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ABSTRACT. In both ordinary and equivariant 3-dimensional topology there are strong unique-
ness theorems for connected sum decompositions of manifolds, but in ordinary higher dimensional
topology such decompositions need not be unique. This paper constructs families of manifolds with
smooth group actions that are equivariantly almost diffeomorphic but have infinitely many inequiva-
lent equivariant connected sum representations for which one summand is fixed. The examples imply
the need for restrictions in any attempt to define Atiyah-Singer type invariants for odd dimensional
manifolds with nonfree smooth group actions. Applications to other questions are also considered.

The connected sum, which is essentially the simplest way of modifying the disjoint union
of two manifolds to make it connected, is one of the most fundamental constructions in
geometric topology. A particularly striking difference between low and high dimensional
topology is that connected sum decompositions are unique in low dimensions but not in high
dimensions (see [He, Ch. 7] and [JR] for low dimensional cases and [BrSt], [Wa, Cor. 1, p.
136] and the citations in [Br1, p. 23] for high dimensional cases).

One basic property of connected sums is that the connected sum of an arbitrary oriented
n-manifold with an n-sphere is isomorphic to the original manifold, and a well studied special
case of the uniqueness question in ordinary differential topology involves connected sums of
the form N#Σ where Σ is a so-called exotic sphere that is homeomorphic but not diffeo-
morphic to Sn; special cases play an important role in the classification of smooth simply
connected manifolds with a given homotopy type (cf. [Br3, Ch. V]). The set of all oriented
diffeomorphism classes of exotic spheres forms an abelian group Θn with respect to connected
sum, and the extent to which such decompositions are unique is determined by a subgroup
I(N) ⊂ Θn called the inertia group of Nn (cf. [Ko], [L1], [Wi1–3]). Since the groups Θn are
finite [KM], connected sums of the special type yield a finite set of oriented diffeomorphism
classes.

In this paper we shall study equivariant analogs of these questions for smooth actions of
a compact Lie group G. Specifically, if N denotes a suitably equivariantly oriented smooth
G-manifold and x ∈ N is a fixed point such that the G-representation on the tangent space is
equivalent to a fixed representation V , then one can form equivariant connected sums at x with
G-twisted V -spheres that are given by two copies of the unit disk in V with the boundaries
identified by an equivariant diffeomorphism (cf. [MSc2, §2]). Once again the appropriately
oriented G-twisted V -spheres form an abelian group ΓG

V with respect to connected sum if
dimV G ≥ 2, and the extent to which the equivariant connected sum decompositions are
unique is determined by an equivariant inertia group IG(N,A) ⊂ ΓG

V , where A denotes the
component of NG containing the point x.

Although this formally parallels the nonequivariant setting, one major difference is that
the groups ΓG

V are sometimes infinite, and therefore it is possible to obtain infinite families
of smooth G-manifolds in some cases (e.g., see [MSc2, Thm. 4.6]).

The main objective of this paper is to construct several families of G-manifolds N for which
ΓG

V is infinite but there are only finitely many distinct oriented equivariant diffeomorphism
classes of manifolds of the form N#Σ where Σ runs through all G-twisted V -spheres. Here
are more detailed statements of some main results.
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Theorem 0.1. Let G = S1, suppose that Nk is a closed oriented k-manifold (with no group
action furnished) where k ≥ 5 is odd, let m ≥ 2, and let V = Rk × Cm where G acts trivially
on the real coordinates and by complex multiplication on the complex coordinates. Define a
smooth action of G on Nk × CPm by taking the trivial action on the first factor and the
projectivization of the previously mentioned linear action over Cm on the second. THEN
the group ΓG

V is infinite, but there are only finitely many distinct oriented G-equivariant
diffeomorphism classes of manifolds of the form N k×CPm#Σ where Σ represents an element
of ΓG

V . In fact, for each k and m it is possible to choose N k such that there is only one oriented
G-diffeomorphism class.

Theorem 0.2. If H = Zp where p is an odd prime and m ≥ 1
2 (p+ 3), then the conclusions

of Theorem 0.1 remain true with H replacing G provided k ≡ 1 mod 4.

Numerous other examples of these sorts exist for actions of Zp, but the descriptions require
numerous digressions; for more details see Examples 2.6.1–2.6.3 and Theorems 2.7–2.9.

Although the existence of examples with infinitely many distinct representations as equi-
variant connected sums has some interest in its own right, there is an independent motivation
from another direction; namely, these examples have negative implications for any attempt to
generalize the invariants of Atiyah and Singer [AS, p. 590] to odd dimensional closed smooth
G-manifolds with nonfree actions. If p is an odd prime, then the results of [MSc2] yield a
viable theory of such invariants for smooth Zp manifolds whose equivariant tangent bundles
have suitable stable triviality properties. The examples of this paper show that one cannot
form a nontrivial theory of generalized Atiyah-Singer invariants unless some restrictions are
placed on the class of manifolds under consideration (see Theorem 3.1 and Examples 3.4.1–
2); in fact, this is true even when the value group for the invariants of [MSc2, §1] is highly
nontrivial.

In the first two sections we construct examples with disconnected fixed point sets for which
nontrivial invariants of Atiyah-Singer type cannot be defined. The first section describes
some basic examples of equivariantly almost diffeomorphic semifree S1-manifolds for which
there are only finitely many equivariant diffeomorphism classes, and the second section uses
these examples and T. Yoshida’s work on surgery obstructions of twisted products [Yo] to
construct the various examples of smooth Zp-manifolds for which ΓG

V is infinite but there
are only finitely many distinct oriented equivariant diffeomorphism classes of manifolds of
the form N#Σ where Σ runs through all G-twisted V -spheres. In Section 3 the negative
implications for defining generalized Atiyah-Singer invariants are discussed. Finally, Section
4 treats a related question; specifically, we shall correct one case of the main theorem in [Sc6]
using some examples related to Section 1.
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1. Large S1-equivariant inertia groups

Given a compact Lie group G and a finite dimensional G-representation V , we define ΓG
V

as in [MSc2, §2] to be the quotient of the group of all equivariant orientation preserving self
diffeomorphisms of the unit sphere S(V ) modulo those that extend to the unit disk D(V ); as
in [MSc2, Prop. 2.2], this set has a natural group structure that is abelian if dimV G ≥ 2.

For the sake of clarity we shall review some material from [MSc2]. Given a class α ∈
ΓG

V one can construct an associated G-equivariantly twisted V -sphere Σ(α) by choosing a
representative h for α and gluing together two copies of the disk D(V ) using h. Elementary
considerations show that the oriented equivariant diffeomorphism type of Σ(α) does not
depend upon the choice of representative. If M is a closed oriented smooth G-manifold
containing a fixed point x for which the tangential representation of G on the tangent space
ot x is equivalent to V , then one can form an equivariant connected sum M#xΣ(α) of M
with an arbitrary twisted G-sphere Σ(αG) for an arbitrary α ∈ ΓG

V , at the point x. Letting
A be the component of the fixed point set of M that contains x, we define IG(M ;A) to
be the set of all α such that M and M#xΣ(α) are orientation preservingly equivariantly
diffeomorphic such that A corresponds to A#Σ(α)G (this is automatic if there is only one
fixed point component of the appropriate dimension). As in [MSc2] this set is a group that
is called the equivariant inertia group. By construction, IG(M,A) is trivial if and only if
M#xΣ(α) and M#xΣ(β) are inequivalent for α 6= β, and in general the equivariant inertia
group measures the nonuniqueness of equivariant connected sums.

If M is a closed smooth Zp-manifold (where p is an odd prime) and G = Zp, then [MSc2,
Thm. 4.9] shows that the rank of an equivariant inertia group IG(M ;A) is small if the
equivariant tangent bundle of M is equivariantly stably trivial. The results of the next two
sections will show that equivariant inertia groups can be relatively large if the nonequivariant
rational characteristic classes of M are nontrivial; in fact, we shall construct examples for
which IG(M ;A) has finite index in ΓG

V . Since the construction of such Zp-manifolds is based
on a construction for semifree S1-manifolds with large equivariant inertia groups, we shall
construct the latter in this section and use them to produce the examples of Zp-manifolds in
Section 2. The results of this section are closely related to those of [Ms4].

Preliminaries. We shall first summarize some basic properties of equivariant Kervaire-
Milnor groups for semifree S1 and S3 representations that will be needed.

