Isovariant mappings of degree 1 and the Gap Hypothesis

REINHARD SCHULTZ

ABSTRACT.  Unpublished results of S. Straus and W. Browder state
that two notions of homotopy equivalence for manifolds with smooth group
actions — isovariant and equivariant — often coincide under a condition
called the Gap Hypothesis; the proofs use deep results in geometric topology.
This paper analyzes the difference between the two types of maps from a
homotopy theoretic viewpoint more generally for degree one maps if the
manifolds satisfy the Gap Hypothesis, and it gives a more homotopy theoretic
proof of the Straus-Browder result.

Ever since the topological classification of surfaces, one basic theme in geometric
topology has been the reduction of existence and classification questions for manifolds
to problems in algebraic topology. A collection of techniques known as surgery theory
has been particularly effective in this regard (compare [R, pp. 375-378]). For well over
four decades topologists have also known that such techniques also have far reaching
implications for manifolds with group actions (¢f. [Brl] and [R, pp. 378-379]). Not
surprisingly, many of the most striking applications of surgery theory require some
assumption on the manifolds, mappings or structures under consideration, and for group
actions the following restriction has been employed quite often:

Standard Gap Hypothesis: For each pair of isotropy subgroups H 2 K and each
pair of components B C M, C c M¥X such that B g C we have dim B+1 < %(dimC).

A condition of this sort first appeared explicitly in unpublished work of S. Straus
[St], and the importance and usefulness of the restriction became apparent in work of
T. Petrie [P1-2] (see also [DP], [DR], and [LiiMa]). Applications of surgery to group
actions that do not require the Gap Hypothesis frequently assume that the underlying
maps of manifolds are isovariant or almost isovariant (cf. [BQ], [DuS], [Sc3], and [We]).
A mapping of f: X — Y of spaces with actions of a group G is said to be isovariant if
it is equivariant — i.e., f(g-z) =g- f(x) for all g € G and z € X — and for each x the
isotropy subgroup G, of all group elements fixing = is equal to the isotropy subgroup
G §(z) of the image point (in general one can only say that the first subgroup is contained
in the second). The general notion of almost isovariance is defined precisely in [DuS, p.
27], and the most important special case is reproduced below. For the time being, we
merely note that
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(1) the sets of nonisovariant points (Gz # G ¢(z)) for such a map may be pushed into
very small pieces of the domain where they cause no problems,

(2) standard methods of homotopy theory extend directly to a suitably defined cate-
gory of almost isovariant mappings (¢f. [DuS] and [DF]),

(3) results of [DuS] show that almost isovariant homotopy and isovariant homotopy
are equivalent in many important cases (including all smooth actions of finite
cyclic p-groups), and a standard conjecture (believed by most workers in the area)
states that the same is true for arbitrary smooth actions of finite groups.

The following unpublished result, due to Straus [St] for actions that are semifree (the
group acts freely off the fixed point set) and W. Browder [Br2] more generally, implies a
fairly strong and precise connection between almost isovariance and the Gap Hypothesis.

Theorem 1. Let f: M — N be an equivariant homotopy equivalence of oriented closed
smooth G-manifolds that satisfy the Gap Hypothesis. Then f is equivariantly homotopic
to an almost isovariant homotopy equivalence.

As noted ebove, in some cases the results of [DuS] allow one to replace “almost
isovariant” by “isovariant” in the conclusion; in particular, this is true if the isotropy
subgroups are normal and linearly ordered by inclusion.

Although Theorem 1 is a purely homotopy theoretic statement, the proofs in [St] and
[Br2] require fairly deep results from Wall’s nonsimply connected surgery theory [WL],
which in turn depends upon other deep geometric results such as the classification theory
for immersions (¢f. [Ph]) and the Whitney process for pairs of double points that cancel
algebraically (¢f. [M]). It is natural to ask whether one can prove Theorem 1 without
relying so extensively on such a large amount of auxiliary material (this is a special case
of the classical scientific maxim called Ockham’s Razor). In particular, since one can
construct a version of obstruction theory for isovariant maps and define obstructions
to finding an isovariant deformation of a given equivariant map [DuS], it is natural
to search for a proof that is related to this obstruction theory. More generally, one
would also like to understand the obstructions to isovariance for arbitrary equivariant
mappings of degree £1 from one smooth manifold to another. Some basic test cases
are examples of equivariant degree one mappings mentioned in [Br2] which are not
equivariantly homotopic to isovariant maps; results of K. H. Dovermann on isovariant
normal maps [Dov]| also provide some motivation.

