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Abstract

If M and N are two 3-dimensional lens spaces, then previous results of the authors
show that their n-fold products with themselves are always diffeomorphic if n is
even, while if n > 3 is odd the analogous n-fold products are diffeomorphic if and
only if M and N are homotopy equivalent. In this paper it is shown that for all
other irreducible geometric 3-manifolds with trivial first Betti number, the n-fold
products of such manifolds with themselves are homeomorphic for some n > 2 if and
only if the manifolds themselves are homeomorphic. Partial results are also obtained
in the reducible case. The proofs are based upon structure and rigidity theorems for
hyperbolic, Haken, and Seifert 3-manifolds, group-theoretic considerations, results
of S. C. Wang on maps of 3-manifolds with nonzero degrees and the Hendriks-
Laudenbach splitting theorem for homotopy equivalences of 3-manifolds.
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1 Introduction

In [22] the authors showed that two 3-dimensional lens spaces L and L' with
isomorphic fundamental groups have diffeomorphic cartesian squares; i.e., one
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has L x L ~ L' x L'. It should be noted that L and L' do not even have to
be homotopy equivalent. The question of the existence of spaces with this
property was originally formulated by S. Ulam [37], and as indicated in [22],
lens spaces are the lowest dimensional compact examples that one can produce.

It is natural to ask what other sorts of 3-dimensional examples of this sort
exist. Examples of non-compact (open) 3-manifolds W? such that W? # R3,
but W3 x W? = R® have been known for some time (¢f. Glimm [9], Kwun
[19] or McMillan [24]); one such example is the Whitehead 3-manifold that
is contractible but not simply connected at infinity [42]. These suggest that
one should concentrate on the existence of compact 3-manifolds A, B such
that A x A is homeomorphic to B x B but A is not homeomorphic to B.
The purpose of this paper is to show that no examples of this sort exist in a
large class of basic 3-manifolds whose fundamental groups are either infinite
or finite but noncyclic.

As in [22] one can also consider the generalization of this question in which
cartesian squares are replaced by arbitrary finite powers. To streamline the no-
tation we shall denote the n-fold product of an object A with itself by []" A;
we shall call this product the cartesian n—th power of A. The correspond-
ing problem is then to find all closed 3-manifolds M, N such that [[" M is
homeomorpic or diffeomorphic to [[*" N for some integer n > 2. One step in
studying the problem is to introduce a strong property of this type.

Definition 1 Let X and Y be topological spaces. The pair X,Y is exponen-
tially stable if [[" X ~ [["Y, for each n > 2, implies X = Y.

(Here = stands for homeomorphic.)

Theorem 2 Let M and N be lens spaces with isomorphic fundamental groups.
Then the pair M, N is NOT exponentially stable if and only if M and N are
homotopy equivalent but nonhomeomorphic lens spaces.

Given the close relation between homotopy equivalence and homeomorphism
for many 3-manifolds, it is natural to ask if there are any other examples of
3-manifolds that are not exponentially stable.

If 33 is a closed manifold that is homotopy equivalent to S®, then ¥2 bounds
a parallelizable 4-manifold and it is a routine exercise — either by surgery the-
ory and the surgery exact sequence (cf. Wall’s book [39, Chapter 10]) or by
more direct and elementary considerations as in [30] — to show that ¥ x X
is diffeomorphic to S x S3, and thus it is clear that a study of exponential
stability for 3-manifolds is more likely to be illuminating if, for example, it
avoids the Poincaré Conjecture. To achieve this we assume that all 3-manifolds
considered in this paper are closed, oriented and geometric in the sense of W.
Thurston (see [36]). This means that each prime summand of the manifold can



be decomposed, by cutting along incompressible tori, into pieces which are ei-
ther Seifert fibered or admit finite volume hyperbolic metrics. The well known
Geometrization Conjecture of [36] asserts that all 3-manifolds are geometric.
Our main result can be stated as follows:

Theorem 3 Let M and N be closed, connected, oriented, geometric 3-mani-
folds such that H*(M;Z) = HY(N;Z) = 0 and one of M, N has no lens spaces
in its prime decomposition. Then [[" M =~ [[" N for some n > 2 if and only
if M~ N.

In particular, it follows that

(1) two closed, connected, oriented, irreducible, geometric 3-manifolds with
vanishing first Betti number are exponentially stable if and only if they
are not both lens spaces with isomorphic fundamental groups,

(2) two irreducible Seifert manifolds with vanishing first Betti number are
exponentially stable if and only if they are not both lens spaces with iso-
morphic fundamental groups,

(3) two manifolds satisfying the conditions of Theorem 3 are exponentially
stable.

Remark 4 It seems that some assumptions imposed on 3-manifolds in this
paper can be relaxed; for example, orientability.

Remark 5 The assumption H'(M;Z) = H'(N;Z) = 0 is crucial for the
construction of a map f : M — N with nonzero degree (cf. Lemma 7 and
Proposition 22). We suspect that the conclusions of 3 and 7 remain true with-
out this restriction (compare Remark 10 below.

Remark 6 Theorems 2 and 3 and the results of [22] give complete informa-
tion on the classification of cartesian powers of closed, oriented, irreducible
and geometric 3-manifolds with H'(—;Z) = 0, and Theorem 33 also yields in-
formation for some reducible manifolds satisfying these conditions. One could
also try to combine the results of Hendriks and Laudenbach [HnL] on splitting
homotopy equivalences of 3-manifolds with surgery-theoretic considerations to
analyze the reducible case in full generality, but it appears that the technical
difficulties encountered in such an analysis would be monumental.

2 Preliminaries

This section discusses some background information that will be needed; we
begin with an elementary result that is important for our purposes.

Lemma 7 Let M?® and N? be closed oriented 3-manifolds such that H*(M;Z)



and H'(N;Z) are both trivial, and let f : [["M — [I"N be a homotopy
equivalence for some n > 2. Then there is a map from M to N of nonzero
degree.