If G is a compact Lie group, one can define equivariant Kervaire-Milnor groups ΘG
V as in

[Sc5, §5] or [Sc7, §II.3] for most representations V , and the G-twisted V -sphere construction

[h] → Σ([h]) := D(V ) ∪h D(V )

defines a group homomorphism φ from ΓG
V to ΘG

V . We shall prove that φ is an isomorphism
if G = S1 or S3, the action of G on V is semifree, and the dimension restrictions

dimV G ≥ 5 dimV − dimV G ≥ 2 · dimG+ 2

hold (see [Hs] for the case dimV − dimV G = dimG + 1). This depends upon the following
geometric result:
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Proposition 1.1. Let G = S1 or S3, and let W be a compact smooth semifree G-manifold
such that

(1) ∂W splits into ∂0W q ∂1W , and likewise for ∂WG,
(2) both W and WG are simply connected h-cobordisms,
(3) dimWG ≥ 6 and dimW − dimWG ≥ 4 if G = S1 and 8 if G = S3.

Then W is G-diffeomorphic to ∂0W × [0, 1].

The proof is analogous to Rothenberg’s proof of an equivariant s–cobordism theorem [Rbg,
Thm. 3.4, p. 291] (see also [Ha]): First one observes that WG ∼= ∂0W

G × [0, 1] by the simply
connected h-cobordism theorem, then one thickens this to a tubular neighborhood N of WG,
and finally one extends to all of W by applying the simply connected h-cobordism theorem
to (W − IntN)/G.�

Corollary 1.2. If G = S1 or S3 and V is a semifree G-representation satisfying dimV G ≥ 5
and dimV − dimV G ≥ 2 dimG+ 2, then the map φ determines an isomorphism from ΓG

V to
ΘG

V .�

If G and V are as above and G acts semifreely on a closed oriented smooth manifold M
such that the tangential representation at a component A of MG is V , then one can define
IG(M ;A) as in [MSc2, §2] (see also the preceding discussion), and the proof that IG(M ;A)
is a subgroup of ΘG

V goes through unchanged.

The main results. Since we are interested in examples of G-manifolds with infinite equi-
variant inertia groups and the results of [BP] imply that ΘG

V is finite if V is even-dimensional,
for the rest of this section we shall assume that dimV is odd.

Suppose as before that G = S1 or S3, and let V be a semifree G-representation such that
dimV G ≥ 5 and dimV −dimV G ≥ 2 ·dimG+2 (i.e., 4 if G = S1 and 8 if G = S3). For each
V as above we shall construct relatively simple examples of smooth semifree Sd-manifolds
(where d = 1 or 3) such that the tangent space representation at points in the component
A ⊂ MG is given by V and IG(M ;A) has finite index in ΘG

V . Since the groups ΘG
V ⊗ Q are

often nonzero by the results of [BP], it follows in particular that IG(M ;A) ⊗ Q 6= 0 in these
cases.

The statement of the result requires some notation. Let Λ denote the complex numbers or
quaternions and let d = dimR Λ − 1, so that Sd is the unit sphere in Λ. Consider the linear
action of Sd on ΛPm defined by

g · [w0 : · · · : wm] = [w0 : · · · : wm−1 : gwm]

where g ∈ Sd and [− : · · · : −] denotes the standard homogeneous coordinates on

ΛPm :=
(
Λm+1 − {0}

)
/ (right mult. by Λ − {0}) .

The fixed point set of this action is the union of the standardly embedded ΛPm−1 (last homo-
geneous coordinate = 0) and the point [0 : · · · : 0 : 1]. Let V be the semifree Sd-representation
Rk ⊕ Λm where Sd acts trivially on the first coordinate and by scalar multiplication on the
second.

The statement of the main result requires some additional information about the groups
ΘG

V . Specifically, the exact sequence for ΘG
V (see [Sc4, (6.2)]) contains a map

γG : hSk+1(ΛPm−1) −→ ΘG
V
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given by taking a homotopy equivalence

h : (W,∂W ) −→ (Dk+1 × ΛPm−1, Sk × ΛPm−1)

such that h|∂W is a diffeomorphism, lifting h to a G–equivariant homotopy equivalence of
principal G–bundles

E(h) : (W ′, ∂W ′) −→ (Dk+1 × S(d+1)m−1, Sk × S(d+1)m−1)

such that E(h)|∂W ′ is an equivariant diffeomorphism and forming

Σ(h) = Sk ×D(d+1)m ∪∂E(h) W
′.

The results of [BP] show that γG ⊗ Q is an isomorphism.

Theorem 1.3. In the setting above, suppose that m ≥ 2 and k ≥ 5, and let N k be a closed ori-
ented k-manifold. Then IG(ΛPm×N ; {pt.}×N) contains the subgroup γG(hSk+1(ΛPm−1)),
where γG is given as above.

Corollary 1.4. Under the given conditions IG(ΛPm×N ; {pt.}×N) has finite index in ΘG
V .

This follows because γG ⊗ Q is bijective by the results of [BP].�

Proof of Theorem 1.3. Let Σ represent an element of ΘG
V such that the equivariant

normal bundle of ΣG in Σ is (equivariantly) trivial. By construction every class in the image
of γG has such a representative; in fact, if dimV > 2 dimV G then all classes have such
representatives (cf. [Br2] if G = S1, and modify the argument using [BeS, §11] if G = S3).

By Corollary 1.2 every Σ representing a class in ΘG
V is obtained by pasting two copies of

D(V ) together by an equivariant self-diffeomorphism of S(V ). If we assume that the equi-
variant normal bundle of ΣG in Σ is equivariantly trivial, then one can choose the equivariant
diffeomorphism f : S(V ) −→ S(V ) within its equivariant isotopy class so that f maps a
tubular neighborhood of S(V G) × D(VG), where VG = V/V G as usual, to itself by fG×
identity.

Let
◦

N be the closed complement of some smoothly embedded k-disk in N , and attach

D(VG) ×
◦

N to S(V ) × [0, 1] along D(VG) × Sk−1 via the natural equivariant embedding

D(VG) × Sk−1 ↪→ S(V ) = S(V ) × {1} ⊆ S(V ) × [0, 1].

Suppose now that ΣG belongs to the nonequivariant inertia group I(N). If h : N#ΣG −→
N is an orientation-preserving diffeomorphism, it is well known that one can find h′ isotopic

to h such that h′ induces a diffeomorphism of
◦

N to itself such that ∂h′ = fG (e.g., see [Kr,
§11C, p. 108]). One can then define an equivariant self-diffeomorphism f1 on the resulting

Sd-manifold, say W1, by taking f× identity on S(V )× [0, 1] and identity ×h′ on D(VG)×
◦

N ;
strictly speaking one must also round corners equivariantly, but this can be done by standard
considerations. The boundary of W1 has two components, one of which is S(V ) × {0} and
the other of which is a free Sd-manifold we shall call P . The orbit map P −→ P/Sd is
a principal bundle projection, and thus we can form W2 = W1 ∪∂ P ×G Dd+1. Clearly f1
induces an equivariant self-diffeomorphism of P , and one can extend this to P ×G Dd+1 by
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taking a balanced product with the identity; using this extension we can also extend f1 to
an equivariant self-diffeomorphism f2 of W2 whose restriction to ∂W2

∼= S(V )× {0} is equal
to f .

Elementary considerations show that the G-manifold W2 is equivariantly diffeomorphic to
ΛPm ×N − IntD(V ), where D(V ) is a linear neighborhood of (p0, y) with p0 given by the
isolated fixed point of the action on ΛPm and y arbitrary. Define an equivariant orientation-
preserving diffeomorphism F : (ΛPm ×N)#Σ −→ ΛPm ×N by the following composite:

(ΛPm ×N)#Σ
F

−−−−→ ΛPm ×N

≈

y ≈

x

W2 ∪f D(V )
f2∪id

−−−−→ W2 ∪D(V )

If we choose a suitable equivariant orientation on ΛPm × N , then F will be equivariant
orientation preserving because h and h′ preserve equivariant orientations. �

A result related to Corollary 1.4 is obtained in [Ms4] by a different method.
The proof of Theorem 1.3 in fact yields a strengthening of Corollary 1.4.