The main objective of this paper is to analyze the problem of deforming an equi-
variant degree one map into an isovariant map when the Gap Hypothesis holds, to use
this criterion to provide an essentially homotopy-theoretic proof of Theorem 1, and
to see how the criterion applies to equivariant homotopy equivalences and other basic
examples. In contrast to [St] and [Br2], our approach requires a minimum of input



from geometric topology; namely, nonequivariant transversality and standard results
on smooth embeddings in the general position range. For the sake of clarity we shall
restrict attention to finite group actions that are semifree in the sense described above;
if G is cyclic of prime order, then all actions are semifree. We shall also discuss some
applications of Theorem 1 to cyclic reduced products that were first considered in [St]
and a few positive and negative results just outside the range of the Gap Hypothesis
(further information on the latter will appear in sequels to this paper).

Statements of main results

Suppose that M and N are compact, oriented, semifree unbounded smooth G-
manifolds satisfying the Gap Hypothesis such that all components of the fixed point
sets, and suppose that f : M — N is a G-equivariant map of degree 1. Let {N,} denote
the set of components of N¢ where we may as well assume that « runs through the
elements of my(INY), suppose that the associated map f¢ of fixed point sets defines a
1 — 1 correspondence between the components of M and N€; for each « let

M, = f~Y(N,)NnMC

and let f, : M, — N, denote the partial map of fixed point sets determined by f.
Denote the equivariant normal bundles of M, and N, in M and N by &, and w,
respectively, and let S(v) generically represent the unit sphere bundle of the vector
bundle v (with the associated group action if v is a G-vector bundle).

Theorem 2. Suppose we are given the setting above such that dim M, = dim N, for
each .

(1) If f is homotopic to an isovariant map, then the for each o the map fo, has degree
+1, and S(&a) is equivariantly fiber homotopy equivalent to S(f*wq,).

(i4) If the two conditions in the preceding statement hold, then f is equivariantly
homotopic to a map that is isovariant on a neighborhood of the fixed point set.

(#i1) If f is isovariant on a neighborhood of the fized point set, then f is equivariantly
homotopic to an isovariant map if and only if f is equivariantly homotopic to a map f,

for which the set of nonisovariant points of f1 is contained in a tubular neighborhood of
ME.

Theorem 1 will be derived as a consequence of Theorem 2 and the following result:

Theorem 3. In the setting of the previous result, suppose that f is an equivariant
homotopy equivalence. Then f is equivariantly homotopic to an isovariant homotopy
equivalence.

The results of [Br2] also include a uniqueness statement (up to isovariant homotopy)
if M x [0,1] and N x [0, 1] satisfy the Gap Hypothesis. One can also use the methods



of this paper together with some additional homotopy theoretic input to prove such a
uniquess result. The necessary machinery to do so and to generalize our results beyond
semifree actions will be developed in a subsequent paper.

Overview of the paper

We shall begin Section 1 by proving that the conditions in Theorem 2 are necessary
for a map f as above to be properly homotopic to an isovariant map. The proof of
sufficiency in Theorem 2 splits into two steps, both of which are carried out in Section
2. To motivate the first step, observe that an equivariant map of semifree G-manifolds is
automatically isovariant on the fixed point set, so a natural starting point is to determine
whether the given map can be equivariantly deformed to a map that is isovariant on
a neighborhood of the fixed point set. If this is possible and we have a map with this
additional property, the next step is to determine whether such a map can be further
deformed to another one which is isovariant everywhere. Section 3 contains the proofs
of Theorems 1 and 3. Finally, in Section 4 we shall give a previously unpublished
application of Theorem 1 due to Straus [Str] and discuss certain situations in which the
Gap Hypothesis fails. In a few situations there are analogs of Theorem 1, but in many
— probably all but a few — other cases the result does not generalize.

Implications for equivariant surgery. — The methods and results of [DuS] provide
a means for analyzing isovariant homotopy theory — and its relation to equivariant
homotopy theory — within the standard framework of algebraic topology. Therefore
Theorem 1 and the conclusions of [DuS] suggest a two step approach to analyzing smooth
G-manifolds within a given equivariant homotopy type if the Gap Hypothesis does not
necessarily hold; namely, the first step is to study the obstructions to isovariance for an
equivariant homotopy equivalence and the second step is to study one of the versions of
isovariant surgery theory from [Sc3] or [We]. This approach seems especially promising
for analyzing classification questions using surgery theory and homotopy theory.