Remark 8 If [[* M and [[" N are homotopy equivalent for some n > 2, and
H;(M;®) = 0 when 0 < i < ¢ for some principal ideal domain ®, then
H; (IT" M;®) is also trivial by induction and the the Kiinneth formula, and
since
0=H,;(II"M;9) ~ H; ([I"N;9), 0<i<yq

one can also apply the same results to work backwards and conclude that
H;(N;®) = 0 for 0 < i < g. Furthermore, for X = M or N induction and
the Kiinneth formula also imply that the slice inclusion maps J; : X — [[" X
(identity on one factor, constant on the rest) induce an isomorphism

Jx - @Hq(XQQ) — Hq (HHXQQ)

with Jx (uy, -+ ,up) = X, Jix(u;). If the projection map onto the k-th coordi-
nate is given by P : [[" X — X, then the inverse to Jx is the map Px in the
reverse direction given by the formula

Px(v) = (P:(v), - P (v))
If we combine these observations with the isomorphism
Hy(IT"M; D) = Hy(II"N; D)

and the basic structure theorem for finitely generated modules over a princi-
pal ideal domain, we see that H,(M;®) and H,(N;®) must be isomorphic.
Similar results hold in cohomology with coefficients in 2.

Remark 9 In the special case of the preceding remark with ¢ = 1, it follows
that if []" M and [[" N are homotopy equivalent then H,(M;Z) ~ H,(N;Z)
and H'(M;Z) ~ H'(N;Z). In particular, the vanishing of either H'(M;Z) or
H'(N;Z) implies the vanishing of the other.

Remark 10 Lemma 7 remains true if H'(M;Z) ~ H'(N;Z) is infinite cyclic;
our current proof of this is elementary but tedious, and we hope to provide a
more general and conceptual argument elsewhere.

Proof of Lemma 7. By the assumptions on integral cohomology and Poincaré
Duality, both M and N are rational homology 3-spheres. By the argument of
Remark 8 above, the projection and slice inclusion maps induce isomorphisms

n

D H:(X;Q) — H; (I"X; Q)



where X = M or N; since Z is a rational homology 3-sphere, the left hand
side is isomorphic to Q™. The homotopy equivalence f determines an iso-
morphism from H3([T" M;Q) to H;3(IT" N;Q), and with repsect to the pre-
viously described splittings the isomorphism determined by f corresponds
to an invertible matrix in GL(n,Q). In fact, this invertible matrix actually
lies in the subgroup GL(n,Z) because the rational homology isomorphism
is given by tensoring an isomorphism of Hs3(—;Z)/Torsion with the rationals
(note that the slice inclusions also induce isomorphisms from &"H3(X;Z) to
H; (IT" X;Z) /Torsion for X = M or N). By invertibility the matrix has a
nonzero entry, and if its (k,7) entry is nonzero then the composite Pye f°J; is
a map from M to N of nonzero degree. 0O

Corollary 11 Under the hypotheses of the lemma there are maps in both
directions M — N, N — M of nonzero degree.

This is true because the hypothesis is symmetric in M and N. O

A crucial step in our arguments will be to show that there are maps of degree
+1 in both directions. It is well known that the existence of degree one maps
from M to N and vice versa implies that M and N are homotopy equivalent
if both are simply connected (such maps are split surjective in homology [3,
Thm. 1.2.5, pp. 8-9] so the existence of maps both ways implies that they
must be isomorphisms and hence homotopy equivalences by the Whitehead
Theorem for homology groups). In the nonsimply connected case things are
more complicated, and the most basic issue is contained in an old conjecture
due to H. Hopf (¢f. [12, p. 333]):

Conjecture 12 Suppose that there exist degree one maps f : M — N and
g: N — M between closed manifolds M and N. Then (M) is isomorphic
to m(N) via f,.

In particular, if M and N are aspherical, then Hopf’s conjecture would imply
that M and N are homotopy equivalent.

There is a large class of fundamental groups for which the conjecture holds.
A group G is said to be Hopfian if every surjective homomorphism from G
to itself is an isomorphism (cf. Hempel’s book [13, p. 175]). If G is residually
finite —i.e., everything is detected by the finite quotients of G [13, p. 176])
— then G is Hopfian by [13, Lemma 15.17, p. 177]. For our purposes it is
important to know that the fundamental groups of geometric 3-manifolds are
residually finite and therefore Hopfian (see [13,14]). Therefore we have have
the following:

Lemma 13 Suppose that M and N are aspherical geometric 3-manifolds and
there exist degree £1 maps f : M — N and g : N — M between M and N.
Then M is homotopy equivalent to N via f.



To see this, note that the composite g°f : M — M is also a degree =1 map
and hence induces a surjection of fundamental groups. Since 71 (M) is Hop-
fian, it follows that g° f induces an isomorphism and thus it is a homotopy self
equivalence of M by the Whitehead Theorem for homotopy groups. In partic-
ular this means that the induced map f, on fundamental groups is injective.
But since the degree of f is £1 it also follows that f, is surjective; therefore f,
is an isomorphism and f is a homotopy equivalence (again) by Whitehead’s
Theorem.

Finally, for our purposes it is important to know when homotopy equivalent
irreducible geometric 3-manifolds are homeomorphic. The following two state-
ments summarize several important results on this question.

Theorem 14 Let M and N be irreducible geometric 3-manifolds such that M
15 not a lens space, and suppose that M and N are homotopy equivalent. Then
M and N are homeomorphic and in fact diffeomorphic.

PROOF. First of all, if M is not a lens space then its fundamental group
is not a finite abelian group; therefore the same is true for the fundamental
group of N and hence N is also not a lens space. Since homeomorphisms of
3-manifolds can always be deformed to diffeomorphisms, it suffices to prove
that M and N are homeomorphic.

There are now several cases depending upon the geometry of M.

Case 1 M is a spherical spaceform with a finite nonabelian fundamental
group.

It follows that N must also have a finite nonabelian fundamental group and
since N is geometric it must also be a spherical spaceform with a finite non-
abelian fundamental group. Since such manifolds are determined up to home-
omorphism by their fundamental groups (cf. Seifert-Threlfall [32]; also see [21,
p. 737, Case 1)), it follows that M and N must be homeomorphic. O

Case 2 M 1is hyperbolic.