Theorem 1.5. In the setting of Theorem 1.3, the equivariant inertia group

IG(ΛPm ×N ; {pt.} ×N)

contains the subgroup ΘG
V (N) of all classes 〈Σ〉 such that 〈ΣG〉 ∈ I(N) and the equivariant

normal bundle of ΣG in Σ is equivariantly trivial. �

Corollary 1.6. If k ≥ 5, I(N) = Θk and either of the conditions

(1) G = S1 and m = 2
(2) (d+ 1)m > k,

holds, then I(ΛPm ×N ; {pt.} ×N) = ΘG
V .

Corollary 1.7. If (d + 1)m > k ≥ 5 then there is a 1-connected G-manifold N k such that
IG(ΛPm ×Nk; {pt.} ×Nk) = ΘG

V .

Proof that 1.6 implies 1.7. The results of Winkelnkemper [Wi1–3] prove the existence
of a closed 1-connected manifold Nk such that I(Nk) = Θk (Note: The subsequent proof in
[Kr, §11C, pp. 108–109] is closely related to the argument proving Theorem 1.3). Since we
are assuming condition (2) in Corollary 1.6, we can apply the latter to show that IG(ΛPm ×
Nk; {pt.} ×Nk) = ΘG

V .�
Proof of Corollary 1.6. By Theorem 1.5 it suffices to show that ΘG

V = ΘG
V (N). Since

I(Nk) = Θk it suffices to verify that the equivariant normal bundle of ΣG in Σ is equivariantly
trivial. If G = S1 and m = 2 this follows from [L2]. On the other hand, if G = S1 and 2m > k
the result appears in [Br2], while if G = S3 and 4m > k the result can be found in [MSc1].�

DERIVATION OF THEOREM 0.1. The results of [BP] show that ΓG
V is infinite if

G = S1 and V = Rk ⊕ Cm where k ≥ 5 and m ≥ 2. The statement about finitely many
oriented equivariant diffeomorphism types follows from Corollary 1.4, and the existence of
examples for which there is only one class follows from Corollary 1.7.�
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2. Large Zp-equivariant inertia groups

For general choices of G and V one has canonical restriction maps resH : ΓG
V → ΓH

res(V,H)

where H is a closed subgroup and res(V,H) is the restriction of the G-representation to H.

By Corollary 1.2 we can view resH as a homomorphism from ΘG
V to ΘH,s

res(V,H) if G and V

satisfy the conditions of the corollary and H is a finite subgroup. If G = S3 and H = S1

then results from [BP] imply that res(S1 → S3;V )⊗Q : ΘG
V ⊗Q → ΘH

res(V,H) ⊗Q is injective.

Suppose now that M is an equivariantly oriented G-manifold such that the component A
of the fixed point set MG has tangential representation V , where dimV G ≥ 1. If H is a
closed subgroup of G such that V H = V G, then A is also a component of MH and there is
an elementary but important relationship between the G- and H-equivariant inertia groups
of (M ;A).

Proposition 2.1. In the notation of the preceding paragraph the restriction map resH :
ΓG

V → ΓH
res(V,H) sends IG(M ;A) into (but not necessarily onto) IH(M ;A).�

If G acts semifreely and H is a nontrivial subgroup then the hypothesis on MH automati-
cally applies. Since the ranks of the S1-equivariant inertia groups of the semifree S1-manifolds
Nk ×CPm are large by Theorem 1.3, it is natural to consider the implications of Proposition
2.1 in this case if, say, H = Zp where p is prime. Results of T. Petrie [P] on the restriction
map yield the following conclusion:

Theorem 2.2. Let k ≥ 5 be odd, let m ≥ 2, let p be an odd prime, and assume that m ≥ 1
2(p+

3). If Nk is an arbitrary closed oriented manifold, H = Zp, and V is the restriction of the
linear semifree S1-action on Rk⊕Cm, then the codimension of IH(Nk×CPm;Nk×{pt.})⊗Q

in ΘH,s
V ⊗ Q is {

0 if k ≡ 1 mod 4

≤ 1 if k ≡ 3 mod 4.

Proof. If k + 1 6= 2m then by [MSc2, Prop. 3.2] it will suffice to show that

IH(Nk × CPm, Nk × {pt.}) ⊗ Q

contains the image of L̃s
k+2m+1(H)⊗Q. Let G = S1 and consider the following commutative

diagram

hSk+1

(
CPm−1

) γG

−−−−→ ΘG
VyB!

yresH

L̃s
k+2m+1(H)

e∆
−−−−→ shSk+1(L(VH))

γH

−−−−→ ΘH,s
V

in which B! is defined by taking the induced circle bundle whose first Chern class comes from
p times the generator in H2(CPm−1; Z). As in [MSc2], VH denotes the restriction of the free
S1 representation on Cm and L(VH) is the lens space S(VH)/H. The results of Petrie [P]
show that

ImageB! ⊗ Q ⊇ Image ∆̃ ⊗ Q

if 2m ≥ p + 3. By Theorem 1.3 and Proposition 2.1 we know that the image of resH ⊗Q
lies in IH(N × CPm;N × {pt.}) ⊗ Q, and therefore a diagram chase shows that the image
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of γH∆̃ ⊗ Q is also contained in IH(N × CPm;N × {pt.}) ⊗ Q. This completes the proof if
k + 1 6= 2m.

Suppose now that k + 1 = 2m. As noted in [MSc2, §3] the exact sequence in the
bottom row of the commutative diagram extends to the right with a term of the form
πk (FH(VH), CH(VH)) ⊕ Θk (notation as in [MSc2, §3]), and the proof of [MSc2, Prop.
3.2] is based on the finiteness of πk(FH(VH), CH(VH)) when k + 1 6= 2m. In particular,
if πk(FH(VH), CH(VH)) is finite whenever VH = V/V H is Cm and k = 2m − 1, then one
can use the method of [MSc2, Prop. 3.2] to obtain the same conclusion as before; note that
CH(VH) is the unitary group Um in this case. Consider the following commutative diagram,
in which the horizontal arrows are given by evaluation at the basepoint:

π2m−1(Um) −−−−→ π2m−1(FH(Cm))
ye∗

ye′

∗

π2m−1(S
2m−1) −−−−→ π2m−1(S

2m−1)

The results of [Sc2] imply that e′∗ ⊗ Q is bijective, and basic results on the homotopy theory
of unitary groups also show that e∗ ⊗ Q is also bijective. Therefore πk(FH(VH), CH(VH)) is
finite, and by the remarks at the beginning of this paragraph this implies the theorem in the
exceptional case k + 1 = 2m.�

Corollary 2.3. In the setting above, if k ≡ 3 mod 4 then there is an equivariantly 1-
connected V -framable manifold M such that

IH(N × CPm#M ;N × {pt.}#MH)

has finite index in ΘH,s
V .

Recall that a semifree G-space X is equivariantly 1-connected if both X and XG are 1-
connected; see [MSc2, paragraph preceding Prop. 4.8] for the concept of V -framed manifold.

Sketch of proof. Let M be an example with a connected fixed point set given by [MSc2, Prop.

5.1], so that IH(M ;MH)⊗Q is not contained in the image of TV ⊗Q, where TV = γH
o∆̃ in

the first paragraph of the proof of Theorem 2.2. Since IH(N ×CPm;N ×{pt.})⊗Q contains
the latter, one can use the elementary identity

IH(M#N ;A#B) ⊇ IH(M ;A) + IH(N ;B)

to show that IH(N × CPm#M ;N × {pt.}#MH) has finite index in ΘH,s
V .�

Examples with other tangential representations. Several features of the examples in
Theorem 2.2 lead naturally to further questions. In particular, since the tangential represen-
tations at fixed points are restrictions of semifree S1-representations, one can ask whether
similar examples exist for other Zp-representations. Furthermore, since one component of the
fixed point set has codimension 2, one can ask whether similar examples exist for which the
Standard Gap Hypothesis holds. In a related direction, since the fixed point sets consist of
two components, one can ask whether similar examples exist with connected fixed point sets.

We shall construct examples in such cases by combining Theorem 2.2 with results of T.
Yoshida [Yo] (and subsequent observations in [DS,§III.1] and [Ya]) together with the following
idea that is implicit in [RT2, §2]:
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Proposition 2.4. Let G = Zp where p is an odd prime, and let M be a closed 1-connected
smooth G-manifold such that M is odd dimensional, each component of MG has dimension
≥ 5, the action is effective, and M − MG is simply connected. Let V be the tangential
representation at some component A of MG for which dimV − dimV G ≥ 4. Then there is a
commutative diagram of the form

L̃s
n+1(G)

j
−−−−→ Ls,BQ

n+1 (D(V ), S(V ))
c!