Acknowledgments. I am extremely grateful to Bill Browder for helpful con-
versations and correspondence regarding his results on the questions treated here, and
especially for providing a detailed account of his counterexamples. I would also like to
thank Heiner Dovermann for various conversations involving his work.

1. Preliminary adjustments and necessity

It will be convenient to begin with some notational conventions and elementary ob-
servations in order to simplify the main discussion and the proofs.

Let P be a compact unbounded smooth G-manifold, where G is a finite group. By
local linearity of the action we know that the fixed point set P is a union of connected
smooth submanifolds; as before, denote these connected components by P,. For each «
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let D(P,) denote a closed tubular neighborhood. By construction these sets are total
spaces of closed unit disk bundles over the manifolds P,, so let S(P,) and denote the
associated unit sphere bundles; it follows that

I[D(Fa)] = S(Pa) .

Suppose now that M and N are smooth semifree G-manifolds and f : M — N is an
equivariant mapping.

The “only if” direction of Theorem 2

Assume that we have the setting and notation introduced in order to state Theorem
2:

(1) M and N are compact, oriented, semifree smooth G-manifolds satisfying the Gap
Hypothesis.

(#i) f: M — N is a G-equivariant map of degree 1.

(ii1) {N4} denotes the set of components of N¢ where we may as well assume that o
runs through the elements of mo(N¢).

(iv) The associated map f& of fixed point sets defines a 1 — 1 correspondence between
the components of M and NC.

(v) If for each a we let
My = f7'(No) N M€

then f, is the continuous map from M, to N, determined by f.

(vi) If the equivariant normal bundles of M, and N, in M and N are £, and w,
respectively, and let S(v) and D(v) generically represent the unit sphere and disk
bundle of the vector bundle v (with the associated group action since v is a G-
vector bundle).

Not surprisingly, we shall also use the notational conventions developed previously
in this section.

Necessity proof for Theorem 2.  Both of the basic conditions (i) and (i7) in
Theorem 2 depend only on the equivariant homotopy class of a mapping of manifolds,
so without loss of generality we may replace f by any map in the same proper equivariant
homotopy class. In particular, since we are assuming that f is properly equivariantly
homotopy to an isovariant map, we might as well assume that f itself is isovariant.

By the results of [DuS] (in particular, see Proposition 4.1 on page 27), the map f is
isovariantly homotopic to a map fo such that for each o we have f( D(My)) C D(Ny),
f(8(Mqy)) C S(Na), and

f(M—=Uy, IntD(M,)) C N —U, IntD(N,) .
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Let hq be the associated map of pairs from ( D(M,),S(Ma)) to (D(Ma), S(M,)) de-
fined by fp. Since the latter has degree 1, the same is true for each of the maps h,. We
have already noted that D(—) and S(—) are disk and sphere bundles over the appropri-
ate components of fixed point sets, and therefore a simple spectral sequence argument
implies that (a) the degrees of the maps f, are all equal to +1, up to an equivariant
homotopy of pairs the map h, sends a spherical fiber in S(M,) to a spherical fiber in
S(N,) by a map of degree +1. Therefore an equivariant analog of a classical result due
to A. Dold [Dol] (see [Wn]) shows that there is a g-equivariant fiber homotopy equiv-
alence from S(&4) to S(fiwea), where as before &, and w, denoted the corresponding
equivariant normal bundles for M, and N,. This completes the proof that Condition (7)
holds. Since the set of nonisovariant points for an isovariant map is empty by definition,
Condition (477) is automatically true, so the proof in the unbounded case is complete.l

Some examples

It is not difficult to construct equivariant maps of degree 1 which satisfy the Gap
Hypothesis but do not satisfy the statements in Condition (i) of Theorem 2 on degrees
and equivariant normal bundles.