In this case we may use the hyperbolization result of D. Gabai, R. Meyerhoff
and N. Thurston [8] to conclude that NN is also hyperbolic (other proofs are
possible, but a reference to [8] is the most efficient). It follows that the homo-
topy equivalence from the hyperbolic manifold M to the hyperbolic manifold
N is homotopic to a homeomorphism by G. Mostow’s rigidity theorem (cf.
[26,27]; see also the discussion in [21, p. 738]). O

Case 3 M has infinite fundamental group but is neither Seifert fibered nor
hyperbolic.



In this case the classification of geometric 3-manifolds implies that M is Haken.
We claim the same is true for NV; it suffices to check that N is neither Seifert
fibered nor hyperbolic. The result of [8] implies that N cannot be hyperbolic
because we are assuming that M is not hyperbolic, and similarly a result of
P. Scott [31] shows that N cannot be Seifert fibered (again we are assuming
M is not Seifert fibered, and the fundamental group of M is assumed to
be infinite, so [31] applies). Since M and N are both Haken and they are
homotopy equivalent, results of F. Waldhausen [38] show that M and N are
homeomorphic. O

Case 4 M has infinite fundamental group and is Seifert fibered.

In this case the main result of [31] implies that M and N are homeomor-
phic. O

It is well known that Theorem 14 does not hold if M is a lens space, but in
such cases one has the following conclusion:

Theorem 15 Let M and N be irreducible geometric 3-manifolds such that
M is a lens space. Then M and N are diffeomorphic if and only if they are
homotopy equivalent by a simple homotopy equivalence.

Once again, if M is a lens space and N is an irreducible geometric 3-manifold
that is homotopy equivalent to M then N must also be a lens space. The
conclusion then follows because the topological and simple homotopy classifi-
cations of lens spaces are identical (¢f. M. Cohen’s book [5]).

3 Proof of Theorem 3 for large Seifert 3-manifolds

We shall consider first the case that requires the most work.

Seifert 3-manifolds are circle bundles over 2-manifolds with certain specific
types of singularities (c¢f. Orlik’s book [28] or the expository article by K.
B. Lee and F. Raymond [23]). In particular the construction of a Seifert 3-
manifold M has an associated projection M — B for some surface B such
that the inverse image of each point is a circle. We shall call the map from M
to B a Seifert fibering and say that B is the associated base space.

As in [28, pp. 91-92] it is convenient to split the class of Seifert 3-manifolds
into two classes — small and large. The class of small manifolds is described
explicitly in [28, Section 5.4, pp. 99-102]; roughly speaking, these are the
examples that are either covered by S* or fiber over a circle. For our purposes
the necessary properties of large Seifert 3-manifolds are as follows:



(A) Large Seifert 3-manifolds are irreducible and aspherical (see [28, Prop. 3,
p. 93]).

(B) The fundamental group m of a large Seifert 3-manifold contains a unique
mazimal infinite cyclic normal subgroup (see 28, pp. 91-92)).

3.1 Seifert structures given by circle actions

In [28, Thm. 2, p. 88] Seifert fiberings are separated into six types depending
upon the orientability properties of the base and the fibering itself. Types
01 and o9 correspond to examples where the base manifold is orientable and
Types n; for 1 < ¢ < 4 correspond to examples where the base space is not
orientable; the associated Seifert 3-manifold is orientable precisely in cases o;
and ns.

The most familiar examples of Seifert 3-manifolds are those admitting fixed
point free smooth actions of the circle group S*; for these examples the base is
orientable if and only if the 3-manifold itself is orientable. Since we are dealing
with orientable manifolds in this paper, these examples are given by Type o;
in the terminology of [28, Thm. 2, p. 88], and in fact they include all examples
of Type 0;. In addition to being the most important case, Type o; is also the
easiest to analyze and the other orientable cases (Type ny in [28, Thm. 2, p.
88]) are relatively simple to study once we dispose of the Type o; case.

In the Type o; case properties (A) and (B) of the maximal infinite cyclic
normal subgroup can be strengthened as follows:

Property 16 For Seifert 3-manifolds of Type o1, the unique maximal infinite
cyclic normal subgroup of m s the class generated by a generic orbit of the
circle action and is central.

This follows from the discussion in the first paragraph of in [28, Section 5.3,
pp- 90-91]. O

Property 17 For Seifert 3-manifolds of Type o1, the unique maximal infinite
cyclic normal subgroup of m is the center of 7.

A self-contained way of seeing this without checking generators and relations
from [28, p. 91] is as follows: If the center C' is cyclic then by the maximality
property it it must be the subgroup in question, but if C' were not cyclic then
C would have to contain a free abelian subgroup of rank 2, and in this case
there could not be a unique maximal infinite cyclic normal subgroup. O

If M is a large Seifert 3-manifold of Type 0; with fundamental group =, let



C : Z — w denote the inclusion of the central subgroup in (B) and let I" be
the quotient w/C(Z); it follows that I is a planar crystallographic group.

The homology and cohomology of K (I, 1) over the rationals can be determined
fairly easily because a model for the latter is given by the “homotopy orbit
space” or Borel construction Mg, which is the associated fiber bundle with
fiber M for the universal principal S! bundle over CP* (¢f. Bredon’s book [2,
p. 369]). There is a canonical map ¢ from Mg to the orbit space M/S! and
if St acts without fixed point on M it follows that ¢ is an isomorphism over
the rationals (c¢f. the Borel seminar notes [1, Application IV.3.4.(b), p. 54] and
the discussion preceding the latter). Since M/S' is a surface that is part of
the data describing the Seifert structure on M, the rational information about
K(I',1) is easy to retrieve. In cases where H'(M;Z) = 0 the orbit space is
known to be homeomorphic to S2.

An analysis of the homology and cohomology of K (I, 1) requires more effort
but is still relatively easy. The central extension £(7) given by the diagram

0—2Z—->m—>1—>1

gives rise to a Lyndon-Hochschild-Serre spectral sequence (also called simply
the Lyndon spectral sequence) in group cohomology and homology; the coho-
mology sequence is presented in Hilton-Stammbach [16, Theorem 9.5, p. 303]
and the analogous homology sequence is discussed in [16, Remark (ii), p. 304,
and Exercise 9.4 on p. 305]. Given an integral domain A this spectral sequence
has

Ef,t = H, (I'; H(Z; A))

and abuts to Hs(m; A) &~ Hs(M; A).