A−−−−→ Ls,BQ
n+1 (M)

=

y ∆0(V )

y ∆0(M)

y

L̃s
n+1(G)

T ′

V−−−−→ Ss,BQ
G (D(V ), S(V ))

b!
A−−−−→ Ss,BQ

G (M)

=

y F

y CLS

y

L̃s
n+1(G)

TV−−−−→ ΘG,s
V

(M ;A)#
−−−−−→ D+(M)

in which

(1) j is the map in the Orbit Sequence for Ls,BQ
n+1 (D(V ), S(V )),

(2) c!A and b!A are maps from the Browder-Quinn simple surgery sequence for the pair
(D(V ), S(V )) to the corresponding sequence for M that are given by modifying a
structure on a closed linear disk neighborhood of a point in A,

(3) ∆0(V ) and ∆0(M) are maps in the appropriate Browder-Quinn surgery sequences,
(4) TV is the composite described in the proof of Corollary 2.3,
(5) F is a forgetful (≡ restriction) homomorphism as in Section 1,
(6) D+(M) denotes the set of G-oriented equivariant diffeomorphism classes of closed

smooth G-manifolds that are G-simple homotopy equivalent to M ,
(7) CLS takes a Browder-Quinn structure to its oriented equivariant diffeomorphism class,
(8) (M ;A)# denotes the connected sum construction.

Sketch of proof. For each subsequence the proof of commutativity is a fairly straight-
forward exercise. The composite c!A

oj is merely the canonical map in the orbit sequence for

Ls,BQ
n+1 (M) because M −MG is 1-connected, and therefore this map does not depend on A;

in other words, if X is another component of MG then c!A
oj = c!X

oj.�

The necessary input from [Yo] can be stated in a purely formal manner.

Theorem 2.5. Let G = Zp where p is an odd prime, and let M be a closed 1-connected
smooth G-manifold such that M is odd dimensional, each component of MG has dimension
≥ 5, the action is effective, and M − MG is simply connected. Let V be the tangential
representation at some component A of MG for which dimV − dimV G ≥ 4. Let P be a
closed 1-connected smooth G-manifold of dimension 4` > 0 such that dimP − dimPG ≥ 4
and the equivariant Witt invariant of P is equal to that of the unit form (Z, mult.) in the
Witt ring of Z[G]. If B is a component of P with tangential representation W and the image
of TV ⊗Q lies in IG(M ;A)⊗Q, then the image of TV ⊕W ⊗Q lies in IG(M ×P ;A×B)⊗Q.

As in [Yo], the equivariant Witt ring W+(Z[G]) is given by considering all ±unimodular
quadratic forms on torsion free finitely generated abelian groups, and then factoring out by
metabolic forms (M,ϕ) that contain a submodule K with rank equal to half that of M such
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that the form is zero on K. Direct sum and tensor product make this into a commutative
ring with unit, and the multiplicative unit is given by (Z, mult.)

Proof. Note first that the hypotheses of Proposition 2.4 for (M ;A) imply the corresponding
properties for (M × P ;A×B) provided we replace V by V ⊕W . This yields a commutative
diagram as in 2.4 with n+4` replacing n, V ⊕W replacing V , and (M ×P ;A×B) replacing
(M ;A). The methods of [BQ] yield the following commutative diagram in which µ is the
Yoshida twisted product map for P as defined in [Yo]:

L̃s
n+1(G)

µ
−−−−→ L̃s

n+4`+1(G)
y

y

Ls,BQ
n+1 (M)

×P
−−−−→ Ls,BQ

n+4`+1(M × P )
y

y

Ss,BQ
G (M)

×P
−−−−→ Ss,BQ

G (M × P )

Since the Witt invariant of P is the unit, the main result of [Yo] implies that µ is an isomor-
phism.

By hypothesis there is a subgroup EV ⊂ L̃s
n+1(G) of finite index such that TV (EV ) lies in

IG(M ;A). If α ∈ EV let ΣV represent T ′
V (α) ∈ Ss,BQ

G (D(V ), S(V )) and let ΣV ⊕W represent

T ′
V ⊕W (α) ∈ Ss,BQ

G (D(V ⊕W ), S(V ⊕W )). A chase of the diagram above and the related
diagrams from Proposition 2.4 (for both M and M × P ) shows that (M#ΣV ) × P is G-
orientation preservingly equivariantly diffeomorphic to (M ×P )#ΣV ⊕W and that one has an
equivariant diffeomorphism of this type that sends (A#ΣG

V ) ×B to (A×B)#ΣG
V ⊕W . Let

f1 : (M#ΣV ) × P −→ (M × P )#ΣV ⊕W

be such a map. Since [ΣV ] ∈ IG(M ;A) by our hypotheses, there is also an equivariant
diffeomorphism f2 : (M ;A)#ΣV → M such that f2(A#ΣG

V ) = A. If we define h to be the

composite (f2 × idP ) of−1
1 , then it follows immediately that h defines a diffeomorphism from

(M × P ;A× B)#ΣV ⊕W to M × P such that (A×B)#ΣG
V ⊕W corresponds to A×B. Since

µ is bijective it follows that µ(EV ) also has finite index in L̃s
n+4`+1(G) ≈ L̃s

n+1(G); if we

combine these observations we see that the subgroup IG(M × P ;A × B) ⊗ Q contains the
image of TV ⊕W ⊗ Q.�

Here are a few examples for Theorem 2.5 that are important for our purposes. More
precisely, we shall give examples of closed 1-connected smooth G-manifolds of dimension
4` > 0 such that dimP − dimPG ≥ 4 and the equivariant Witt invariant of P is equal to
that of the unit form (Z, mult.) in the Witt ring of Z[G].

Example 2.6.1. If X is any smooth G-manifold, then as in [DS] one can construct a
smooth G-manifold X↑G by taking the product of |G| = order of G copies of X with itself
and letting G act by permuting the coordinates cyclically. If P = CP2

↑G then Theorem 2.5
applies to P by the results of [DS, §III.1] or [Ya]. Note that PG is the diagonal copy of CP2.
This gives an example for s = |G|; one can obtain examples for ` = t · |G| > |G| by using other
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examples of periodicity manifolds from [DS], or more simply one can just take a product of
t copies of P .

Example 2.6.2. Let |C| denote the trivial representation on C, let Ω be a 2`-dimensional

complex G-representation, and consider the G-manifold CP(Ω) on CP2` = S(Ω ⊕ |C|)/S1

given by factoring on the scalar multiplication of S1 from the linear G-action on S(Ω⊕|C|).—
In general CP(Ω)G has many components, one of which is given by CP(ΩG). The tangential
representation for the latter is merely Ω, and because of this we shall call CP(ΩG) the
principal component of the fixed point set.

Example 2.6.3. Let W be the 3-dimensional complex representation given by

g · (z1, z2, z3) = (gaz1, g
bz2, g

cz3)

where a, b, c are distinct integers between 0 and p (recall that p is prime, so they are au-
tomatically relatively prime to p). Then the Zp-action on S(W) determines a well defined

action on the quotient CP2 = S(W)/S1 that we shall call CP2(a, b, c). This action has three
isolated fixed points, and the tangential representations at these fixed points are R-equivalent
to direct sums of irreducible representations on C of the form (g, a) → grz, where r lies in
the set {b− a, c− a, b− c}.

Realizing tangential representations. One can use Theorems 2.2 and 2.5 to construct
pairs

(M ;A = component of MG)

with large equivariant inertia groups and more or less arbitrary normal representations at A;
by definition, the normal representation is the nontrivial part of the tangential representation.
As before let G = Zp where p is an odd prime.
Notational convention. If r is an integer that is relatively prime to p (an odd prime
by assumption) and Φ is a Zp-action on an object Y , define a new action ψrΦ on Y by the
formula

ψrΦ(g, y) = Φ(gr, y).

It follows immediately that the fixed point sets of the new and old action are equal; further-
more, if Φ is a smooth action on a manifold then so is ψrΦ. This construction merely yields
the usual Adams operation if Y is a linear representation.

