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INTRODUCTTON

The purpose of these seminars is to provide an introduction to -

combinatorial topology., The topics to ke covered are :

1. The combinatorial category and subdivision theorems,
2. Tﬁé‘polyhedral category, |
3. Regular neighbourhoods,
4..Unknot%ing of spheres,

5. General Pogition,

6. Engulfing lemmas,

7. Embedding and isotopy theorems.

At first sight the wnattractive feature of combinatorial theory as

applied to menifolds is the kinkiness and unhomogeneity of a complex asg

‘compared with the roundness and homogensity of a manifold. However this is

due to alconfﬁsion between the echniques and subject matter. We resolve this
confusion by separating into two different categories the tools and objects of
study. The tools in the combinatorial categery we keep as special as possibie,
namely finite simplicial complexes embedded in Euclidean gpace,

These possess two crucial proparties :

i) finiteness, and the use of induction

ii) tameness, and niceness of intersection.

Meanwhile objects of study we make as general as possible. Our definition of

poelyhedral category contains not only
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i) polyhedra;

1i) mgnifolds (bounded or not, compact or not),

but also the following spaces, which have not been given a combinatorial

structure bvefore :
iii) non=-paracompact manifolda, for example the Long Line;
iv) infinite dimensional manifolds, for example the orthogonal group,

V) joins of non-compact spaces; for example the suspension of an

open interval,

vi) function spaces; for example the space of all piecewise linear

embeddings of compact manifold in another manifold.

As the examples show, a polyhedral space need not be triangulable,
and if it is, it‘dOes not have a specific ftriangulation, but is a set with a
structure. The structure is, roughly speaking, a mavimal family of subpolyhedra,

and the structure determines the topology.

Our theory is directed towards the study of manifolds, and in

partioular of embeddings and isotopies. Recently it has become apparent that

combinatorial results differ substantially from differential results; a st;iking
case ig -83 in 86 s which knota differentially, and unknots combinatorially.
In fact combinaterial thecry seems to behave well in, and to have techniques

to handle, moat situations with codimension 3, Just as differential theory

behaves well and can handle most situations in the stable range.,.

We shall therefore concentrate on geometry in codimension ) 3 .
Thig means we shall neglect a number of interesting end allied topics that
depend more on algebra, for example 1) 'oodimension 2 |
| ii) immersion theory

iii) relations with differential theory.




Ghapter I ; THE COMBINATORIAL CATBEGORY .

_Simglekesk

Let E° denote Euclidean p-space. An n-gimplex (n 3 0) A in P
ig the convex mul »f n + 1 1inéarly independent pointa. ‘
We call the peints yertices, and say that A gpans them. A is closed and
compact; i denstes the boundary, A the interior. A simplex B spenned by
a subset of the vertices is called a face of A , written B\< A Simplexes
AB  are joinable if ftheir vertices are linearly independent. If A, B are
joinable we define the join AB to be the gimplex spanned by the vertices of

both; otherwiqe the join is undefined.’

Complexes ' T

o

A finite gimplicisl cemplex, or complex, K in Ep is a finite

collection of gimplexes such that
v ' (1) if A €KX, then all the faces of A ave in K,

(11) if Ay B& K, then A nB is empty or a common face .

The gtar and link of a simplex A K are defined :

st{4,K) ={B; AeB i, | 1k(4,K) -_-{B; AB ¢ 'K }
Two oomplexes K, in EP are Jjcinable provided :
(1) "if A€K,B&L then AB joinable

' | (11) if 4,A*¢ K and B,B'e L, then 4B A A'B' is emply or a

- common face .

If XL are joinable, we define the join KL = KWL w [ABjAck, Be L]

otherwise the join is undefined .

The underlying point st | K| of K is called a euclidesn polyhedron :

e e g s G L Py e



- o

L is called a subdivision of X if |L| = JK| , and every simplex of L

ig contained in some simplex of X,

. 0 :
Examples, 1) Choose a2 point A € A . Let

A e

L=(K-st(4,K)) vi s 1x(sng.

Then L ig a sub&1v1saon of K, and we say L 1ia obtalned from K by

starring 4 (at A) .

2) A first derived K(%) of X is obtained by starring all the

gimplexes of K in some order such that if AS B then A preceedes B

(for example in order of decreasing dimension) .

(1)

inductively in order of increasing dimension, by the rule A' = A A",

_Another way of defining X is to define the subdivision of each simplex,

Therefore a typical simplex of K(1) ig AD A1u.Ap s where Ao(‘ A1 (... (*Ap
in K. n = gerived K is defined inductively as the first derived

of an ‘(r-1)th derived. The barycentric first derived is obtained by starring

at. the barycentres.

Convex linear cells . ’

A convex linear cell, or cell, A in i is é non-empty compact

0,¢|¢,fr:—-‘c‘j’ al’ld

subset given by {linear equations f1 =

lineer inequalities e > O,...;g > 0.
Aface B of A is a cell (i.e. non-empty) obtained by replaczng some of the

inequaties g 3 O by equations 8; = =0,

The Oudimensional faces are called verticeg. I is easy to deduce the

following elemeﬁtary propertiess :

1) A is the convex hull of its vertices
. 2) A is a closed compact topological n~cell, where n + 1

ig the maximum number of linearly independent vertices,

S,
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3) A simplex is a cell. |

4)7 The intersection or product of two cells is another.

5) Let x be a vertex of the cell A, and let B be the union
of faces of A not containing x .

Thenn A = the cone x B .,

A gonvex linear cell complex, or cell complex, K is a finite collection of

cells such that

(i) if A ¢ K, then &ll the faces of A arve in K,
(ii) if A, BE€K, then ANB is empty or a common face .

L

Lemma 1 ¢ A convex linear cell complex can be subdivided indo a simplicisl

complex without introducing sny more vertvices.

Proof ¢ Order the vertices of the cell complex X .
Write each cell A as acone A =xB, where x is the first
vertex. Subdivide the cells inductively, in order of increasing
dimengion. The induction begins trivially with the vertices .
For the inductive step, we have already defined fthe subdivision
A' of A, and so define A' +0 be the cone A' = xB! .,
The definition is compatible with subdivision C' of any face
C of A containing x, because since x is the first vertex
6f A, it is also the first vertex of - C . Therefore each cell,

and hence K, is subdivided into a simplicizl complex .