Example 1.  Let V be a nontrivial semifree real representation of G such that
dim V& > 0 and the Gap Hypothesis holds, and let SV be the one point compactifica-
tion, which is equivariantly homeomorphic to the unit sphere in V@ R. It is well known
that for each positive integer k there is G-equivariant m ap hy : S¥ — SV such that
deg hi, = 1 and deg h$ = k|G| +1 (e.g., this is a very special case of the equivariant Hopf
Theorem stated in tom Dieck’s book on the Burnside ring and equivariant homotopy
theory [tD, Thm. 8.4.1, pp. 213-214]). Since the fixed point set is connected and the
degree of the map on the fixed point set is not +1 if |G| > 2 or k # 0, it follows that
hi cannot be homotopic to an isovariant map. However, the map hj does satisfy the
second part of Condition (¢) involving pullbacks of equivariant normal bundles because
the equivariant normal bundle of (SV)¢ in SV is a product bundle.

Example 2. Let G be a cyclic group, assume that k, m and r satisfy k¥ = 0(4),
k,m > 0 and 2r > m + k, and let v be a complex r-dimensional vector bundle over S*
which represents a generator of 7i(BU,) & Z. Take M to be the associated (2r + m)-
sphere bundle over S*. Then G acts smoothly and fiber preservingly on M with fixed
point set S* x S™, and each point has an invariant open neighborhood on which the
action of G is smoothly equivalent to the linear representation V = RF*+™ @ C. If we
collapse everything outside such a neighborhood to a point, we obtain an equivariant
map of degree 1 from M to SV. This map also has degree 1 on the fixed point sets,
but we claim it does not satisfy the pullback condition for equivariant normal bundles.
Since the equivariant normal bundle in M is the pullback of v under the coordinate
projection map from S* x §™ — S™, it will suffice to check that « is not equivariantly
fiber homotopically trivial. In fact, the underlying nonequivariant vector bundle is well
known to be fiber homotopically nontrivial (compare [Ad]).



2. Normal straightening and relative isovariance obstructions

In this section we shall prove the implication of Theorem 2 in the other direction;
namely, if Conditions (47) is satisfied then one can make f isovariant near the fixed point
set, and if (4i7) is satisfied then the map f is equivariantly homotopic to an isovariant
mapping. The first step is to examine the consequences of Condition (i7).

Proposition 2.1. In the setting of Section 1, suppose that f : M — N is a continuous
equivariant degree 1 map. Assume that each of the associated maps of fixed point com-
ponents fo : My — N, has degree +1 and that S(&,) is equivariantly fiber homotopy
equivalent to S(f*wg) for each a. Then there are closed, pairwise disjoint, equivariant
tubular neighborhoods D(My) of the fixed point set components My and an equivariant
mapping fo such that fy is equivariantly homotopic to f and for each a the restriction
fID(M,) is isovariant.

Proof. Choose equivariant fiber homotopy equivalences hy : S(€y) = S(fiwa), and
let k. be the composite of h, with the canonical induced bundle mapping S(fiw,) —
S(wq). Define H, : D(My) — D(N,) using k, and fiberwise radial extension. It
follows that H, is equivariantly homotopic to f|D(M,) for each «, and hence by the
equivariant Homotopy Extension Property we may deform f equivariantly to a map fy
such that fo|D(M,) = H, for each a. Since each H, is isovariant, it follows that the
restriction of fy to a neighborhood of the fixed point set is isovariant as required.ll

We shall conclude this section by proving the sufficiency of the condition in (¢7%).
A key step in the proof of Theorem 1 will be to prove that an equivariant homotopy
equivalence has this property.

Proposition 2.2. Let M and N be as before, and suppose that f : M — N is a con-
tinuous equivariant map that is isovariant on a neighborhood of the fixed point set. If
there is a system of closed tubular neighborhoods W, of MC such that the set of non-
isovariant points lies in the interiors of the sets Wy, then f is equivariantly homotopic
to an isovariant map.

Note that we make no assumption about the images of the sets W, and in particular
we do not assume that they lie in the tubular neighborhoods of the components of the
fixed point set of N.

Proof. By assumption f is already isovariant on the closed complement of a subman-
ifold T of the form U,S(M,) x [3,1] where as usual S(M,) denotes the boundary of
a tubular neighborhood. Let T, be the portion lying over M, and denote the bound-
ary components corresponding to S(M,) x {3} and S(My x {1} by 9oT, and 0:T,
respectively. Let

B, = M - Uﬂ;éaMg cC, = N — U3¢aNg
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let S, be the spherical fiber of S(M,), and let A, correspond to the annulus S, x [1,1].