Theorem 2.7. Let G = Zp where p is an odd prime, let the irreducible unitary represen-

tations Ωr

(
1 ≤ r ≤ p−1

2

)
be given by (g, v) −→ gr · v, and let V be an odd-dimensional

G-representation of the form

Rk ⊕
∑

mrΩr

(trivial action on Rk )

such that mr ≥ p+3
2 for at least one choice of r and the number of r for which mr is odd

is less than k
2 . Then there is a closed oriented smooth G-manifold M such that MG has

a component A with tangential representation V and equivariant inertia group IG(M ;A)
satisfying IG(M ;A)⊗ Q ⊃ ImageTV ⊗ Q.

Note that Theorem 2.7 automatically applies if k ≥ p and dimV − dimV G ≥ p2+1
2 , for if

V does not contain p+3
2

summands of any irreducible representation then V contains at most
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p+1
2 summands of each irreducible type. Since there are p−1

2 different types this means that

the decomposition of VG into irreducible summands has at most p2
−1
4 irreducible factors, and

since each nontrivial irreducible factor is 2-dimensional this implies that dimVG ≤ p2
−1
2 .

Proof of Theorem 2.7. Choose a specific r0 such that mr0
≥ p+3

2 and define

εr(V, r0) =





0 if r = r0

0 if r 6= r0 and mr is even

1 if r 6= r0 and mr is odd.

Define `(k, V, r0) = k − 2
∑

r εr(V, r0); for the sake of notational simplicity we shall call this
`. Form the product manifold

N ` ×
∏

r

CP (mrΩr + εr(V, r0) |C|)

where N ` is an arbitrary closed oriented smooth manifold (with trivial Zp-action). If A
is the product of N ` with the principal components of the fixed sets of the G-manifolds
CP(mrΩr + εr(V, r0)|C|) then the tangential representation at A is equivalent to V .

Let W = R`⊕mr0
Ωr0

, and let U = R`⊕mr0
Ω1. By construction W = ψ∗

r0
U , and similarly

N ` × CP(mr0
Ωr0

) is equal to the smooth G-manifold ψ∗
r0

(
N ` × CP(mr0

Ω1)
)
. By Theorem

2.2 we know that IG(N `×CP(mr0
Ω1);N

`×{pt.})⊗Q contains (ImageTV )⊗Q, and therefore
the elementary properties

(1) M1
∼=G M2 ⇒ ψrM1

∼=G ψrM2,
(2) (ψrM1;A1)#(ψrM2;A2) ∼=G (ψrM1#ψ

rM2;A1#A2),

imply that IG(N ` × CP(mr0
Ωr0

);N ` × {pt.}) ⊗ Q contains (ImageTV ) ⊗ Q. Repeated ap-
plications of Theorem 2.5 to the examples of 2.6.2 now implies that IG(M ;A) ⊗ Q contains
imageTV ⊗ Q.�

Realizing the Standard Gap Hypothesis. In the examples of Theorem 2.7 the Standard
Gap Hypothesis (e.g, see [DS]) may hold for some components of MG, but usually there are
also components for which this condition does not hold. There are several ways of modifying
the preceding examples to realize the Standard Gap Hypothesis. In particular, the results of
[DS, §§III.1–2] suggest the following:

Theorem 2.8. Let G = Zp where p is an odd prime, and let V be an odd dimensional G-
representation. Then for all sufficiently large values of t there is a closed oriented smooth
G-manifold Mt such that MG

t has a component At with tangential representation V ⊕ 4tR[G]
(where R[G] is the regular representation) and equivariant inertia group IG(Mt;At) satisfying
IG(Mt;At) ⊗ Q ⊃ ImageTV ⊕4tR[G] ⊗ Q.

Proof. For all sufficiently large values of t the fixed point set of V ⊕ 4tR[G] is at least
5-dimensional and every nontrivial irreducible G-rerpresentation has multiplicity ≥ p+3

2 in
V ⊕ 4tR[G]. Let s0 be a specific value of this type, and use Theorem 2.7 to construct (M ;A)
so that the tangential representation at A is V ⊕ 4s0R[G]. By [DS, Thm. III.3.4, p. 94]
there is a positive integer s1 ≥ s0 such that t ≥ s1 implies that M × (CP2

↑G)t satisfies the
Standard Gap Hypothesis, and by Theorem 2.5 and Example 2.6.1 we then have

IG(M × (CP2
↑G)t;A× (CP2)t) ⊗ Q ⊃ ImageTV ⊕tR[G] ⊗ Q
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for all t > 0. Therefore one has examples of the desired type provided t ≥ s1.�

The preceding construction has an important disadvantage; namely, as t increases the
multiplicity of every irreducible representation in V ⊕ 4tR[G] also increases linearly with
t. We would like to have examples of representations Vt such that dimVt → ∞ but the
multiplicities of most irreducible representations in Vt do not change. This can be done if
one is willing to sacrifice one feature of the examples in Theorem 2.8. For the examples
constructed in that proof the number of components of MG is constant as t → ∞, and the
following result shows that one can exchange control over the size of π0(M

G) for control over
the multiplicities over most of the irreducible representations that arise as summands of Vt.

Theorem 2.9. Let G = Zp where p ≥ 7 is prime. Then in all sufficiently large odd dimen-
sions n there are closed smooth 1-connected G-manifolds M with the following properties:

(1) All components of MG are simply connected and at least 5-dimensional.
(2) The Standard Gap Hypothesis holds.
(3) If F is a finite set of G-representations that consists of the tangential representations

from all components of MG, then there are at most three inequivalent nontrivial irre-
ducible representations of G that have nontrivial multiplicities in some representation
V ∈ F .

(4) If A is an arbitrary component of MG and V is the tangential representations at
points of A, then IG(M ;A)⊗ Q contains the image of TV ⊗ Q.

Proof. Take one of the G-manifolds Sk × CPm from Theorem 2.2 and form the product

Xr = Sk × CP(mΩ1) × CP2(1, 2, 3)r

for an arbitrary integer r ≥ 1. If k ≥ 5 it follows immediately that (1) holds, and the
construction also implies that (3) holds. To prove that the Standard Gap Hypothesis holds
if r is sufficiently large, notice that all components of XG

r have dimensions equal to k or
k + 2m − 2 and that dimXr = k + 2m + 4r; this implies the Standard Gap Hypothesis
provided

r ≥
k + 2m− 1

4
.

Thus the manifolds satisfy (1)–(3), and in addition their dimensions are all sufficiently large
integers congruent to k + 2m mod 4 if r satisfies the inequality. Thus everything reduces to
proving that (4) holds for the manifolds Xr.

Let p0 be one of the three isolated fixed points in CP2(1, 2, 3), and let W be the tangential
representation at the component Sk × {p0}

r ⊂ Xr. If we apply Theorems 2.2 and 2.5 to
Example 2.6.3, it follows that IG(Xr;S

k × {p0}
r) ⊗ Q contains ImageTW ⊗ Q. This proves

(4) for at least one component of XG
r . The following result will allow us to extend this to

other components.

Lemma 2.10. Let M be a closed smooth 1-connected G-manifold, where G = Zp (p ≥ 3
prime), and suppose that each component of MG is at least 5-dimensional with dimM −
dimMG ≥ 4. Let A and B be components of MG with tangential representations V and W
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respectively. Then the following diagram is commutative:

L̃s
n+1(G)

T ′

V−−−−→ Ss,BQ
G (D(V ), S(V ))

T ′

W

y (M ;A)#

y

Ss,BQ
G (D(W ), S(W ))

(M ;B)#
−−−−−→ Ss,BQ

G (M)

Proof that Lemma 2.10 implies Theorem 2.9. Let W be given as in the paragraph
before the statement of Lemma 2.10. Then the validity of (4) for B = Sk × {p0}

r implies

that L̃s
n+1(G) contains a subgroup EW of finite index such that TW (EW ) ⊂ IG(M ;B).

Let IG
0 (M ;B) is the subgroup of IG(M ;B) described in [MSc2, Prop. 2.4], which consists

of all Σ for which there is an oriented equivariant diffeomorphism M#xΣ →M that induces
the same map of fixed point components as a certain canonical equivariant homeomorphism

M#xΣ → M . By the previously cited result and the finite generation of ΘG,s
W there is a

subgroup E′
W ⊂ EW of finite index such that TW (E′

W ) ⊂ IG
0 (M ;B).