Corollary 1 ¢  The underlvinz set of a cell complex is & euclidean polvhedron.

Corollary 2 + The intersection of product of two euclidean polyhedra
is anoiher, - . ~
For the intersection or product of simplicial complexes is -4

cell complex .

I3
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Mapsa.

Suppose” K in Ep, L in Eq .

‘Apgp £t K->L is a continuwous map K| - (L} .

Call f simplicial if it maps vertices to vertices and simplexes linearly to

simplexes. Call f an isomorphism, written £ ¢ K =L , if it is a simplicial
homeomorphiam. The graph { £ of f is defined as usual

Fe={ (o) xelkl } €Akl xihjes®?,

Call f piecewise linear if either of the two definitions hold :

(1) The graph I™f of f is a euclidean polyhedron

(2) There exist subdivision K', L', of KL with respect to

-which f is simplicial .

Notice that cordition {2) clearly implies condition (1), because thre

graph of & linear mep from & simplex to a simplex is a simplex, and so the

‘graph of a simplicial map K -—>1L is a complex isomorphic.to X . We shall

prove the converse, and therefore the equivalence of the two definitions, in
Lemna 7 . Definition (1) is the aesthetically simpler, while definition (2)
is the one vhich is used continually in practice.

The reader is warned against the standard mistake of confusing

projective meps with piecewise linear maps. For example the projection onto

the base of a triengle from the opposite vertex of a line not parallel to the

base is not piecewise linear .

Infact the graph [ £ in the square |[X) x | Ll is part of &
rectanguler hyperbola . o




; ‘ . I.

Lemma 2 ¢+ The eomposition of two piecewise linear maps is snother ;
‘o s £
Proof ¢ We uge definition (1), Given XK 25 L —3 M, let

| | F=(Tetx {n)n (1R} 21 g ¢ &P 5% 5°

. Then ™ consists of all points (x, fx, gfx) , x € | K|

‘ C e BP Q. T P T

L _ +~ Therefore the projection T : XE*X B x E

% o meps [~ homeomorphically onto T~ (g f) ,

- .. Since f,g are piecewise linear, [~ is a euclidean polyhedron

; | by Lemma 1 Corollary 2 . The image under the linear projection H
o any complex triangulating [ gives an isomorphic complex

triangulating T (gf) . Hence [~ (gf) is a euclidean polyhadron;

and gf 1is piecewise linear .

Definition s Lemma 2 enables ug to define the combinatorial cateeory Ca with.-

}(" ! _ : { objects : finite gimplicial compléxes

meps : piecewise linear mapg.

We shall slso need the subcategory of embeddings E with

the same.objects

[maps : injective piecewise linear map s.

F _ We proceed to prove some useful subdivision fheorems .

i w o
' . . .

Lemma % : If KDL, then (1) any subdivision K' eof E induces a subdivision

Ll of L, and (ii) any subdivision L' of L can be extended %o
1 subd1V181on X! of K., ‘

§ | Proof s (i) is obvious
{ ‘  (i1) subdivide, inductively in order of increaﬁing dimension,
those 51mp1exes of K-L that meet L , by the rule A' = 4 A"

P ' - where A is an interior point .

e T T T . ” AL B gt e s b s e b 1
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: Given a gimplicial embedding £ : K~ 1L , and & subdivision K'

Cof K., there exists a subdivision L' of L such that

f i K'->L' is simplicial .

If 1KI3JL] . then there exists an = derived K of X and

Lemma 4
& gubdivision L' of L such that L' ig a gubcomplex of K(r) .
Proof i By induction on the number of simplexes of L . The induction
‘ starts'trivially when L=f., If A4 isa principal simplex of
L (principal means not the face of another), then by induction
~ -choose K(r—i) to contain a subdivision of I-4 ,
Choose a derived K(r), by starring easch simplex B é-K(r~1) at
o] 0 v 0 - .
apoint in & M B if A meets B, and erbitrarily otherwise .
Then K(r)_ contains subdivieion of I-~A, A and hence of L .
Coroilary 1o If {X] = 1%L4{ , then ¥, L have a common subdivision .
Corollary 2. .11 !K}:>5Li1 v i= 10,7, then there exist su%division X, Lt

Corollary

&mhtmﬁeﬂltma}ﬂi are subcomplexes of K! .

Lempma 5

3+ The union of two euclidean polvhedra is another .
For subdivide a large simplex containing them both, so that each

appears as a subcomplex . The union ig~elsoasubcomplex .

Given a simplicisl map f : X~>1 , and a subdivisgion L' of L R

then there exists a subdivision K' of K such that £ : K'-T*

" ig simplicial .

Proof :

Let K, = £l , which is a cell complex subdividing X .
By Lemma 1 we can choose a simplicial complex K! subdividing

K1 y introducing no new vertices. Then each gimplex of K' is

3
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mapped linearly to a simplex of L', and o £ ¢ K'-» L' ig

simpliciel .

Définition + Amap f ¢ K~ayEq‘ is linesr if each simplex is mepped linearly .

Lemme 6 : Let © be the inclusion L < E%. Given amep f : K—>I , such

Proof

that of : K->B% ig linear, then there exist subdivisiong K!', L'

of K, L with respect to whiéh £ 43 gimplicial .

If A, &K, let B, =f 4, .
k8 _ L 1

By linearity ‘Bi' is & cell, possibly of lower dimension than A,
and LBi\ C 1Ll « By Lemma 4 Corollary 2, choose simpliciel
subdivigions L', B; of L, B, such that each B is e
subcomplex of L' . Then for each i, fH1B£ ig a cell complex
subdividing 4, , and the union ' is 8 cell complex
subdividing XK . By Lemma 1 choose a simplicial subdiviesion

K' e £L , introducing no new vertices . Then f : K'=>L' is

simplicisl .

Lemma 7 ¢ The twe definitions of piécewisa linearity are eguivalent .

Proof |

L]
H

We bave observed (2) ==»(1) trivially, Therefore we shall prove
(1) = (2) . suppose ¥ in E°, L in BY and let £:K-S1L

 be a map whose graph { f is a suclidean polyhedron. In other

words, there exist a complex M in EP*Y such that M) =1 £.

