the
differential equations

x′(t) = z(t) y′(t) = t cosα sinα

with x(0) = c, from which we conclude that

x(t) =
cos α sinα

2
t2 + c .

CLAIM. All points of these integral curves lie on the surface

x =
yz

2
+ c

and conversely every point on such a surface lies on an integral curve of some vector field of the
type under consideration.

Verification of this claim is an elementary exercise and is left to the reader. It follows that for
each c, all points on the surface L(c) with defining equation x = 1

2
yz + c are R-equivalent to each

other, where R is defined with respect to the form ω0.

Let Φ be the change of variables map on R
3 sending (u, v, w) to (u + 1

2
vw, v, w), so that Φ

is a diffeomorphism which sends each plane u = c to the level surface L(c). Let ε > 0 and choose
δ > 0 so that Φ maps the open set defined by |u| < δ and v2 + w2 < δ2 into the disk defined
by x2 + y2 + z2 < ε2. If U0 is the latter and U1 ⊂ U0 is the image of the former, then it follows
immediately that for every real number c ∈ (−δ, δ) all points of U1 ∩ L(c) can be joined to each
other by regular piecewise smooth Legendrian curves.

The next step is to find vector fields which are tangent to ω0 and have integral curves which
are transverse to the surfaces x = 1

2
yz + c.

The second class of examples. Now consider the vector field

X(x, y, z) = z2
∂

∂x
+ z

∂

∂y
− y

∂

∂z
.
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We want to analyze the integral curves with initial conditions of the form (a, 0, b) at t = 0; we assume
that b > 0. It follows that the last two coordinates are given by y(t) = b sin t and z(t) = b cos t, and
the remaining coordinate is then given by x′(t) = b2 cos2 t with x(0) = a. Since cos 2t = 2 cos2 t−1,
the differential equation for x reduces to

x′(t) =
b2

2
( 1 + cos 2t )

and clearly we can use this to find x(t) explicitly.

CLAIM. If f(x, y, z) = x − 1

2
yz, then

g(t) = f oγ(t)

is strictly increasing near t = 0.

If this is true, then we have the following conclusion:

Suppose that the integral curve with initial condition (a, 0, b) lies on the surface x = 1

2
yz+c

(this happens if and only if c = a). Then there is some δ > 0 such that the integral curve
contains a point of each surface x = 1

2
yz + c′ for all c′ such that |c′ − c| < δ.

This result implies that every point in R
3 is R-related to 0, for the first family of examples implies

that each set L(c) is contained in a single R-equivalence class, say R(c), and the claim implies that
R(c′) = R(c) for |c′ − c| < δ for some δ > 0 (which depends upon c); therefore the connectedness
of R implies there is only one equivalence class.

A more careful inspection shows that if U1 is the previously constructed neighborhood of 0

with defining inequalities |u| < δ and v2 +w2 < δ2, then if |a|, b < δ and γ is the integral curve with
initial condition (a, 0, b), then for |t| sufficiently small the points γ(t) lie inside U1. This implies
that every pair of points in U1 can be joined by a regular piecewise smooth Legendrian curve which
is completely contained in U1.

Verification of the claim. Let f(x, y, z) = x − 1

2
yz. By the usual Chain Rule we have

g′(0) = ∇f
(

γ(0)
)

· γ′(0)

and our conditions on γ imply that the right hand side equals ∇f(a, 0, b) · (b2, b, 0). Since

∇f(x, y, z) = (1, − 1

2
z, − 1

2
y)

the expression for g′(0) simplifies to (1, − 1

2
b, 0) · (b2, b, 0) = 1

2
b2, which is positive. By continuity,

we also know that g′(t) will be positive provided t is close enough to zero, and therefore the
restriction of f to the integral curve will be strictly increasing if t is sufficiently close to 0 (because
its derivative is positive).
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