Let α ∈ E′
W be arbitrary, let ΣW represent T ′

W (α) ∈ Ss,BQ
G (D(W ), S(W )), let ΣV rep-

resent T ′
V (α) ∈ Ss,BQ

G (D(V ), S(V )), and let t(ΣW ) and t(ΣV ) be canonical almost diffeo-
morphisms as defined in [MSc2, §2]. By Lemma 2.10 there is a G-orientation preserving
equivariant diffeomorphism

f : (M ;B)#ΣW → (M ;A)#ΣV

such that t(ΣW ) and t(ΣV ) of induce the same map from π0

(
((M ;B)#ΣW )

G
)

to π0(M
G).

On the other hand, since TW (α) lies in IG
0 (M ;B) there is a G-orientation preserving

equivariant diffeomorphism h : (M ;B) #ΣW → M such that t(ΣW ) and h induce the same
map from π0

(
((M ;B) #ΣW )G

)
to π0(M

G). Combining these, we obtain a G-orientation

preserving equivariant diffeomorphism h of−1 : (M ;A) #ΣV → M such that t(ΣV ) and
h of−1 induce the same map from π0

(
((M ;A)#ΣV )G

)
to π0(M

G); the last assertion follows

from a diagram chase. Therefore TV (E′
W ) is contained in IG

0 (M ;A).
Finally, since E′

W has finite index in EW and IG
0 (M ;A) has finite index in IG(M ;A)

[MSc2, Prop. 2.4], it follows that IG(M ;A)⊗Q contains the image of TV ⊗Q. Thus (4) also
holds for every other component of XG

r .�

Proof of Lemma 2.10. In Proposition 2.4 we constructed commutative diagrams

L̃s
n+1(G)

j1
−−−−→ Ls,BQ

n+1 (M)
y

y∆0(M)

Ss,BQ
G (D(U), S(U))

(M ;C)#
−−−−−→ Ss,BQ

G (M)

in which j1 comes from the Orbit Sequence for Ls,BQ
∗ (M) and {U,C} can denote either

{W,B} or {V,A}. The lemma follows by splicing the two diagrams along the composite map
CLS o∆0(M) oj1.�
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Remark. Lemma 2.10 can also be used to extend the conclusions of Theorems 2.7 and
2.9 to other components of the fixed point sets in most cases.

Connected fixed point sets. Since the results of [RT2] and [MSc2] on classification up to
finite ambiguity assume that the G-manifolds in question have connected fixed point sets, the
examples of Theorems 2.7–2.8 and 3.4.1–3.4.2 are not included in the setting of [RT2, bottom
of p. 762]. However, results of B. Fine [F] and constructions of Dovermann and Rothenberg
[DR] strongly suggest that the program of [RT2] goes through if one merely assumes that
all fixed point sets MH are unions of 1-connected manifolds, where H runs through all
subgroups of G except {1}; in particular, it should be possible to extend the equivariant
simple rational homotopy theory of [RT1] to objects with disconnected fixed point sets using
the combinatorial machinery of [DR].

Of course, given an odd-dimensional G-representation V (as usual, G = Zp), it would also
be enlightening to have examples of closed, equivariantly 1-connected smooth G-manifolds
M such that V is equivalent to the tangent space at fixed points and IG(M ;MG) has finite
index in ΓG

V . In general this appears to be difficult, and the ultimate solution seems likely
to require an understanding of cobordism of equivariant diffeomorphisms along the lines of
[Kr]. On the other hand, if V is an odd dimensional G-representation such that k = dimV G

and every nontrivial irreducible representation has multiplicity at least k+1
2

in V , then the
reduced G-signature defect for the set of equivariantly V -framable G-manifolds (cf. [MSc2,
definition before Prop. 4.8]) is trivial [MSc2, (1.1) and Cor. 1.2B]. In such cases [MSc2, Prop.
3.2] implies that ΓG

V ⊗ Q has dimension 0 or 1 depending on whether k is congruent to 1 or
3 mod 4. It follows that in such cases IG(M ;MG) has finite index in ΓG

V if k ≡ 1 mod 4;
furthermore, if k ≡ 3 mod 4 and the orientation class of MG maps to zero in Hk(M ; Q),
then [MSc2, Thm. 4.6] implies that IG(M ;MG) likewise has finite index in ΓG

V . For smooth
G-manifolds satisfying these conditions and the other assumptions of [RT2] there are only
finitely many equivariantly oriented diffeomorphism classes of smooth G-manifolds that are
equivariantly orientation preservingly almost diffeomorphic to a given example, and therefore
in such cases the invariants of [RT2] are a complete set of oriented equivariant diffeomorphism
classification invariants up to finite ambiguity.

3. Implications for generalized Atiyah-Singer invariants

As indicated in the introduction, the examples of this paper show that one cannot form a
nontrivial theory of generalized Atiyah-Singer invariants unless some restrictions are placed
on the class of manifolds under consideration (see Theorem 3.1); in fact, this is true even when
the value group for the invariants of [MSc2, §1] is highly nontrivial. The crucial difference
between the examples of Section 2 and the class of manifolds treated in [MSc2] is that the
former have nontrivial rational characteristic classes while the latter have trivial rational
characteristic classes if one restricts to invariant tubular neighborhoods of the fixed point set.

The precise statements of results require some notation from [MSc2]. If G is a finite group
then R(G) is the ring of complex valued functions on G − {1}, and R±(G) is the complex
subspace of functions satisfying f(g−1) = ±f(g). Suppose now that G = Zp where p is an
odd prime, and let V be an odd-dimensional G-representation. Then J(V ) ⊂ R±(G) is the
complex subspace spanned by the equivariant signature defects of the sphere S(V ⊕ R) with
all possible choices of partial equivariant framings (complete descriptions of these notions
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appear in [MSc2, §1]). If F is a family of odd-dimensional G-representations with the same
dimension, then J(F) is the sum of the subspaces J(V ) over all V ∈ F .

The following result provides an abstract nonexistence criterion for generalized Atiyah-
Singer invariants on certain families of compact smooth G-manifolds; we shall use the exam-
ples of Section 2 to show that the abstract condition holds in several different cases.

Theorem 3.1. Let G = Zp where p is an odd prime, let F be a finite family of n-dimensional
G-representations where n is odd, and let M be a family of closed oriented smooth G-manifolds
such that F consists of the tangent space representations at fixed points for all manifolds
representing classes in M. Suppose further that M contains a closed smooth G-manifold
N such that IG(N ;A) has finite index in ΓG

U , where A is a component of NG and U is the
tangent space representation at points of A. Then there is no proper subspace J ∗ ⊂ R±(G)
for which one can define an invariant of Atiyah-Singer type from M to R±(G)/J∗.

As in [MSc2, (1.3.A)–(1.3.B)] an invariant of Atiyah-Singer type is understood to be ad-
ditive with respect to disjoint unions and connected sums along fixed point sets and to
satisfy the following additional condition: If M0 ∈ M and (W ;M0,M1) is an equivari-

antly oriented G-cobordism such that the fixed point sets satisfy WG ≈ MG
0 × I, then

f(M1) = f(M0) + s̃gnG(W ), where s̃gnG(W ) denotes the image of the G-signature mod J∗.

Proof. Let G = Zp and suppose that one has an invariant of the type described. If for
each V ∈ F the linear sphere S(V ⊕ R) belongs to M then by [MSc2, paragraph following
Proposition 1.1] we know that J∗ contains J(F); in fact, an elaboration of this argument
implies the same conclusion even if these spheres do not belong to F provided each V ∈ F
is equivalent to a tangent space representation for some manifold in M. Since the latter is
assumed, it follows that J∗ contains J(F) in all cases.

Let N , A and U be given as in the statement of the theorem. The assumption on IG(N ;A)

and the results of [MSc2, §3] imply the existence of classes [Σ1], · · · , [Σr] in ΘG,s
U such that

their reduced G-signature defects span R±(Zp)/J(U) over the complex numbers and [Σj ] ∈
IG(N ;A) for all j.