For each value of j the map f determines a map of triads
fo 1 (Ta; 00Tn, 01Ty) — (Co; D(Ny), N — N)

and by the results of [DuS, §4] it suffices to show that each such map of triads can be
compressed equivariantly rel 9T, U A, into (N — N%; S(N,), N — N%). The methods
of [DuS, §§1,5] imply that the obstructions to compression lie in diagram-theoretic
Bredon equivariant cohomology groups of the form pr H*(T; IT;), where T is the diagram
associated to the triad (Ty; 00T, 01Te U Ay) and I1; is the following diagram of abelian
groups:

7;(D(Ny), S(Ny)) i 7i(Coy N — N©) ﬁ {0}

If go = dimM — dim F,, then (D(N,),S(Ny)) is (go — 1)-connected by the identity
Ts(D(Ng), S(Na)) = ms—1(Sa), and a standard general position argument shows that
(Coy N — NG) = (Cqy,Cq — N,) is also (go — 1)-connected. Therefore the Blakers-
Massey Theorem (e.g., see [Gr, p. 143]) implies that the map 8# is bijective if 7 <
2q, — 3 and surjective if ¢ = 2¢, — 2. In particular, this means that the equivariant
diagram cohomology groups prH®*(T; II;) reduce to ordinary Bredon cohomology groups
BRH! (T, 01 To; mi(Coy N — N9)) if i <n —1orifi =n and dim F, + 3 < q,. Since
Ty =2 01T, x [0,1] it follows immediately that the relative cohomology groups vanish
in all such cases. Since dim7, = dim M = dim N, this implies that the isovariance
obstructions vanish in all cases except perhaps when 7 = n = 2q, — 2. In such cases the
value group fits into the following exact sequence, which arises by restricting diagram-
theoretic cochains in C(X’ — X; 7’ — 7) to ordinary cochains in C'(X'; 7’):

(x)  H" 1 (89Ta; mn(D(c), S(c))) —2— H™(Tw,8Tw; mn(Nu, N — NG))

l

srH"™(T; IT,,)

J

H™ (00T a; mn(D (), S(ag)))

«

The map A in this sequence is given by combining the coefficient homomorphism
for the map (5# in dimension n with the suspension isomorphism H" !(9gTn; ) —
H™(Ty,0T,; ). Therefore the Blakers-Massey Theorem, the (n — 1)-dimensionality of
0oT,, and the Bockstein exact sequence for the short exact sequence

a7
0 —— Kernel —— m,(D(c,), S(c))) —— 7,(Cq, N = N¢) —— 0

imply that A is onto. But the last object in (x) is zero because dimdyT, = n — 1,
and it follows by exactness that pr H™(T; I1,,) is also trivial. Therefore the isovariance
obstructions always vanish.ll



The following examples due to Browder [Br2] show that it is not always possible to
deform an equivariant degree 1 map so that it is isovariant near the fixed point set and
the set of nonisovariant points lies in a tubular neighborhood of the fixed point set.

Examples. Let k£ and ¢ be distinct positive integers such that ¢ is even and G has
a free g-dimensional linear representation. Let N = S*¥ x S7 with trivial action on
the first coordinate and the one point compactification of the free linear action on the
second, let My be the disjoint union of N and two copies of G x S¥ x S9 (where G
acts by translation on itself and trivially on the other two coordinates), and define an
equivariant map fy : My — N by taking the identity on M, the unique equivariant
extension of the identity map on S* x S over one copy of G x S* x S9, and the unique
equivariant extension of an orientation reversing self diffeomorphism of S* x S7 over
the other copy. By construction this map has degree one, and one can attach 1-handles
equivariantly to M, away from the fixed point set to obtain an equivariant cobordism
of maps from fy to a map f on a connected 1-manifold M that is nonequivariantly
diffeomorphic to a connected sum of 2 - |G| + 1 copies of S¥ x S9. Since the fixed point
sets of M and N are k-dimensional and the manifolds themselves are (k+¢)-dimensional,
it follows that the Gap Hypothesis holds if we impose the stronger restriction ¢ > k4 2.
By construction the map f determines a homotopy equivalence of fixed point sets and
is isovariant on a neighborhood of the fixed point set.

Assertion. It is not possible to deform f equivariantly so that the set of nonisovariant
points lies in a tubular neighborhood of the fized point set. In particular, it is also not
possible to deform f equivariantly to an isovariant map.