' i
The projection o x - 1 e B maps M Thomesomorphicalily

onte X , and linearly into o 3 therefore by Lemma 6, there exist
sibdivisions M', K' with respect to which TT} is‘simplicial .

Hence TT1 ! M'—>K' is an isomorphism . Similsrly °

‘‘‘‘‘
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7?'2 : 5P x E%—s g% maps M into L (not necessarily

homeomorphically), and linéarly into Eq} therefore there exist
+ . subdivisiong M" , L' with respect to which TTé is simplicial.

Let K" be the subdivision of XK' isomorphic to M"™ . Then f

is the composition of the simplicial maps

/ K > W ety LY,

\LTT - Hence f : K-»L is piecewise linear by definition (2)
: - ' .

Let T be a finite subset of (3 s such that if amap is in T S0
ig its range and domain . The diaaram‘of T ig the l-complex obtained by
replacing each complex by a.vertex and each map by an edge. Call T a
free in Qi ~if ifs diagram is simply—connected.’Call T iyggﬁggz if each -
complex is the domain of at most one map . Therefore in a one-way tree there
is exactly one complex that is the domain of no map, and every other complex
is the domain of exactly ome map . Call T gimplicial if every map of T is
gimplicial . Call T' a subdivision of T if it has the same diagran, and
each complex of T' is & subdivision of the corresponding complex of T,
and each map of T' (qua map between the underlying polyhedra) is the same

as the corresponding map of T .

- ¥
Theorem {1+ If T is a one-way tree in Ci ; or g tree in 75 , then T has

A

a simplicial subdivigion .

Proof by induction on the number of maps in T . Let T be a onemwéy tree
in C? o \

The irduction begins ﬁrivially with no maps .
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Suppose T has at least ons map. Then there exist complex K
and amgp f ¢ K~>L in T, such that K is not the range

or domain of any other map in T .

By Lemma 7 , there exist subdivisions K', L' of K, L with

.respect to which f is simplicial . Let T, be the one-way tree obtained

from T by omitting X and f , and replacing L by L' ., By induction .
there is a simplicial subdivision T, of T, . In particular T, containg
a subdivision L" of L' . By lemma 5 there exists a subdivision X" »f K!
such that f : K'-»L" ig simplicial. Let T' =T! together with K" ans

£« Then T' is a simplicial subdivision of T .

Now suppose T is a tree in & s not hecessarily énemway. There
ig a complex K‘ which is the range or domain of exactly one‘may « If K is
the domain, proceed as before. If K is the range y let the mgp be £ 3 L ¥ .
Proceed as bvefors, except that we can use the Gollorary to Lemna 3 instead

of Lemma 5 to form K", since f is an embedding . The proof of Theorem 1

- ig complete .

The following w0 exemples show that the hypotﬁeses of Theoren 1

are necessary as well as sufficient .

Examgle 1. If‘zs neoessary “that a ftres in C3 be one—way »

otherwise 1% conteing & subtree

We can ohoose f , g e0 that there existe no simplicial subd1v1szon as

follows ¢




e ity b e 2y 8 © L e s s e

- 12w

Let K=L=M=1, the unit interval, and let

. 0 ey O
/3 s
| S |
(0:1/3] 4 [1/3,1]) - Mnewly ,

f map

0 e O

| 2/3 ey 1
maj .
& P : 50

[0,2/3], {2/3,1] linearly .

Suppnse there is a simplicial subdivision, containing .K' a

Let p,q,r be %ﬁe nurbers of‘vertioes of K! betyeen, respectively, O and
1/3, 1/3 and 2/3, 2/3 and 1. ,

Since £ is simplicial on K', we have p = q4 1+ 1 .

From g eimilarly, p+ 1+ gq=1r . Hence q=~1a contradictibn‘.

Thorefore there is no simplicial subdivision .

Example 2 « It is necessary that the diasgram in Ei be a tree,

otherwise it confains a circular subdisgram
\ ' .

We can choose the maps 50 that there is no simplicial subdivision as follows @
Let all the complexes be I , and all the maps be the identity except [,
end let '
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£ map

Suppose there is a simplicial subdivision containing £ : K'~> L' . Going .

reund all the other maps we have the identity map simplicial, and so K' = L' .

- 13 -

0 oy O
1/3 — 2/3
| ey 1

(0,1/3] [1/3, 1] 1linearly .

»

Using‘ the same notation as in Bxample 1 , since f is simplicial, we deduce

P=p+ 1+ q Hence ¢ =~1, again a contradiction. Therefors T has no

gimplicial subdivision .

Remark . A "commutative diagram” in < has simplicial subdivision if the

maps are determined by a maximal tree. For example

v

| bu{:

'\

AN

¢

is determined by

.
*

{

4

is not defermined by a tree.
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Chapter 2 ¢ THE POLYHEDRAL CATEGORY

In this chapter we give mainly definitions and exampleé to describe
the categoﬁy. We omit the proofs to most statements to make the réading eésier,

and because latéf‘ohapters do not depend on theml_

Let X be a set (without as yet any topblogy)a A polyhedron in X

is an injective function f : K- X where X is a finife simplicial complex . -

By a function we mean, as usual, a function from the set of points of the

underlying euclidean polyhedron |X| to the set ¥ . We write
¢onf=X , imf=fK.

Two polyhedron fl H Kl-—% X nxd f2 H K2-% X are related if there is a
third f3 : K3 —+ X such taatb '

Ll

i) im f3 = im f1 M im fz

iy -1 “l, . P
i) fl f3 , T fB‘E Ei .

2
K 1/\ ' |
LN ‘
1{3 /7 \fjlﬂ

L >

Ko f /,E : ,%27 |
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A family 7 of poclyhedra in X ig a set in which any twe are related .
Write im 1’ £mf fe 't}

4 polystructure, (or more briefly a structure), r? on X is a femily such-
that

i) im F covers X
ii) dim f;ﬁl is a lattice of subsets of X
‘o Lo d '
si1) . = 4;’7
g £
The last cordltion means that given K .23 L —» X with f e rsf and g
& plecewlse linear embedding, then fgz £ }f

4 polyspace X = (X,¥) 35 a set X together_ with a polystructure F om X,

opolopgwy

/

The topoloey T(3F) of the structure F is the identification

- topology
X = dom r}/ Tf .