If f is the invariant of Atiyah-Singer type whose existence is assumed, then

N#Σj
∼= N (all j)

implies that

f(N) + f(Σj) = f(N#Σj) = f(N)

so that f(Σj) must be trivial in R±(G)/J∗ for all j. On the other hand, since J∗ ⊃ J(U)
it follows that the set {f(Σ1), · · · , f(Σr)} spans R±(G)/J∗ over the complex numbers, and
this in turn implies that the quotient is zero.�

Examples where R±(G)/J(F) is large. Of course Theorem 3.1 has nontrivial content only
if J∗ is a proper subspace of R±(G) and there are closed equivariantly oriented smooth G-
manifolds satisfying the conditions of the theorem. Therefore we shall describe two classes of
examples for which dimR±(G)/J(F) > 0. In the second class of examples the Standard Gap
Hypothesis holds. In both cases the verification of the dimension inequality is an elementary
exercise. As usual F will denote a finite set of G-representations that consists of tangential
representations from all components of MG where M is given in the context.
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(3.2) In the setting of Theorem 2.7, if only d types of nontrivial irreducible representations

appear as direct summands of V , where d · 2d+1 < p − 1 and M is the example constructed

for V in the proof of Theorem 2.7, and F is given as above, then R±(G)/J(F) is nontrivial.�

(3.3) In the setting of Theorem 2.9, if p − 1 > 4 · 3r+1, and Xr is one of the examples

Sk×CP(mΩ1)×CP2(1, 2, 3)r constructed in that theorem, and let F is given as above, Then

R±(G)/J(F) is nontrivial.�

In (3.3) the Standard Gap Hypothesis holds if r is greater than some linear expression in
k and m, so for each choice of k and m this yields an infinite set of primes for which (3.3)
applies and the Standard Gap Hypothesis holds.

If we combine the preceding observations with the results of Section 2 (and especially
with Examples 2.6.1–2.6.3), we obtain very specific classes of smooth G-manifolds for which
dimR±(G)/J(F) > 0 :

Example 3.4.1. Let F be a finite family of n-dimensional Zp-representations that are re-

strictions of semifree S1-representations, and suppose that p−1
2 is greater than the cardinality

of F . Let M be a family of closed oriented smooth Zp-manifolds such that F contains the
tangent space representations at fixed points for all manifolds representing classes in M and
M contains one of the examples Sk×CPm, where k ≥ 5, m ≥ 2, and m ≥ p+3

2
. Then by The-

orem 2.2 all the conditions of the theorem hold except perhaps the nontriviality of R±/J(F).
To see the latter, observe that the formula for L(g, ξ) shows that J(Vα) is 1-dimensional if
Vα is the restriction of a semifree S1-representation. Since J(F) =

∑
J(Vα) it follows that

dimJ(F) cannot exceed the number of representations in F , and therefore the hypothesis
implies that J(F) is a proper subspace of R±(G)/J(F).

Example 3.4.2. Suppose that F satisfies the assumptions of (3.2) or (3.3) and that M
contains the examples described in these results. Then the theorem applies and the subspaces
J(F) are proper subspaces of R±(G).

The results and examples of [MSc2] and this paper lead naturally to the following

Question. Let M be an equivariantly oriented closed smooth G-manifold, and let F be a
family of representations giving the equivalence classes of all tangent space representations at
fixed points of M , let A be a component of MG, and let V be the tangent space representation
at points of A. To what extent can one describe the image of IG(M ;A) in R±(G)/J(F) in
terms of the equivariant characteristic classes of M?

The techniques of [MSc2] show that the image is zero if all such classes vanish on a tubular
neighborhood of the fixed point set, but the examples of this paper show that the image is
the entire codomain in some cases where the rational characteristic classes do not vanish. In
particular, it would be interesting to know if the image could be a nonzero proper subspace.

4. Nonequivariant inertia groups and semifree circle actions

Theorem 1.3 implies that the conclusion of [Sc6, Prop. 3.5 and Thm. II] in the 9-
dimensional case is incorrect, and the purpose of this section is to correct both the statement
and the proof in that case. The statements and proofs of the results in [Sc6] for all remaining
cases are unaffected.
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If aG
V denotes the subgroup of ΘG

V represented by G-manifolds Σ such that ΣG ∼= Sq and
the equivariant normal bundle of ΣG in Σ is equivariantly trivial (cf. [BP]), then the following
result is an immediate consequence of Theorem 1.5:

Proposition 4.1. Let res1 : ΘG
V −→ Θdim V be the homomorphism defined by forgetting the

group action, where G and V are given as in Theorem 1.5. Then for every closed oriented
smooth manifold N q the nonequivariant inertia group I(ΛPm ×N q) contains res1(aG

V ).�

In this section we are mainly interested in ΓG
V when G = S1 and V = R3 ⊕C2; in this case

the formal analog of the exact sequence of [MSc2, Prop. 3.7] is the following:

· · · −→ hS4(CP2)
γG

−→ ΓG
V −→ π3

(
FG

(
C2

)
, U2

)
−→ hS3

(
CP2

)

Strictly speaking the exactness of this sequence does not follow from the statement of the
result in [MSc2], but the proof extends to the case under consideration, the most notable
exceptions being that ΓG

V must be viewed as mapping into Γ3 ⊕π3

(
FG

(
C2

)
, U2

)
rather than

Θ3 ⊕ π3

(
FG

(
C2

)
, U2

)
because the fixed point set must be a twisted 3-sphere; since Γ3 is

trivial, it follows that we can forget about it in the exact sequence.
There is an obvious forgetful homomorphism res1 as noted before, and if aG

V ⊆ ΓG
V is

defined as in the paragraph preceding Proposition 4.1, then results of [Da, Thm. 3.3, p. 69]
(see also [Ms1]) imply that res1 maps aG

V onto Θ7. If we combine this with Proposition 4.1,
we obtain the following conclusion:

Corollary 4.2. If N3 is a closed oriented 3-manifold, then I(CP2 ×N3) = Θ7.�

Correction to [Sc6]. The preceding result is inconsistent with one case of [Sc6, Prop.
3.5 and Thm II], so we shall indicate the repairs needed for the latter. For reasons of space
we shall not attempt to discuss the entire background here; needless to say, this is all covered
in [Sc6]. We begin by stating the correct version of [Sc6, Prop. 3.5].

Proposition 4.3. Let Ψ be a homotopy self equivalence of S3 × CPk(k ≥ 2) induced by an
element of π3(FG(Ck+1)) that is not in the image of π3(Uk+1). Then Ψ is not homotopic—in
fact, not normally bordant—to the identity if k ≥ 3. On the other hand, if k = 2 and M 7

generates Θ7 ≈ Z28, then the composite of Ψ with the canonical homotopy equivalence fM :
S3 ×CP2#M −→ S3 ×CP2 is homotopic to a diffeomorphism S3 ×CP2#M −→ S3 ×CP2.

As noted in [Sc6] the group π3(FG(Ck+1), Uk+1) is isomorphic to Z2 if k ≥ 2, and the
canonical map from π3(FG(Ck+1)) is split surjective.
Proof of Proposition 4.3. (Sketch) The argument of [Sc6] for k ≥ 3 is correct; the mistake
arises in analyzing the case k = 2. Corollary 4.2 implies the existence of some homotopy

equivalence h̃ of S2 × CP2 such that h̃ ofM is homotopic to a diffeomorphism. On the other
hand, a result of L. Taylor implies that fM itself is not homotopic to a diffeomorphism (cf.
[Sc6, Thm. 2.1]). Finally, a case by case analysis of all homotopy self equivalences of S3×CP2

shows that either Ψ ofM is homotopic to a diffeomorphism or else there is no self equivalence
h such that h ofM is homotopic to a diffeomorphism. The only consistent alternative is that
Ψ ofM is homotopic to a diffeomorphism.�

This correction forces a corresponding modification of [Sc6, Thm. II]. Before stating the
corrected result, we recall that the Rochlin invariant ( = Eells-Kuiper invariant or µ-invariant)
of an integral homology 3-sphere Σ3 is given by expressing Σ3 = ∂W 4 for some parallelizable
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4-manifold W 4 and taking the signature of W mod 16 (the signature of W is always divisible
by 8; cf. [HNK]).

Theorem 4.4. (i) Suppose that q ≥ 5 is odd and the Rochlin invariant of Σ3 is nonzero.
Then Σ3 is not the fixed point set of a semifree differentiable S1-action on a homotopy (2q+3)-
sphere.

(ii) If the Rochlin invariant of Σ3 is nonzero, then Σ3 is the fixed point set of a semifree
differentiable S1-action on a homotopy 9-sphere. Every such homotopy 9-sphere bounds a
spin manifold but does not bound a parallelizable manifold.

The first statement is identical to [Sc6, Thm. II] for the cases listed, and the proof in [Sc6]
is correct as written, so it is only necessary to prove the second part of the theorem.
Proof of 4.4(ii). As noted in the proof of [Sc6, (3.1)] there is a cobordism W1 such that

(1) ∂W1
∼= Σ3 × CP2 ∐

S3 × CP2#M7,
(2) the inclusions of Σ3 × CP2 and S3 × CP2#M7 induce isomorphisms in integral ho-

mology,
(3) W1 is simply connected.