To prove the assertion, assume that one has a map h equivariantly homotopic to f
with the stated property, and let U be a tubular neighborhood of M© that contains the
set of nonisovariant points. Let X be a submanifold of the form {g} x {v} x S in M
that arises from one of the copies of G x S*¥ x S in My. Although X and U may have
points in common, by the uniqueness of tubular neighborhoods we can always isotop X
into a submanifold X’ that is disjoint from U. By the hypotheses on h we know that
h(X') is disjoint from N¢ = S* x S% and therefore h(X') is contained in

N - N = gFx g1 xR
so that the image of the generator of H,(X’) = Z maps trivially into Hy(N). However, h
is supposed to be homotopic to a map which is nontrivial on the latter by construction,

so we have a contradiction, and therefore it is not possible to find an isovariant map h
that is equivariantly homotopic to f.H

A refinement of the preceding argument shows that if Y is a subset of M such that
the image of H,(Y) in H,(M) is equal to the image of H,(X), then Y must contain
some nonisovariant points of any equivariant map that is equivariantly homotopic to f.

Remarks. By construction, Browder’s examples are normally cobordant to the
identity; an explicit normal cobordism frome the identity to fy is given by

W = Nx[0,1]IIG x S*¥ x 87 x [0, 1]
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where 0_W = N x {0} and 0; W is the remaining 2|G|+1 components of the boundary,
and one can obtain a normal cobordism to f by adding 1-handles equivariantly along the
top part of the boundary. More generally, results of K. H. Dovermann [Dov] imply that
one can always construct equivariant normal cobordisms to equivariant normal maps if
the Gap Hypothesis holds and the map is already an equivariant homotopy equivalence
on the singular set as in Browder’s examples.

However, it is also possible to construct examples like Browder’s that are not cobor-
dant to highly connected maps. It suffices to let £ = 0(4) and replace G x S* x S by
G x S(7), where the latter is the sphere bundle of a fiber homotopically trivial vector
bundle 7 over S* with nontrivial rational Pontryagin classes; one must also replace the
equivariant folding mapfrom G x S¥ x S? to N be its composite with the identity on
G times a fiber homotopy equivalence from S(v) to S¥ x S9. Characterixtic number
arguments imply the map obtained in this fashion is not cobordant to a k-connected
map. Of course, a degree 1 map of this type does not have the bundle date required for
a normal map in the sense of equivariant surgery theory.

3. Equivariant homotopy equivalences

In this section we shall show that an equivariant homotopy equivalence can be de-
formed to satisfy the conditions in parts (i7) and (44%) of Theorem 2 and thus must
be equivariantly homotopic to an isovariant map, which we shall prove must be an
isovariant homotopy equivalence.

Proposition 3.1. Let f : M — N be a homotopy equivalence of compact, oriented,
unbounded, smooth, semifree G-manifolds which satisfy the Gap Hypothesis such that all
components of all fixed point sets are also orientable. Then f is equivariantly homotopic
to a map that is isovariant on a neighborhood of the fixed point set.

Proof. We shall prove that f satisfies the conditions in part (i¢) of Theorem 2. Since
f defines a homotopy equivalence of fixed point sets, it follows immediately that for
each component M, of Mg the restriction f, of f defines a homotopy equivalence from
M, to N, and hence has degree £1. In order to apply part (ii) of Theorem 2, we also
need to verify the homotopy pullback condition on the equivariant normal bundles of
the fixed point set components.

Let 75; and 7y be the equivariant tangent bundles of M and N. We claim that the
sphere bundles of 73, and f*7 are stably equivariantly fiber homotopically equivalent.
The nonequivariant version of this statement is well known (¢f. [At]) and the equivariant
case is due to K. Kawakubo [Ka].

Consider next the restriction of the stable equivariant fiber homotopy equivalence
S(tar) ~ S(f*Tn) to MC. The classifying maps for the two equivariant fibrations go
from M© to a space B such that 7, (B) ~ & |, where the latter denotes an equivariant
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stable homotopy group as in [Se]. On the other hand, by [Se] we also know that B is ho-
motopy equivalent to the product BF' x BFg where BF classifies nonequivariant stable
spherical fibrations and BFg is defined as in [BeS]. In terms of fibrations the projections
of the classifying maps M — B onto BF and BFg correspond to taking the classify-
ing maps of the fixed point subbundles and the orthogonal complements of the fixed
point subbundles respectively. Therefore it follows that the corresponding subbundles
for 7as and f*7n are stably equivariantly fiber homotopy equivalent. In particular, this
means that S(ays) and S((f€)*an) are stably equivariantly fiber homotopy equivalent
because they induce homotopic maps from M€ into BFg.