The Lyndon spectral sequence is natural with respect to morphisms of central
extension diagrams [16, Exc. 9.7, p. 305].

For the remainder of the discussion for Type 0, we shall assume that H'(M;Z)
is trivial. — It follows that Hy(w : Z) ~ H,(M;Z) is finite, and in this case
the spectral sequence yields a great deal of information about the homology
of I' with integral coefficients.

Claim 18 The differential dg,o maps injectively to E§,1 ~ Z and thus Hy(I") =~
Z.

By Poincaré duality we know that Hy(w;Z) = Ho(M;Z) = 0, and the claim
describes the only possible map consistent with this fact. O

Claim 19 The differential d3, maps surjectively to E? | ~ H,(I';Z) and the
kernel is a finite cyclic group (possibly trivial).



This is the only possibility consistent with the vanishing of H, and the fact
that Hs(m;Z) = H3(M;Z) is infinite cyclic. O

Notation. The order of the kernel of d3 , will be denoted by e (M). It follows
that e (M) is also the order of the image of H3(M;Z) in H3(I';Z).

Claim 20 The differential dio maps trivially to E§71 ~ Hy(I';Z) ~ 7.

The rational calculation H;(I'; Q) ~ 0 for i > 3 implies that E}, ~ Hy(I"; Z)
is torsion, and consequently the only possible homomorphism is the trivial
one. 0O

Claim 21 We have E3, = E3S C Hs(m;Z) ~ Hs(M;Z) and e*®(M) is also
the index of this subgroup.

We know that E3;, = E59 because d” = 0 and there are no higher differentials
into or out of Ej, for r > 3. The inclusion in Hs(m) follows because EZ, =0
for t > 2, and the statement about e (M) follows from edge homomorphism
considerations in the spectral sequence. O

Suppose now that we have a homeomorphism f : [[" M — [[" M' where M
and M’ are large Seifert 3-manifolds of Type 0; and n > 2. Let ' := 7 (M'),
let C' : Z — 7' be the inclusion of the center in w1 (M'), and let I := 7' /C'(Z)
so that we have a central extension & (')

0=Z -7 —-I"—1

analogous to £(m) above. The following sharpening of Lemma 3 is the key
observation for comparing M and M.

Proposition 22 In the situation above, there is a map g from M to M' such
that the associated map of fundamental groups sends the center C(Z) C
isomorphically to C'(Z) C " and the degree of g satisfies

|deg(g)| - e*(M) = e> (M)
where e* is defined as above.

To prove Proposition 22, let f, : 7" — (7')™ be the associated isomorphism of
fundamental groups. This map sends the center of the source onto the center
of the target, so denote the associated automorphism of Z" by h,. Passage to
quotients then defines an isomorphism of quotient groups

ke:I™— (I'"

that is associated to a homotopy equivalence & : [[" K(I,1) — [[" K (I, 1).

10



Consequently, if [T" £(7) and []" £(7") denote the n-fold products of the exten-
sions £(7) and £(n') with themselves, it follows that f., h. and k. determine
an isomorphism of diagrams from [[" E(7) = £(7") and [" E(n') = € (7)),
and this in turn yields an isomorphism between the corresponding Lyndon
spectral sequences.

Consider the isomorphism
k. : Hy ([I"K(I',1); Z) /Torsion — H, ([I"K(I",1); Z) /Torsion
Free generators for the free abelian groups
H, (TI"K(I,1);Z) /Torsion and H, ([T"K(I'",1);Z) / Torsion

are given by {Ji,v | 1 < i < n} and {Ji,y' | 1 < i < n} respectively. The
previously determined properties of k, may be restated as follows:

Property 23 There is a permutation £ of {1,---,n} such that ks (Jixy) =
LJya) for all i

By the naturality of the Lyndon spectral sequence we know that

dao [€ (I1)")] ° B30k = Exg[t]°d3 0 [€(IT)")]
and therefore if o generates H;(Z;Z) ~ Z we also have the following:

Property 24 For the same permutation £ as in Property 23 we have h,J;xo0 =
L Jyiy«0 for all .

This implies that that the composite maps Fy; := P feJ; from M ~ K(m,1)
to M' ~ K(n',1) all have the property that the induced maps in fundamental
groups Fy;, send the centers of the sources isomorphically to the centers of the
targets.

It remains to prove the assertions about the degree of Fj;. The preceding con-
siderations show that Fy; induces an isomorphism from E3, [£(7)] to E3,[£(n)].
On the other hand, by Claim 20 above we know that E3, = E39 for both
E(m) to £(n'). By Claim 19 above we know that E59[€(m)] has index e*(M)
in H3(m) ~ H3(M) and likewise E3S[€(n')] has index e*(M') in Hz(7') ~
H3(M'), where all homology groups are over the integers. In particular, all of
this implies the formula

P (¢ (M)[M]) = £ (M')[ M.

The formula for the degree of Fy; is an immediate consequence, and this com-
plete the proof of Proposition 22. O

11



Corollary 25 The degree of the map in Proposition 22 is +1.

PROOF. By Proposition 22 we know that e (M) divides e>(M'). However,
the hypothesis is symmetric in M and M’, so it also follows that e (M)
divides e (M), which means that e> (M) = e*(M"). The degree formula now
impliesd = +1. O

Ultimate conclusion for Type o;. If M and M’ are large Seifert 3-
manifolds of Type o7, then Lemma 13, Proposition 22 and Corollary 25 com-
bine to show that Theorem 3 is valid for M and M’.

3.2 Seifert manifolds with solvable fundamental groups

According to the list on pages 91 and 92 of [28], a Seifert manifold of Type o,
is either large or else its fundamental group is finite or solvable (and possibly
both). In fact, it is not difficult to show that the conclusion of Theorem 3
holds if M and M’ are small of Type 0;. The cases with finite fundamental
groups are treated in the next section (see Case 1). Since we need the result
for cases with infinite solvable fundamental groups we shall verify it here.

Proposition 26 The conclusion of Theorem 3 is valid if M and M’ are irre-
ducible Seifert manifolds of Type o1 with infinite solvable fundamental groups
and arbitrary first Betti number.