- ) ‘ ' )
Here dom o reens the disjoint vnion of the euclidean polyhedra
(...,4 . [l
{dom f; fe } » and the identification is given by JF: dom j IV

We can deduce (non-trivially) :
i)" Bach f : X —» X is a homeomorphism into

i1) 4 set UC X is open (or closed) if and only if U A f K is

open (or closed) sn £ X, each 7 € " .

If X is a topological space, then a polysiructure on X is ore with the

same topology .

-

Ixemple 1 . The discrets stricture on a set X is given by maps

of points into X . This gives the discrete fopolo_gy .
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Exanple 2 » The natural structure “F (E°) on Buclidean space E-
is the set of &ll piecewise linsar embeddings K. E? o This gives the

natural topology .

‘Example 5 + The natural structure ?;(K) on a complex K is the
set of all piecewise linear embeddings L -3 ¥ . The natural structure on

the euclidean polyhedron K| is the same .

Exemple 4 « Suppose f :|K| X is a homeomorphism from a
euclidean polyhedron onto a topological space X . Then £ F(X) gives a
polyhedral structure " (X) on X . Vo '

We call X, with this structure, a polyhedron .

Notice that "F (X) contains the triangulation £, and all related
triangulations « Conversely the structure is uniquely determined by any
trienguletion in it . |

{
x

Remark 1 s We have used the word ﬁolyhedron in three ways
i) ‘euclidean~-polyhedron
ii) polyhedron-in-a-set

iii) polyhedron .

The usage is ooherent; because_(i) with its natural structure is an example
of (ii1) , and the image of {ii) with its induced (cee below) structure is an

example of (1ii) .

Remark 2 . It is possible %o have many structures on a set ;

more examples ave given below . However it can be shown (non-trivially) that

1) Any structure is maximal with respect to its topology : the

topelogy of a strictly smaller structure is strictly finer (more open se%s) N

2) The natural structures of" " and of polyhedra arQ'maximal .
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Subspaces

Let %= (X ,"3) be a polyspace . If Y& X, we define the

In general . T{

induced structure on Y to be
TiY={fe™] ;imf¢ T}
It is easy to verify that FlY isa polysfructure on ¥ .
We call Y = (Y ,F\Y) a polysubspace if it has the induced topology ¢

P (F1Y) - 209 Y. -

5

| ¥) has a finer topology .

" Exemple 1 . ' is a polysubspace of s,

' N

This is & parficularly satisfactory example , because combinatorially it is
always a little embarrassing to regard the infinite ﬁriangulation of En as

a satiefactory "substructure® of the finite triangulation of 5= .
We state elementary properties of polysubspaces, leaving the proofs
to the reader :
i) Any open set of X 'is a polysubspace .
ii) Any polyhedron in X is a polysubspace .
iii) A polysubspace of a polysubspace is a polyéubspace .
iv) The intersection of two polysubsvaces is a polvsubspace .

Therefore the notion of polysubspace substantially enlarges the concept of

"tame" set to include both polyhedra and open sets .

Example 2 » The union of two polysubspaces is not necessarily

%

poly « For example let A = open disk in E2'

Bew=a boundary point .
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Then Ais B , with structure 7| AU B is locally compact; a compact
neighbourhood of 8 in AU 3B is a closed disk D, having B on
its boundary , and with D = BC A . But with the induced topology

AUB is not locally-compact,.beo&usé B has no compact neighbourhood.

Fxemple 3+ A circle in E2 is not.a polysubspace , because the

induced structure is discrete .

Exenple 4 » A closed disk in E° i not a polysubspace . With
% the induced structure it is non-compact ; any subset of the béundary being
§ closed . It is like the Prifer manifold with eech attached disk shrunk to
g a point .

¢

M 2T 8
oy

: A fwnction f: X -» Y between two polyspaces is called a
[ polymep it £ ¥ (M e T (0 C.

In other words , given . g & %(X) , then £g can be factored through the
structure of T , fg = g'f' for some g'é& F (Y) ; where f' is piecewise

i i linear ,

AT e g A AT T ST

ES
)

it is easy to deduce

1) A polymap is continuous with respect to the structure topologies ,

and is therefore a map between the underlying topological spaces .

2) fi:K—L is apolymap if and cnly if it is piecewise linear .

A i
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HE © 3) Tdentities and compositions of polymaps are polymaps.

Thereforé we can define the polyhedral category EP to consist of polyspaces

i and polymaps .

Call a polymap a polyhomeomorphism written f : X =27,

if £ Y = F) .

We deduce 1) it is a homeomorphism, and

% . : 2) £ is aleo a polyhomeomorphism o

€all a polymap a polyembedding , written £ ¢ XC Y, if it is

an embedding , (i.e. a polyhomeomorphism only a polysubspace of Y) .
We deduse 3) f£: X-»Y¥ dis a polymep if and only if ifs greph

fxf: X—=Xx7Y is & polyembedding .

oo Remark

_ It would be natural to call a polymap f : X-»Y¥ dinjective if
(X)) = q;(Y)J f X . Thig definition is weaker than polyembedding ,
o { | because it does not require the image £ X to be a polysubspace of T .

But it is of interest for the following reason . Consider the categories :
(1) space and embsddings
(2) polyspaces and injective poiymaps

| - (3) polyspaces and polyembeddings.

Then (1) ~ (2) = (3) . Now some constructions such as join and mapping
j " oylinder ave. functorial in (2) but not in (1) , and therefors mot in (3) .
For these constructions the polystructure is more natural than its

acconmpanying topology .
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Dases .

A base I for a polystructure on a set. X is a femily of
polyhedra such that im §% covers X (i.e. only the first structure exiom) .
As with structures, the topology T (§) is the identification $opology |
X =dom 35/55 « We say ¥ is s base for ‘¥ if |

i) P c F _
11) every set of im 7 is contained in a finife union of sets
of im 73 .

Ve can deduce
$) Every. structure has a base (trivially) .

2) Every base is the base for a unigue structure; and the base

and structure have the same topology .

Bxemple 1. Any polyspace has a base of simplaxes,

03 = { e ﬁ}'; dom f = siﬁplex } .
' Example 2. En has a base of -all n~simplexes .

Example 3. A polyhedron X has a base of one element , namely a

trianguiation f+rX¥X—-X.