Let h : S3 × CP2#M7 → S3 × CP2 be a diffeomorphism homotopic to Ψ ofM , as in the
previous proposition, let W ′

1 be the principal S1 bundle over W1 whose first Chern class
generatesH2(W1), let h′ be an S1 equivariant diffeomorphism of principal S1 bundles covering
h, and form the smooth semifree S1-manifold

X9 =
(
Σ3 ×D6

)
∪ϕ W ′

1 ∪h′

(
D4 × S5

)

where ϕ : Σ3 × S5 → ∂0W
′
1 = Σ3 × S5 is the identity. It follows immediately that X9 is a

homotopy sphere, and by construction the fixed point set is Σ3.
To determine the differential structure on the exotic sphere X9 we shall use the meth-

ods of [Sc3]. The latter associates a knot invariant to the pair (X9, semifree S1-action)
with values in π3(FG(C3), U3) ∼= Z2 and the explicit construction of X9 shows that the
knot invariant is the nontrivial class. By the results of [Sc3,§3] for G = S1 the differential
structure on X is given implicitly as follows: Take the suspension of the nontrivial class in
π3(FG(C3))/ Imageπ3(U3), form its suspension in π3(FG(C4))/ Imageπ3(U4) and let Ψ′ be
the an associated homotopy self equivalence of S3 × CP3. Then Ψ′ ofX is homotopic to a
diffeomorphism (in this connection also see [Ms3]). By the proof of [Sc6, (5.7b)] the image
of X9 under the Pontryagin-Thom map Θ9 → πS

9 / ImageJ ∼= Z2 ⊕ Z2 is the nonzero class
represented by ν3 ∈ π9. It follows that X9 bounds a spin manifold but does not bound a
parallelizable manifold.

Suppose now that Y 9 is a homotopy sphere supporting a semifree differentiable S1 action
with Σ3 as its fixed point set, where the Rochlin invariant of Σ3 is 1. General considerations
as in [Sc1] show that Y bounds a spin manifold. It remains to show that Y cannot bound a
parallelizable manifold. The first step is to show that the knot invariant cannot be trivial.
If it were, then the results of [Sc3, §4] imply that the image of Y under the composite
Θ9 → πS

9 / ImageJ ⊆ π9(F/O) must belong to the image of the map

w∗ : [S4CP2, F/O] → [S4S5, F/O] = π9(F/O)

induced by the fourth suspension of the usual orbit space projection w : S5 → CP2. Since

F/O is an infinite loop space and stably w is given by the composite S5 2ν
→ S2 ⊆ CP2 (cf.
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[Sc3, (4.15)]) it follows that the image of ν3 in π9(F/O) does not lie in the image of w∗.
Similarly, if the knot invariant is nontrivial then the images of X9 and Y 9 in π9(F/O) differ
by an element of the image of w∗, and the same computations, show that this difference
cannot be ν3; but this means that Y 9 cannot bound a parallelizable manifold.�

The problem considered above is a special case of an extremely recalcitrant question in
surgery theory.

Problem 4.5. Let f : X → X be a simple homotopy equivalence on a closed manifold X
such that f is normally cobordant to the identity. Is f homotopic to a homeomorphism? In
the smooth category, if f is smoothly normally cobordant to the identity, is f homotopic to a
diffeomorphism?

Proposition 4.3 and other known results (e.g., see [CS], [KS]) suggest that the answers
to such questions are often unpredictable. In view of the successful use of M. Weiss’ visible
surgery theory [We] to study problems of this type in [CS] and [KS], it would be enlightening
to have an alternate proof of Proposition 4.3 with a similar approach.
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[Ko] A. Kosiński, On the inertia groups of π-manifolds, Amer. J. Math. 89 (1967), 227–
248.

[Kr] M. Kreck, Bordism of Diffeomorphisms and Related Topics, Lecture Notes in Math-
ematics Vol. 1069, Springer, Berlin-Heidelberg-New York-Tokyo, 1984.

[KS] S. Kwasik and R. Schultz, Visible surgery, 4-dimensional s-cobordisms and related
questions in geometric topology, K-Theory 9 (1995), 323–352.

[L1] J. Levine, Inertia groups of manifolds and diffeomorphisms of spheres, Amer. J.
Math. 92 (1970), 243-258.

[L2] , Semifree circle actions on spheres, Inv. Math. 22 (1973), 161–186.

[Ms1] M. Masuda, Smooth group actions on sphere bundles over spheres and Brieskorn
manifolds, Proc. Amer. Math. Soc. 92 (1984), 119–124.

[Ms2] , Equivariant inertia groups and invariants of non-free actions, preprint, Os-
aka City University, 1987.

[Ms3] , An invariant of manifold pairs and its applications, J. Math. Soc. Japan 42
(1990), 13–29.

[Ms4] , A product formula for connected sum, Transformation Groups (Proceedings,
Osaka, 1987), Lecture Notes in Mathematics Vol. 1375, Springer, Berlin-Heidelberg-
New York-Tokyo, 1989, pp. 231–239.



22

[MSc1] M. Masuda and R. Schultz, Generalized Rochlin invariants of fixed point sets, Osaka
J. Math. 31 (1994), 387–402.

[MSc2] , Invariants of Atiyah-Singer type, classifications up to finite ambiguity, and
equivariant inertia groups, Indiana Univ. Math. J. 45 (1996), 545–581.

[P] T. Petrie, The Atiyah-Singer invariant, the Wall groups Ln(π, 1), and the function
(tex + 1)/(tex − 1), Ann. of Math. 92 (1970), 174–187.

[Rbg] M. Rothenberg, Torsion invariants and finite transformation groups, Proc. A. M. S.
Sympos. Pure Math. 32 Pt. 1 (1978), 267–311.

[RT1] M. Rothenberg and G. Triantafillou, An algebraic model for G-simple homotopy types,
Math. Ann. 269 (1984), 301–331.

[RT2] , On the classification of G-manifolds up to finite ambiguity, Comm. Pure
Appl. Math. 44 (1991), 733–759.

[Sc1] R. Schultz, Composition constructions on diffeomorphisms of Sp ×Sq, Pac. J. Math.
42 (1972), 739–754.

[Sc2] , Homotopy decomposition of equivariant function spaces I, Math. Zeit. 131
(1973), 49–75.

[Sc3] , Differentiable group actions on homotopy spheres I: Differential structure
and the knot invariant, Inv. Math. 31 (1975), 105–128.

[Sc4] , Differentiable group actions on homotopy spheres II: Ultrasemifree actions,
Trans. Amer. Math. Soc. 268 (1981), 255–297.

[Sc5] , Nonlinear analogs of linear group actions on spheres, Bull. Amer. Math.
Soc. (2) 11 (1984), 263–285.

[Sc6] , Homology spheres as stationary sets of circle actions, Mich. Math. J. 34
(1987), 83–100.

[Sc7] , Isovariant homotopy theory and differentiable group actions, Proc. KAIST
Math. Workshops 7 (1992), 81–148.

[Wa] C. T. C. Wall, Diffeomorphisms of 4-manifolds, J. London Math. Soc. (1) 39 (1964),
131–140.

[We] M. Weiss, Visible L-theory, Forum Math. 4 (1992), 465–498.

[Wi1] H. E. Winkelnkemper, On equators of manifolds and the action of Θn, Ph. D. Thesis,
Princeton University, 1970.

[Wi2] , Manifolds as open books, Bull. Amer. Math. Soc. 79 (1973), 45–51.

[Wi3] , On the action of Θn, Trans. Amer. Math. Soc. 206 (1975), 339–346.

[Ya] M. Yan, The periodicity in stable equivariant surgery, Comm. Pure Appl. Math. 46
(1993), 1013–1040.

[Yo] T. Yoshida, Surgery obstructions of twisted products, J. Math. Okayama Univ. 24
(1982), 73–97.



23

Mikiya Masuda Reinhard Schultz
Dept. of Mathematics Dept. of Mathematics
Osaka City University University of California
Sugimoto, Sumiyoshi-ku 2208 Sproul Hall
Osaka 558 JAPAN Riverside, California 92521 USA

Version 3.0 June, 1997