In order to prove this result, it is necessary to describe certain Seifert manifolds
using the classification invariants defined in [28, Thm. 3, p. 90]. These data
are given by lists of the form

{b; (5,9) ; (&1,51),---,(araﬁr)}

where

(1) b is a generalization of the (oriented or nonoriented) Euler class for a
circle bundle,

(2) ¢ is one of the six types o; and n; mentioned previously,

(3) g is the genus of the base space (which is a surface),

(4) r is some nonnegative integer (possibly zero),

(5)

scribing the structure of the Seifert fibering near the singular points
(hence r can be any nonnegative integer). If the Seifert fibering is the or-
bit space projection of a circle action, then «; is the order of the isotropy
group for a singular orbit and f; describes the slice representation [2] for
that orbit.

12



For the orientable Seifert manifolds of Types o; and n, the Euler class b is an
integer and the pairs (o, §;) satisfy 0 < f; < «;.

Proof of Proposition 26. As noted in [28, Thm. 1, pp. 142-143] (also see
Evans-Moser [6]), the irreducible manifolds of Type o; with solvable infinite
fundamental groups are those whose Seifert invariants have one of the following
descriptions:

e Subclass (i) {b;(01,1)}
e Subclass(ii) {b;(01,0);(2,1),(2,1),(2,1),(2,1)}
e Subclass(iv) Some examples with ¢ =0 and r < 2.

Subclass (#¢) from [28, Thm. 1, pp. 142-142] has been omitted because the
fundamental groups in these cases are finite, and the only examples in Subclass
(iv) with infinite fundamental groups are homeomorphic to S' x S2.

It is a routine exercise to compute the first homology groups of these manifolds
over the integers using the presentations on page 91 of [Or|, and the results
are given below; in cases where we write Z; and d turns out to be zero, the
group in question is merely Z.

e Subclass (i) The first integral homology group is Z © Z @ Zy.

e Subclass (i) The first integral homology group is Zy @ Zy @ Z g 4s|-

e Subclass (iv) If the fundamental group is infinite, then the first integral
homology group is Z.

The only ways in which two different sets of data can yield the same first
homology are two examples in subclass (i) with b = —b' or two examples in
Subclass (i7) with (8 + 4b) = —(8 + 4V'). However, as noted in [28, p. 90,
paragraph preceding Section 5.3] the two sets of data in such cases represent
the same Seifert manifold with different orientations. In particular, nonhome-
omorphic examples have nonisomorphic first integral homology groups.

Suppose now that M and M’ satisfy the hypotheses of the proposition and
[1" M is homeomorphic to [T" M' for some n > 2. As in Remark 8 above, it
follows that H;(I[" M;Z) ~ &"H,(M;Z) is isomorphic to H([[" M";Z) ~
@™ H;(M';Z). But the structure theorem for finitely generated abelian groups
implies that two such groups A, B are isomorphic if 8" A ~ &" B, and therefore
H,(M;Z) must be isomorphic to Hy(M'; Z). By the conclusion of the previous
paragraph this means that M and M’ must be homeomorphic. O
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3.8 The remaining large Seifert manifolds

We have already noted that the classification of Seifert 3-manifolds as in [28,
Thm. 2, p. 88] categorizes them into six types depending on orientation in-
variants, and aside from Type o; the only other type yielding orientable 3-
manifolds is Type ny, which includes certain nonorientable circle bundles over
nonorientable surfaces. For the manifolds of Type ny, one has the following
strengthening of general property (B):

Property 27 The fundamental group m contains a normal subgroup K of
index 2 such that K 1is the centralizer of the unique mazimal cyclic normal
subgroup ). Furthermore, the group K is the fundamental group of a Seifert
3-manifold of Type o0,.

PROQOF. The presentation for 7 in [28, p. 91] shows that the action of =
on {2 &~ Z by conjugation determines a nontrivial homomorphism from 7 to
Aut(Q2) =~ Z,. If K denotes the kernel of this map, then clearly K has all the
required properties except perhaps the last one (i.e., its realizability as the
fundamental group of a Seifert manifold). A fast way of realizing K as the
fundamental group of a Seifert manifold is to apply the result of A. Casson
and D. Jungreis [4] to the double cover M of M associated to the subgroup
K: note that M is orientable because it is a covering space of an orientable
manifold. The result of [4] is applicable because M is irreducible (its universal
cover is the universal cover of M, which is R?) and K ~ (M) contains the
subgroup €2 as a normal cyclic subgroup, so it follows that M is a Seifert
3-manifold of Type 0;. O

In the proof of Theorem 3 for large Seifert manifolds of Type o; we concluded
that the subgroup C(Z)™ C n™ was a characteristic subgroup because it was the
center. We shall also need to know this subgroup is characteristic for Type ng,
but this requires more detailed information about the subgroup’s properties
for large Seifert 3-manifolds.

Proposition 28 Let 7 be the fundamental group of a large Seifert 3-manifold,
and let Q C 7w denote the unique mazimal (infinite) cyclic normal subgroup.
Then Q™ C 7™ is the unique mazimal normal subgroup of ™™ that is free abelian
of rank n and expressible as a direct product of n cyclic normal subgroups.

Corollary 29 In the preceding notation, Q" is a characteristic subgroup of 7.
Furthermore if the Seifert manifold is of Type no, and K C 7 is the subgroup
of index 2 described in 27 then the n-fold product K™ is also characteristic in
the n-fold product ©™.
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Proof of Corollary 29. The subgroup (2" is characteristic because an iso-
morphism must send a subgroup with the stated properties to another of the
same type. The assertion about K" follows because it is the centralizer of (0"
and and isomorphism must preserve the centralizers of subgroups satisfying
the same properties as ". O

Proof of Proposition 28. Let C be an arbitrary infinite cyclic normal
subgroup of 7", let j be an integer such that 1 < j < n, and consider the
projection P;(C) of C onto the j-th coordinate of 7™. This is a cyclic normal
subgroup of 7 and as such is contained in 2. Since j is arbitrary it follows
that C' C Q". If L is an arbitrary normal subgroup that is a product of the
cyclic normal subgroups Ly, - - - L,, (where m need not equal n), it follows that
L c Q™. This shows that 2" is the unique normal subgroup with the stipulated
properties.