Exemple 4 . The Yoven Sguare . Let X be the sTrare Ea .

Let T3 be the base consisting of all horizontal and vertical intervals, or,

‘more precisely, all horizontal and vertical linear embeddihgs of I + The

resulting structure is smeller than tne natural structure, because it containg
no 2~dimensional polyhedra . The resulting tovoloey is finer than the natural

topology, and is therefore Hausdorff, but is not locally compact , nor simply-
connected . A typical open neighbourhood of a point looks like a meltese cross.

Any subset of the diagonzl is a closed set .

Exemple 5 . {(The pathological Woven Square). We enlarge the

structure of the Woven Sguare by veaving in one more thread so badly, that
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it produces a non-Hausdorff topology . Let 4&: I-«}Ig be the diagonal map ;
and let e:T —»1 be the function that is the identity on the irvationals,

but reflects tho rabtionals about the mid-point . We add to the base of the
structure of the Woven Square one more element , the polyhedron f = de @

I -~>12 . The topology of the Woven Square is thereby coarsened , s0 thﬁt the
ends of the disgonal cannot be separated by disjoint open sets . (The proof

uses measure théory, and depends upon the non-countability of the base) .

Definition, We call a base 3 topolosical if it is also a base
for the topology T{M) in the following sense : given x € X , there exists
£ & U, suchthat im £ isa - (closed) neighbourhood of x in X in the
topology T{(A) . For instance , in Example 2 above , the set of all
n-gimplexes in gt is a topological base , But in Exeample 4 , the base
for the woven square is not topological . The structures for 1nf1n1te

manlfolds and function spaces unat we. g&va below will not be topologloal .

iangultable Spaces

The pathological examples 4 and § above indicate some of the
consequences of the definitionsof polyspace . However since our inﬁérest
lieg towards manifolds, we 4o not.stress the pathology » but rather use it
to obtain insight into the struoture of important polyspaces such as functmon
spaces . One of the advantages of polyspace is that it is more general
than the triangulable space , even if we use infinite triangulations . In

fact we avoid infinite triangulations , because we regard them as alien to

V‘the subject , being too diffuse a %ool , and defining too restrictive a space .

The slgebraic elegance of infinite complexes should not be confused with

their geometric limitations . However it is worth mentibning the relationship

"between polyspaces and triangulable spaces .
Given a polyspace X , then there are six possibilities :

i) X is a polyhedron , i.e. its structure contains finite triangulations .
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! i1} X is not a polyhedron , but we can enlarge the structure of X 1o be
: A a polyhedron - for example the woven square .

h iii) There is & locally-finite infinite triangulation f ¢ X =¥ X, whose

; ' restriction to any finite subcomplex is in the structure - as for

sxample in E

i ) If X is conmected , then a necessary and sufficient condition for
this is that the structure have a countable topological base . A
consequence is thet the topology is paracompact , Hausdorff , and

locally compact .
iv) The struchure can be enlarged to give (iii) .

v) The structure is meximal , but (i) and (iii) ave not true ;
for example the Long Line (see below) . '

vi) The structure is not maximal , but (ii) and (iv) are not true ;
for example the pathological woven square, or «2 -dimensional

manifolds, or function spaces (see below) .

P Compactnesas

GQuegtion 1 . Is a compacé polyspace a polyhedron ? The answer is yes
: if it has a countable base , or if it " has a topologleal base , but is

unsolved otherwise .

A R L e SRR e

Question 2 . Docs the lattice of compact subgets of a polyspace

refine the lattice of polyhedra 7

AN S e e

The qpestlon ig 1mnoruanb for studying the hcwouugy gtructure of function

Spaces .

Manifold s'

gt S e g P

An p-polyball is a polyiedron triangulated by an n-simplex .

'fw 1 - An n-polysphere is a polvhouron trlungulatod by the boundary of an (n+1)—sxnplex.
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Definition : an n-polymanifold M ig a polyspace , each point of

which has an n—polybali neighbourhood .

More precisely , each point has a closed neighbourhood (with respeef
to the structure topology) which is a polysubspace , and which, with the
induced structure s 1s an n-polyball . The boundary M ig the closed
polysubspace of those points which lie on the boupdary of their neighbourhoods ,
and is an (n~1)-polymenifold . The interior Ml ~1 is the complementary

open polysubspace .

We call M closed if compact and W= ¢ .l
bourded if compact and M £ B .
open if non-compact and M = § .

If M compact then any triangulation in the structure is a oombinaﬁorial
nanifold (i.e. the link of every vertex is an (nwi)—sphere'or ball eccording
as to whether the vertex is in the interior or boundary ; the proof'is by
verifying that the property is invarient under subdivision, and true in an

n~simplex) .

S Exemple f . The Lone Line ié cbtained by filling in (with unit
intervals) all the ordinals up to the first non-countable , and is given
the order topology » Then it can be' shown (non.trivially) that the Long Line
'hgé a 1 - polymanifold structure,-although it is nonwparaéompéct, and therefore

]

non~triangulable .

Example 2 » The Pritffer-manifolds arve non-triangulable n-manifolds ,
np 2.

Direct Limits

Suppose Xn s = O, 1, 2,000, i3 8 secquence of polyspéces y such

that, for each n , Xn is a polysubgpace of X£+ . Define the limit structure

i
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on X=TUX %obde

0 = IR .

n

The topology of f? is the same as the 1imit topology .

Example 1
Let X = B2, Assre E° C BEY linearly .

Then E™ = U E" is Buclidean o -space . This is not to be confused with ,

nor homeomorphic (in either topology) to , R , Hilbert space , which is the

" product of countable copies of the reals o

Ixample 2

.
| Let B = point ; B® = S B, the suspension . Then B® is an
nepolyball , and B = UB" the o0 -polyball . This is not to be confused.

with , nor is homeomorphic to , I °°", the Hilbert cube .

Examgle'3

1 , the sugpensicn . Then s" ia

Let SO = two points ; S = 857
an n-polysphere, and 8% = Us” the oo -polysphere . It is true that B®™°
hds 5" asz a closed stbpolyspace -, with complementary open subspace
BY . 8% ¥ E“°, TNevertheless we do not call these boundary and interior

because it isffairly easy %0 show polyhomecmorphisms

R o 3R x g oo N

" Therefore B is hemogeneous without boundary , because 5 “? is.