As usual, write M€ as a disjoint union of components M,, and for each « let g, be
the codimension of M. Furthermore, denote the fiber representation at a point of M,
by V,. The stabilization map Fg(V,) — Fg is (¢a — 2)-connected by the considerations
of [Scl], and the Gap Hypothesis implies that dim M, < g, — 2. Therefore we can
destabilize the stable fiber homotopy equivalence from S(¢,) to S((f¢)*ws) and obtain
a genuine equivariant fiber homotopy equivalence. Choose such an equivariant fiber
homotopy equivalence, say ®. It is then an elementary exercise to deform f|U, D(M,)
equivariantly relative the zero section so that one obtains the radial extension of ® at
the other end of the deformation. By the equivariant homotopy extension property one
can extend this homotopy to all of M.R

Our choice of fiber homotopy equivalences was arbitrary, but it is possible to find
a canonical choice up to homotopy using equivariant S-duality [Wi] and Kawakubo’s
result; in fact, one must work with the latter to prove a uniqueness result for isovariant
deformations as in [Br2], and we shall explain this in a subsequent article.

The preceding result and part (#i4) of Theorem 2 reduce the proof of Theorems 1 and
3 to the following two results:

Proposition 3.2. Suppose that f satisfies the conditions of the previous result, includ-
ing the condition that f is isovariant on a neighborhood of the fized point set. Then f
1s homotopic to an almost isovariant map.

Proposition 3.3. If f as above is isovariant, then f is an isovariant homotopy equiv-
alence.

We shall prove these results in order.

Proof of Proposition 3.2 The first step is to construct an equivariant homotopy from
f to a mapping f; such that the homotopy is fixed on a neighborhood of the fixed
point set and f; is smoothly equivariantly transverse to the fixed point set; there are
no problems with equivariant transversality obstructions because the relevant part of
the domain has a free G-action. By construction the transverse inverse image of the
fixed point set is the set of nonisovariant points, and it splits into a union of smooth
submanifolds V,, = f; ' (N,). Note that dim V,, = dim N, = dim M, which is less than
half the dimensions of M and N.



12

By construction the image of f1|V,, is contained in Ny, so let k,, be the associated map
from V,, to Ng; if hy : N, — M, is determined by a homotopy inverse to f;, then the
map h, °kq is equivariantly homotopic to the inclusion of V,, in M. By general position
it follows that the latter is also equivariantly homotopic to a map into D(M,) — M,
and in fact can be approximated by a smooth equivariant embedding e,; in fact, the
numerical condition in the Gap Hypothesis is strong enough to guarantee that e, is
equivariantly isotopic to the inclusion. Since the image of e, is contained in a tubular
neighborhood of M,,, the Equivariant Isotopy Extension Theorem implies the inclusion
is isotopic to a smooth equivariant embedding of V,, in a tubular neighborhood and hence
the image of the inclusion itself must also be contained in some tubular neighborhood.
Since this is truc for every «, it is also true for the entire set of nonisovariant points.ll

By Theorem 2 and the preceding propositions we know that f is equivariantly homo-
topic to an almost isovariant mapping, and by [DuS] it is also equivariantly homotopic
to an isovariant mapping.

Proof of Proposition 3.3. By [DuS, Prop. 4.1, p. 27|, the map f is isovariantly
homotopic to a map fj such that for each « we have f( D(M,)) C D(Ny), f(S(My)) C
S(Ngy), and

F(M—Uy IntD(M,)) C N — U, IntD(N,,) .

Furthermore, using [DuS, Theorem 4.4, pp. 29-31] one can further deform this map
to some f; that is fiber preserving on the tubular neighborhoods and maps disk fibers
to disk fibers by cones of maps over the boundary spheres (i.e., the map is normally
straightened in the sense of [DuS, p. 31]). It will suffice to prove that f; is an isovariant
homotopy equivalence, so without loss of generality we might as well assume that f
itself is normally straightened.