3.4 Completion of the proof of Theorem 3 for large Seifert 3-manifolds

Let f : [I"M — II" M’ be a homeomorphism and let f, : 7" — (7')" be
the associated isomorphism of fundamental groups. One way of distinguishing
between manifolds of Types o0; and ny is that the fundamental groups for
Type 0, have nontrivial centers while those of Type ns do not. This and the
isomorphism f, imply that both M and M’ are either of Type 0; or of Type
no. Since we have already proven the result if M and M’ are of Type o0;, we
shall assume they are both of Type ny henceforth.

If K ¢ # and K' C 7' are the centralizers of the maximal cyclic normal
subgroups, then the reasoning of Corollary 29 implies that f, maps K™ onto
(K")™. The proof now splits into cases depending upon whether M is large or
M has a solvable fundamental group (note that these cases are not disjoint,
but this is not important for our purposes).

Suppose first that K is solvable; since K has index 2 in 7 it follows that the
latter is also solvable. Furthermore, since a group G is solvable if and only
if G™ is solvable, it follows that both K "and 7' are also solvable. If M and
M’ are the double coverings associated to K and K’, then by the previous
paragraph f lifts to a homeomorphism from []" M to H" M. By Proposition
26 it follows that M ~ M’ and K ~ K. Since 7 and 7' are infinite solvable
groups and M and M' are irreducible, by [28, Thm. 1, p. 142] these manifolds
must have Seifert invariants of the form

{b; (n2)1) ; (2a1)’(27 1)}

where b is an arbitrary integer. As noted in theorem cited in the previous
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sentence these manifolds have double coverings that are Seifert manifolds of
Type o1, and the corresponding invariants for the double coverings are

{2b ; (01’ O) ; (21 1)’ (2’ 1)7 (2’ 1)’ ((2’ 1)}

(note that the first numerical invariant doubles when one passes to the double
covering). By construction the fundamental groups of these double coverings
are the centralizers of the maximal normal cyclic subgroup in the fundamental
groups of the original manifolds. Choose integers b and &' such that M has
first numerical invariant b and M’ has first numerical invariant o’. The hypoth-
esis [[" M =~ [[" M' then implies that the fundamental groups of the double
coverings are isomorphic, and by the proof of Proposition 26 this means that
either 20" = 2b or 20’ = —2b—4; i.e., either b’ = b or b’ = —b— 2. On the other
hand, we can once again apply [28, p. 90, paragraph preceding Section 5.3]
to conclude that the two sets of data yield the same manifold with different
orientations. Therefore we have M = M’ if the group K is solvable. O

Assume now that K is not solvable; since K is infinite it follows that M must
be large, and as in the previous paragraph we also know that K’ is also not
solvable and | M must also be large. We know that f lifts to a homeomorphism
f from []" M to []" M'. There are now two subcases.

Subcase 3.1 H(M;Z) = 0.

In this case Proposition 22 and Corollary 25 imply the existence of integers
i and £ such that Py feJ; is a map of degree 1 and in fact is a homotopy
equivalence. This composite is a lifting of a corresponding map Fy; = P, f°J;
from M to M', and a diagram chase shows that the degree of the map Fp; must
also be £1. Therefore we have shown the existence of a map M — M’ of degree
+1. Using the symmetry of the hypothesis in M and M' we see that there
must also be a map of degree +1 in the opposite direction, and therefore we
can again use Lemma 13 to conclude that M and M’ are homotopy equivalent
and thus homeomorphic by Theorem 14.

Subcase 3.2 H'(M;Z) # 0.

In this case we claim that H*(M;Z) =~ Z and the restriction to an orbit of
the associated circle action induces a monomorphism in cohomology. This is
particularly important because it implies that M fibers over a circle [28, Cor.
5, p. 122]. We begin by noting that the base B of the original Seifert structure
on M must be RP?; since B is nonorientable it is a connected sum of (say)
g copies of RP?, and the presentation of 7 (M) on [28, p. 91] shows that its
abelianization Hq(M;Z) is finite only if g = 1. The double covering M can be
realized geometrically by taking the pullback of M under the double covering
S?2 5 RP2EIfL =K /€2, then we again have a Lyndon spectral sequence
that abuts to the homology of K (which is just H,(M), and we also know
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that H,(L; Q) ~ H,(S? Q) as before. The only way that the rational spectral
sequence can abut to H,(M;Q) if H, # 0 is if E? = E*, and in this case the
inclusion of an orbit S — M determines an isomorphism in one dimensional
homology. This yields the claims made at the beginning of the paragraph.

Let K, etc. be defined as in Subcase 3.1 and let L' = K''. Since f, maps Q"
to Q'™ it follows that f passes to a homotopy equivalence

o [[K(L1) = [[ K1)

As in earlier arguments we know that these products have the same rational
cohomology rings as [[" S?, and if P, and J; denote the canonical projection
and injection maps then there is a permutation o of {1,--- ,n} such that
for each ¢ the map ¢y = Pyop°J; induces a nontrivial map in 2-dimensional
rational cohomology if and only if £ = o (7). In fact, if we replace f with the
composite S(o71)e f, where S(c~') shuffles coordinates via the permutation
071, then we can simplify things so that the permutation becomes the identity.
We shall assume this for the remainder of the proof.

Passing back to integral coefficients we see that the maps associated to y;
in either the functorially modified homology groups Hy(—;Z)/Torsion or the
functorially modified cohomology groups H?(—;Z) /TorS|on are trivial if £ # 4
and isomorphisms if ¢ = 1.

By Lemma 7 there is a map Ps°f°J; from M to M’ of nonzero degree, and
this is covered by a map P;° f°J; of the same degree.

Claim 30 If deg(Ps°f°J;) # 0 then s =t.