Examplelé

Let 0=10 On be the infinite orthogonal group . Any iriangulation

of On can be extended to a triangulation of Gﬁ+ » The resulting structures’

_ 1
define & polystructure on G . o
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Infinite manifolds . The above definition is good for n = o R

The above examples are all infinite manifolds. Similaxiy other classical
groups , and the infinite Grassman and Stiefel manifolds . We observe that /

an oo -manifold has no boundary because an ¢ ~ball has no boundary . [

"Products.

Let KL be complexes in EY , EX . Then K%L is a cell

complex in E° %, and so the natural structure J (K x L) is uniquely

defined . Given now two polyspaces X, ¥ , define the p:&oduct structure .

FExY) = {(fxg)‘h; fe ?V(X)‘, gé?(Y), 5&' F(donf x domg) "

'

. iz h fxg
———

f

We can deduce :

t

1) The product is. functorial on ~ .

2) A furction £ : X — ¥ is a polymap if and only if the graph
1xf: X->XxY is a polyembedding . '

'Joings
The topological join X %Y of two spaces X , ¥ is obtained
from XV (XxIxY)v Y by identifying x = (x, 0, y), ¥ =(x, 1, ¥)

gll x&€ X, y€ Y, and giving the identification topology .
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If X, ¥ are polyspaces ws define the‘join structure :? (X »¥) as follows »
Given X in B, L in E%, we identify B , 8% with
»EplexO',‘Ox-qu‘l in P xe%x1,¢ et
The images of X, L are joinable in EP+Q+1, and we define K « L %0 be their
join . The complex K * L has a natural structure F (K % 1) . Define

e x*\:) {(f*g ;s feT7W,ee FO), ne 7 (dont + domg)

We can deduce that the topology of :F'(X % Y) is the same as the topology
of the join X % ¥ above .

The join + 1ig functorial on the category of meps, but not on the’
subcategory of embeddings . Give X'< X, Y' &€ Y then X' % ¥' does not
always have the topology induced from the inclusion X7 » Y' C XxY,

For example let X = 1 s X' = % , and Y =Y!' =g point o Then the cone on
% ‘is not & subsgpace of the cone on I : the cone on % has a finer.topoiogy
‘,than the irduced topology , and is locally compact at the verbex | wheraas

the induced %topology is not (cf. the polysubspace Example 2) .

_ ‘On the other hand the join is functorial in the category of poly-
subgpaces and injective polymaps; the naturality in the category dictates the

~ topology to bé chosen on the join , which is then not funotorial in the
subcategory of polyembeddings . The explanation is that the concept join is
essehtially a combinetorial idea, and so as we should expect, in this context

the polystructure is more basic bthan the topology »

Funetion Spaceas-

Let X be a polyhedron , and ¥ =& polyspace o Lot YX be the cet

tf polymaps X-3Y . We define the function space structure G} 'YX on YX
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ag follows . If f 3 K*—%Yx is an injective function ; let £' ¢ X x K->V
be the assocciated function given by £'{x , k) = (fk) X « Dlefine

’BC(YX)= {f;f' isapomap} .

Lenms (Hudscm) Any two such f’s are rela‘ted'.

Therefore F (Y is a family of polyhedra in Y. and the three
axioms for a polystructure are easy to verify. We can deduce the following

properties

1) The structure of T~ is functorial on X,Y in T . 1In other

| words if f: J&—'-J»X and g.3 Y- Yl. are polymaps, then the induced function

‘ gf: f(-;-»a-Yle a

is elso a polymap .

2) If XY are pol‘yﬁedra and Z a polyspace then thers is a

natural polyhomeomorphism

(ZY)X_"’—:: gxx

Remerk 1 » If X not a polyhédron (not compact) then the above
definition does not give a polystructure . For example if X=E', Y = E2

then Hudson's theorem fails; there exist two f's that are not related .

Remark 2 . The topology of the structure is strictly finer than
the compact open topology , and is therefore Heusdorff ., If Y isa polyhedron
or & menifold then both topologies give the same homotopy structure on YX .

(Question : is this true for general Y ?)

I‘so‘copy

Let {X ¢ Y) denote the polyspace of polyombeddings of X in Y ,

with strunture induced from v, (Question : is it a polysubspace of T ?)
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One of the main reasons for the way we have devéloped the theory is that
the following four definitions of';sotopy are now trivially eqﬁivalent .
- A polyisotopy of X in ¥ ig’ |

i) a point of (X< ¥) L
'ii) apolymep I-—{Xc Y)
14i) . a polymap- Xz I-$Y , which is a pélyembedding at each level ,
iv) @& level-preserving polyembedding Xx I ->Y¥x I, |

If f,g 1 X1 are the beginning and end points of the isotopy , we say the
isotopy moves fX onto X, and that £, g are isotopic .

 Let H(Y) denote the polyspace of polyhomeomorphisms of Y onto

itself, with structure inducec from Yx « An ambient polvisotopy of Y is =

polyarc in H(Y) starting at the identity, and finishing at e , say » If

X 1is a polysubgpace of Y we say the ambient igotopy movea X onto eX .

If £ LY is a polyembedding (or polymap) we say f, ef are ambient
isctopic . Later we shall prove a theorem of, Hudson , which says that the
notions of isotopy and asmbient isotepy‘coincide for manifoldy of codimensgion
» 3 « In codimension 2 they are essentiallyrdifferent, bacause ordinary

knots in E3 can be untied by isotspy , but not by ambient isotopy .

'

Remark

If Y=5" ; there is another definifion of isotopy favoured by

some writers , which we call linear isotopy, and it is worthwhile analysing thse

difference . A linear homotopy of X in En is congtructed as follows :

chooge a fixed: trianguletion K eof X, and for each vertex v € X ;&
polymap fv : I-—%ZEn . TFor each t y et g, ¢ K-mafEn be the linear map
determined by the vertex map v—»fv(t) + Then {g.} or g: KxI-—> E
is the linear homotepy . If g is an embedding at each level we call g a

- linear isotopy . We make the following observatiéns H
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i) Hot every linear isotopy is poly, because in general the freck

g{X x I) left by the linear isotopy is a curvilinear ruled surface rabher than

"a euclidean polyhedron .

ii) Wot every polyisotopy is linear, as shown by the example below .

iii) If two polymaps are linearly isotopic then they are polyisctopic .,
The converse is also true (non~trivially) if X is a manifold of

codimension ), 3 .