By the isovariant Whitehead Theorem of [DuS, §4] the map f is an isovariant ho-
motopy equivalence if f defines a homotopy equivalence from M — MY to N — NC.
General position considerations imply that f induces an isomorphism of fundamental
groups, and therefore it suffices to check that f defines an isomorphism in homology
with twisted coefficients in the group ring of the fundamental group. Exact sequence
and excision arguments show that the latter holds if f induces homotopy equivalences
from M to N, from M% to N, and from [[ S(£4) to [[ S(wa). The first two of these
follow because f is an equivariant homotopy equivalence. To prove the third property
first note that for each o the homotopy fibers of S(£,) C D(&,) and S(ws) C D(wq) are
simply the fibers of the sphere bundles; since each D(¢,) maps to D(w,) by a homo-
topy equivalence, it suffices to know that a fiber of S(£,) maps to a fiber of S(w,) with
degree +1. This follows directly from the construction of the isovariant map; the first
step was to make an equivariant homotopy equivalence normally straightened near the
fixed point set, and the equivariant deformation in part (i74) of Theorem 2 is constant
near some fiber of S(¢,).1
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4. Applications and generalizations
In his thesis [St] Straus used his version of Theorem 1 to obtain the following result:

Theorem 4. Let M and N be closed smooth manifolds of dimension > 2, let p be an
odd prime, and suppose that M and N are homotopy equivalent. Let Z, act smoothly
on the p-fold self products IIPM and IIPN (where IIPX = X x --- x X, p factors) by
cyclically permuting the coordinates, and let DP(M), DP(N) be the invariant subsets
sets given by removing the diagonals from 1IPM and IITPN. Then the deleted reduced
cyclic products D?(M)/Z, and D?(N)/Z, are homotopy equivalent.

As also noted in [St], this result does not extend to compact bounded manifolds, and
in fact the closed unit disks of various dimensions provide simple counterexamples. The
results of [Sc2] imply that the result extends to simply connected manifolds if p = 2, but
recent results of R. Longoni and P. Salvatore [LS] imply that Theorem 4 does not extend
to 3-dimensional lens spaces when p = 2. Further results on the relationship between
D?*(M)/Zy and D*(N)/Zy for homotopy equivalent manifolds appear in [LéMa].

Sketch of proof. If f: M — N is a homotopy equivalence then IIP f : [IPM — IIPN
is an equivariant homotopy equivalence of closed smooth Z,-manifolds. All actions of Z,
are semifree if p is prime, so this condition holds automatically; the Gap Hypothesis also
holds because p > 2. Therefore Theorem 1 implies that IIP f is equivariantly homotopic
to an isovariant homotopy equivalence, and the latter in turn yields an equivariant
homotopy equivalence from D?(M) to DP(N). The induced map of orbit spaces is the
desired homotopy equivalence from D?(M)/Z,, to D*(N)/Z,.R

Extending Theorem 1 to other cases

Since the Gap Hypothesis was used at several crucial points in the proof of our main
theorems, one might reasonably expect that these results do not necessarily hold if the
Gap Hypothesis fails. Despite this, there are some situations in which one can prove
analogs of Theorem 1, particularly when G is cyclic of prime order, dim M = 2dim M€,
and there is only one component with the maximal dimension. If |G| = 2 and M is
simply connected, this is established in [Sc2], and if |G| is an odd prime and M is
simply connected this will be shown in a forthcoming paper by K. H. Dovermann and
the author. On the other hand, the results of Longoni and Salvatore imply that the
analog of Theorem 1 does not necessarily hold if |G| = 2 and M is not simply connected.

In a sequel to this papaer we shall use equivariant function spaces as in [Scl] and
[BeS] to construct systematic families of equivariant homotopy equivalences that are
not homotopic to isovariant maps in situations where the Gap Hypothesis fails. In
particular, we shall construct connected examples where G is cyclic of prime order,
dim M = 2dim M€, and there are two components with the maximal dimension.
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As noted at the beginning of this paper, it is natural to ask whether Theorem 1
generalizes to nonsemifree actions in situations where the Gap Hypohtesis holds. Group
actions with linearly ordered isotropy structure are natural test cases. In order to
analyze the problem for such actions, it is necessary to introduce some equivariant
homotopy theoretic functors like the free G-vector bundles of [Sc4]; we plan to do this
in a subsequent paper.
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