PROOF. Suppose s # t; it suffices to prove that deg(P; o fo Ji) = 0; to sim-
plify notation we shall set Ay, = Py feJ,). Let ¢ : M — S* and ¢' : M’ — S*
be the fiberings described above, and denote their fibers by ¥ and ¥'. Both
¢ and ¢' induce isomorphisms in 1-dimensional integral cohomology, and thus
there is a self-map 1) of H'(S") such that 1y °¢* = (¢')*\%,. Since S'isa K(Z, 1),
there is a self map ¥ of S* that induces 1) on integral cohomology and satisfies
Weq ~ ¢'° )\, and this in turn yields a corresponding map of fibers e : ¥ — 3/
such that
(Inclusion X c M\']) oe ~ Ay| M.
Earlier observations and elementary considerations involving the cohomology
of mapping tori (¢f. [25, Lemma 8.4, p. 67]) imply that the maps ¥ C M,
M — K(L,1) and their counterparts &' ¢ M', M’ — K(L',1) all induce
isomorphisms in H?(—;Z)/Torsion. Choose ds; so that (Ps°@°.J;)* maps a gen-
erator of
H*(K(L',1);Z)/Torsion ~ Z
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to dg times a generator of
H*(K(L',1);Z)/Torsion ~ Z.
A diagram chase then shows that

|deg(Ast)| = |deg(dse)| - [deg(P)].

However, we had previously noted that deg(ds;) = 0 if s # ¢, and this estab-
lishes the claim. O

Corollary 31 We also have deg(A\y) = £1.
This follows immediately because (\y), induces isomorphisms in homology. O

We have thus established the existence of a map M — M’ of degree £1 in
Subcase 3.2, and the rest of the argument for this subcase proceeds as for
Subcase 3.1. O

Remark 32 There is an analog of Theorem 3 for planar crystallographic
groups: Given two such groups G, H of this type, relatively elementary con-
siderations like those of [43, p. 120, and Cor. 1.10.8 on p. 136] imply that
G =~ H if G" =~ H" for somen > 2.

4 Proof of Theorem 3 for other irreducible 3-manifolds

Not surprisingly, the proof of Theorem 3 in the other cases breaks down into
subcases depending upon the geometry of M.

Subcase 4.1 M 1is a spherical spaceform with a finite nonabelian fundamental
group.

In this case we have [y (M)]" & [r1(N)]" for some n > 2. Since 71 (M) is finite
it follows that [m1(M)]" & [71(IN)]" must also be finite, which in turn implies
that 7 (V) is finite. Furthermore, it follows that m;(/N) must be nonabelian
(otherwise [m; (M)]" ~ [m1(N)]" would also be abelian and likewise for 7 (M)),
and since N is geometric it follows that N must also be a spherical spaceform
with a finite nonabelian fundamental group.

Since M and N are different from lens spaces, then as noted previously they are
determined up to homeomorphism by their fundamental groups (once again
see [32] and also [21, p. 737, Case 1]), and therefore the proof of the theorem
in Subcase 4.1 reduces to checking that if G and H are finite groups such that
G™ ~ H" for some n > 2 then G =~ H. Applying this to 71 (M) and 7 (V) and
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combining it with the first sentence of this paragraph, we may then conclude
that M and N must be homeomorphic.

If G and H are finite groups that are not isomorphic to direct products of
nontrivial subgroups (i.e., it is not directly decomposable), then the group
theoretic statement is merely the Wedderburn-Remak—Schmidt Theorem (see
[11, p. 130]). The general case is an easy consequence of this result, but since
it is not easy to find a specific reference we shall include a proof for the
sake of completeness: By finiteness one can write G and H as direct products
G =~ []; G; and H =~ []; H; where each of the groups G; and H; is nontrivial
but not directly decomposable. Let L1, ..., L; be the isomorphism types of the
direct factors Gjy; i.e., each (G; is isomorphic to exactly one of the groups L,.
Then the Wedderburn-Remak-Schmidt Theorem implies that each H; is also
isomorphic to exactly one of the groups L,.

Given a finite group K such that L, is a direct factor of K, define the multi-
plicity u(c, K) such that K is isomorphic to a direct product of u(a, K) copies
of L, together with other subgroups that are not isomorphic to L, and also
are not directly decomposable. The Wedderburn-Remak—Schmidt Theorem
implies that this multiplicity is well defined and that we have the following
identities:

(1) G =~ Il L4
(2) H ~ T, L")
(3) p(a,G") =n- pu(a,G) for all a.
(4) p(a, H*) = n - u(a, H) for all a.

If G™ ~ H™ then the quantities in the last two identies are equal, and this
implies that p(a, G) = p(a, H) for all . Combining this with the first two
identities, we see that G' and H must be isomorphic. As noted previously, this
completes the proof in Subcase 4.1. O

We are now left with three cases where 71 (M) is infinite, depending on whether
M is hyperbolic, Seifert fibered but not large, or neither (in which case M is
Haken).

Subcase 4.2 M is hyperbolic.

In this case we claim that there are maps of degree £1 from M to N and vice
versa. Lemma 7 shows that there are maps h; : M — N and hy : N — M of
nonzero degree, and their composite h = hy°hy; : M — M also has nonzero
degree. We claim that the degree of h is +1. To see this, consider the Gromov
norm ||M|| of M (see [10]); in this case ||M]|| is the normalized volume of M
given by

vol (M)

V3

M|l =
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where v3 is the volume of a regular ideal simplex in the standard hyperbolic
space H3. One of the basic properties of ||M|| is that for f : M — M one has
|M|| > | deg(f)|-||M]|. This implies that h has degree £1, and it follows that
the degrees of h; and h, are also +1. Therefore by Lemma 13 we know that
each of h, h; and hy is a homotopy equivalence, and as before each of them
is homotopic to a homeomorphism by Mostow’s rigidity theorem [26,27] (see
also the discussion in [21], p. 738). O

Subcase 4.3 M 1is neither Seifert fibered nor hyperbolic.

As in the preceding case we claim that the degree of at least one of the maps
PyefeoJ; is 1 and likewise for a homotopy inverse to f.

As noted before, the classification of geometric 3-manifolds implies that M
and N are Haken. The fundamental decomposition of M into pieces bounded
by incompressible tori (cf. Jaco-Shalen [18] and Johannson [17]) decomposes
M as

M = XY
P

where ¥ is a family of essential tori in M. Moreover, each component of X is
Seifert fibered and each component of Y has a complete hyperbolic structure
with finite volume. The existence of such hyperbolic structures is just W.
Thurston’s hyperbolization theorem for Haken manifolds (cf. [36]). Let us
assume Y # @. By Gromov’s Cutting Theorem [10] (see also the discussion
in [34, pp. 141-144]), we have

M| = []Y][#0.