' iv) Linear isotopy'is not functorial. We justify this last statemerit
by defining'a polystructure on (X< En) that exactly caétures linear isotepy ;
more precisely we shall construct a polystruchure, C;L say , on (En)X guch
that linear homoiopies are the polymaps I ---~-~~>(En)X with respect to TEL 5
and linear isotopies are the polymaps I — (Xc¢ En) with resgpect to ths inducéd

structure .

Define ’EFL as follows: if ¥ 4is a triangulation of X with k
vertices , then the set MK of linear maps K ~3E can be given a
polystructure 1L, 25 | If K is a subdivision of X , then M C M.,

is a polyembedding .

s ‘the union taken over ail triangulations in the-

-

Therefore (En)X =tJ ¥
K

structure of X, and i3 defined by %the limit polystructure . We shall

tf:sZ

ghow that if En"%HBn is a polyhomeomorphism, then the induced function
(En)x'—#éa(En)X s which is a polyhomeomorphism with respect to the funetion

*

space structure, is not even continuous with respect to SPL

Bxemple 1 .« Let X =1 and Y = E2 y and consider the isctopies
I—{Ic Eg) rerformed by & caterpillar crawling firstly along s straight
twig , and secoﬁdly along a bent twig + The firet isotopy ; f sey 5 is
linear , and therefore also poly . The second isotopy , g say , is poly ‘
but not linear , because we cannot desecribe it in terms of a fixed

triangulation of X = L . This shows ;; qﬁ :;L o Now suppose the caferpillar

t
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performa g by starting with his nose, and finishing with his tail, at the
Q
bend in the twig » Then g I is a closed set in the topology of :;L"
o .
whereas fl 1is not . There is en obvious polyhomeomorphism % of B2
bending a straight fwig into a bent twig , and the induced map of (I ¢ E2)

o - ] .
into itself maps f1 into gl . Therefore it cannot be continucus with

- respect to the topology of Sfb .

The explanation is that ':¥ ig functorial on XY & EP s Whereas
:?L is functorisl only on X € Sﬁ’ and Y in the subcategory of euclidean
gpaces and linear maps . Since our theory is dirscted towards isotopies of

-

manifolds in manifolds, we favour t; and reject GFL

Exemple 2 . Let B denote the set of polyhomeomorphisms of En
onte itself having compact support . The hypo%hesié of compact support enables
us to define on H® y as above , both & function space polystructure F
and a linear polystructure G;é, Let VH?', Hg be the resulting topological
spaces, both having 5 as underlying set . Then it appears that it ,_Hz
havg.different homotopy structures . By Alexander's Lemme on isotopy , it is

19.

easy'to show that H? is contractible . Hewever Kuiper has used the queer

differential structures on S/ to show that either T, (Hg) Lo

or ﬂ”1(H§), qé 0 . This is essentially a phenomen on of codimension zero .

‘D egeneracy

Let f: X->Y be a polymap « Define ths non-degenerats structure
g (£) of £ vy '

7 (2) = {g € J(x) ;5 tg¢ (T;‘(Y)} .

Note that in general fg é f;(Y) because it is not injective . Call f non-
degenorate if 7] (£) is a base for J (X) . Otherwise f is degencurty .

Exémple 1 » A polyembedding is non-degenerate .

D omaenn
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Bxemple 2 . A polyimmersion (Local embedding) is non-degenarate_,‘

Exemple 3 . A simplicial map is non-degenerate if and only if it

maps each simplex non-degenerately .

Example 4 . We ghall show that any map of a polyhedron of dﬁmension.
< n to an n-manifold can be put into "general position" where it is non-

degenerats .

mapping cyvlinder problen

The problem is To define a natural stfucture on the mapping cylinder
C of a mep f 3 X - Y . We explain why this problem is, in a sense,

ingoluble .

ts Topological . The topoloéical.mapping cylinder € is obtained
from Xx L UY by identifying (x,1) = fx, all x¢ X, &and is given the

identification topology . Then € is functorial on the category of maps .

2. GCombinatorial . Suppese f : K— L is a simplicial map .
Whitehead ga&e a Tule for defining the simplicisl mapping oylinder s G say
of f , which is & triangulation g: G-=>C “of the ﬁopologicél mepping
cylinder . This rule is functorial on the category of simplicial maps , but
not on the category of piecewise linear maps . For suppose XK', L' are
;;gdivisions of K, L, giving rise to the simplicial cylinder g's G'-» C .
Then , although G,G' are piecewige linearly homecmorphic , g, g' are 222

in general related . Thersefore the identity méps Kt K , L'-» K induce the

_ identity C - C , bul only a piecewise projective mep G'—> G .

%. Polyhedral . The ingclugion C L X # Y of the mapping cylinder
in the join induces a natursl polystructure & (C) on C that is functorial
tn the categery of polymaps . However :§‘(C) gives the wrong topology (too
fine a one) . | ‘ |

Example 1 . The identity on I has mapping cylinder a square , and

polystructure the Woven Square (of example 4 above) »
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Exemple 2 « The mapping cylinder of a simplioisal map of a
2-simplex onto & i-gimplex epitomises the problem , because when embedded

in E3 it looks like the prow of a ship .

The structure :;(0) has a base consisting of a.l horizontal sections y -and

all vertical sections going athwartships , but no 3-dimensional stuff .

Exanple 3 . If f is simplicial , then the simplicial mapping
cylinder G->C is related to 'F (C) . In otker words , " F () can be
eniarged (non-naturally) to contain any simplicial cylinder, and is the

intersection of all the structures determined by the simplicial cylinders .

Exemple 4 . On the subcategory of non-degenerste polymaps the
natural structure 'F (C) ocan be enlarged to a structure CFZ(C) that (i)
is functorial on this subcategory (ii) containg all simplicial cylinders ,

and (iii) gives the correct topolcgy « A base for 3;1(0) is

B F U{(gxi)h; geN() , ne ?(domgxl)] .

foncluding Remarkes

We cen enlarge or change i by enlarging or changing the tool C ‘
Txample 1 « BEnlargs CZ to contain piecewise projective maps .