Since 71 (M) is again residually finite (cf. [14]) in this case, one can now proceed
as in Subcase 4.2 to find degree one maps M — N and N — M, and this
proves Subcase 4.3 of Theorem 3 when YV # &.

Suppose now that Y = @. It follows that M is a “graph manifold” (see
[28, p. 131]) with a nontrivial torus decomposition. Consider, once again, the
composite g°f where f : M — N and g : N — M. Then the degree of g°f
is nonzero and hence by [41, Lemma 4.2, p. 186] the composite degree is +1.
This implies the degrees of f and g are +1, and as before the existence of
degree one maps both ways suffices to prove Subcase 4.3 of Theorem 3 when
Y is empty (once again we use Theorem 14). 0O

Subcase 4.4 M is Seifert fibered but not a spherical spaceform (hence has
infinite fundamental group).

The previous considerations (Subcases 4.1-4.3) show that without loss of gen-
erality we can assume that NV is Seifert fibered as well and that both M and
N have infinite fundamental groups. Since H'(M,Z) and H'(N,Z) are both
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trivial, we know that neither M nor N is homeomorphic to 72 and, more
generally, neither is a 72 bundle over S'. Therefore both M and N must be
large Seifert 3-manifolds, and the results of the previous section imply that M
and N are homeomorphic. O

5 Reducible 3-manifolds

One can combine the methods of this paper together with those of S. C. Wang
[41, specifically, Remark 3.7 on p. 185] and the Kneser Conjecture (cf. [13, p.
66]) to obtain the following extension of Theorem 3 for reducible manifolds:

Theorem 33 Let M and N be closed, connected, oriented, reducible, geomet-
ric 3-manifolds such that H'(M;Z) and H*(N;Z) are trivial and [[" M =~
[I" N for some n > 2. Then if M or N does not contain a lens space in its
prime decomposition we have M ~ N.

PROOF. Here is an outline of the argument: Let
M = M# - - #Mp#Mpp1# - - Nitr

N = Nl# T #Ns#Ns+l# e 'Ns+p

be prime decompositions of M and N with the summands indexed so that the
first k¥ summands of M have finite fundamental groups and likewise for the
first s summands of N. Lemma 7 shows the existence of nonzero degree maps
f:M — N and g: N — M. Let us assume that neither M nor N is home-
omorphic to RP?*#RP?. It follows then from [Wg2, Remark 3.7, p. 185] that
the self maps (¢f). of m (M) and (fg). of m1(N) induce isomorphisms, and
therefore that f and g induce isomorphisms of fundamental groups. Therefore,
unless r and p are both zero in the decompositions above, it follows that the
bijectivity of f and g on fundamental groups implies that the maps are homo-
topy equivalences by a result of G. A. Swarup [35, Cor. 2.3]. Combining these
with the Splitting Theorem of H. Hendriks and F. Laudenbach [15, Théoréme
de scindement, p. 203] and the validity of the Kneser Conjecture, we conclude
that the respective summands of M and N are homotopy equivalent. The ab-
sence of lens spaces in the prime decompositions and Theorem 14 imply that
these summands are homeomorphic.

Assume now that r and p are both zero. The isomorphism of fundamental
groups and the validity of Kneser’s conjecture imply that £ = s, and that
the corresponding summands have the same fundamental groups. The result
is then completed by using some of the previous arguments.
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Finally, suppose that M = RP*#RP?, so that (M) is the free product
Zy * 7o, which is isomorphic to the semidirect product Z X Zsy of Z and Z,
with nontrivial twisting homomorphism Zy; — Aut(Z) ~ {£1}. Note that the
commutator group corresponds to 27 in the semidirect product and the copy
of Z is its centralizer. We shall prove that (M) ~ 71 (N) using a variant of
the proof of Theorem 3 for Seifert manifolds. Since (Zy*Zy)™ and [m;(N)|™ are
isomorphic, it follows that their abelianizations are also isomorphic. Since the
abelianization of the free product is equal to Zg X Z, it follows that the abelian-
ization of [m(NN)]" is isomorphic to (Z9)*", and by the structure theorems for
finite abelian groups we conclude that the abelianization of 71 (/N) must also
be isomorphic to Zy X Zs. Similarly the commutator subgroup of [ (N)]" is
isomorphic to the commutator subgroup of (Zs * Zy)", which is a free abelian
group of rank n. Furthermore, the centralizer of this commutator subgroup is
also free abelian of rank n and the inclusion of the commutator subgroup in
its centralizer corresponds to the standard inclusion of 2 Z™ in Z™. Since the
commutator subgroup of a product (resp., the centralizer of this subgroup)
is just the product of the commutator subgroups (resp., their centralizers),
it follows that the centralizer C' of commutator subgroup of 71 (V) is infinite
cyclic, the same is true for its centralizer, and the commutator subgroup has
index two in its centralizer. Finally, C' must have index 2 in 7 (V) and hence
must be a normal subgroup.

Note that 71 (V) cannot be abelian, for if it were then one could conclude that
m (M) = Zo * Zy was also abelian. Therefore the action of m1(N)/C =~ Z,
on C =~ Z by inner automorphisms must be nontrivial; otherwise the group
extension 71 (V) would be abelian. This means that the group extension is
given by an element of the twisted cohomology group H?(Zo;Z ™), where Z~
denotes the integers with the nontrivial action of Z,. It is well known that
this cohomology group vanishes, and therefore it follows that 71 (N) must be
a semidirect product and hence must be isomorphic to Zs x Zy. One can now
use the validity of the Kneser Conjecture together with the geometrization
hypothesis on N and Theorem 4B to conclude that N must be diffeomorphic
to M = RP3#RP?. O

As noted before, the case where M and N both have lens spaces in their prime
decompositions would require a combination of the results from Hendriks-
Laudenbach [HnL] with surgery theoretic considerations as in the authors’
work on squares of lens spaces [22], but it is not clear if adequate machinery
currently exists to study this effectively.
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