Example 2 . Further enlarge (& %o contain piecewise algebraic

complexes and piecewise algebraic meps. Then algebraic varieties in B
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wguld become polysubspaces .

Exsmple 3 . Replace C3 'by the category of open subsets of B" _
and differential maps . Then .\_(P would be the category of differential

manifolds and differential maps.

Gabrielle has pointed out that a polyspace ig equivalent to a

contrav_ariant fuctor from G to the category of sets and functions , obeying

two axioms of intersection and union; a polymep is a nafural transformation

between two such' functora .

[ ) 3
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Chapter 3 : REGULAR NEIGHBOURHOOLS

From now on we shall omit the prefix "poly", and whenever we say

gpace, map, rneinifold, etc., we mean polyspace, polymap, pclymanifold, etc...

Lemma 8. A convex linear cell is a ball:

/

Preof : Given a convex linear cell B we have to exhibit a specific
plecewige linear homeomorphism from a Simplex O\ onto B, Since B is in
| some Buclidean space, we can choose 2\ O B . Let % be
a point in 8 » Then radial projection from X gives a
homeomorphisn é\ - B s but this is not piecewige linear
by the Standard Mistake. We get round this difficulty by
defining a pseudo radial proqeohon as follows. Let &
be the cell subdivision of A consisting of all cells
A £ A , B € B. Let A" boa simplicial subdivision of

A ﬁ:yB

1 y
A‘ . Radial proaectzxon of LX " determines an isomorphic subdivision B" of

.B , &nd radial projecticn of the vertices determines the simplicial‘ isomorphism,
which is of course piecewise linear. Joining to gives the required

homeomorphism A > B

Corollary  Joing of sr}he‘res and_balls obey the rules s

i) BBy pPFY

.
[ BB N A
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Proof. Since the siructure of a Jo:m ig functorlal, it suffices to

prove one example .

i) The Join of two simplexes is a simplex

‘ - ' ii) In Ep+q+‘1 choosa Bp, 'Bq"d'1 t0 be simplexes crossing at their barycentrea.

Then BPE'EQH is a convex linear cell.
1i1) Take the boundary of ii) .

We call a complex J a combinatorisl p-menifold if the link of

e S e e o o

each vertex is an (r=1)-sphere or an (n~-1)=ball,

Lempa 9 «» Suppose |J | =¥ . Then J isg a combinatorial manifold

i if and only if M is a manifold .

‘ Proof . One way is trivial; for if J is a combinatorial manifold s
( then the closed vertex stars of J give a coveriné of M by balls, such fhat
f each point of M has some ball as a neighbourhood . . ‘

. Conversely supposse M is an n-manifold , and let X be a vertex
of J in % « By the definition of manifold (polymam.fold) there is a
plecewise linear embedding £ : A -y J covering a neighbourhoed of 1,
where A is an n-simplex , such that i';_jat & 8 » Bubdivide so that

} fi@ AYs T is simplicial; ize have pilecewise linear homeomorphisms

*

O ey 1xk(fx, A1)

e, Tt 1k, T)

. Where the middle arrow is an isomorphism and the other two arrows are pseudo

redial projections . Hence 1k J) is an (n=1)-sphere .

RN A A M WY 1)

If ¢ is a vertex of J in ¥ s there is & szmmlar situation except

& &, and so it follows that lk(:x:, J) is a ball.

o At s S o R

that f“1
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Corollary 1 » Let |Jl =M be an n-menifold , If A is a

pe=simplex of J , then

homeomorphism B

C %}
either 1x(4,T) = {ne~p-1)=sphere and 7 < M

or 1k{A,J) = (nep-1)-ball and A € N ,

il

Proof « We show the iink is a sphere or ball by induction on p ,
the induction sterting at p = 0 by the Lemma . If p > 0, write A =x3B,
and then 1k(4,J) = 1k{x,1x(B,J)), which is the link of a vertex in an |
(nwp)wsphere or ball, by induction, and is therefors an (nwpml)«sphere or ball

by the Lemma .

Ay point of & has A 1k(A37) as a closed neighbourhood , and so |
lies in M or M according as to whether it lies in the interior or bCundary
of this neighbourhood, i.e. according as to whether 1k (4, J) ig a sphere or balla
Therefore if the link is a sphere then Ac, M , and if the link is a ball %hen

. M s Since M is closed .
Corollary 1 Justifies the following definition : if J is a

combinatorial manifold, define the boundary T to be the subcomplex

J:{AéJ; 1%(4,3) = ball }

0
end the infterior to be the open subcomplex J =J = J .

We deduce at once @

Corollary 2. If IJ) = M = manifold, then | J] =1 .
Definition . If BY% is an (n-1)-ball contained in the boundary '
M oof an n-manifold m s Wwe call Bnml a face of % end write

n~1‘< ut . YWe are particularly interested when M' = B" a ball gls0. Lot

A" denote an n-simplex .

Theoren 2 . If Bn"l 4B ard A -1 LA then any

n}. &nl

can be extended to a homeomorohiem
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Corollary » If %wo balls meet in a common face , then their union

is a ball . (For by Theorem 2 the union is homeocmorphic to the suspension of

a simplex) .

Theorem 3 » If B C 8% 4hen S°B” is a ball

Remark 1 .

The original preofs of Theorem 2 and 3 were given by Newman and
Alexander in the 1920's and 30's and used "stellar theory" instead of
combinatorial theory . The essentiel notion of the proof is to replace the
finite simplicial structure of a ball by some orderced finite structure, and
then use induction on the number of steps in the ordering (the induction
starting trivially with a simplex) . Newman and Alexander used an ordering
by stellar subdivisions; we give a new proof here, based on ordering by
collapsing » The collapsing technique was invented by Whithehead in 1929, and
is more powerful than stellar theory because it includés the theories of
regular neighvourhoods and simple homotopy type . Notice that gome concepl
of an ordered structure seems vital, because without it we cannot prove i

Schonflies Conjecture ¢ If Sn_lCl Sn then the closures of esch

component of the comnlement is a béll .

The conjecture is true for n &€ 3, but unsolved for n> 3 .
It is known by Morton Brown's result that they are triangulated fopologmical
bally, but not known whether they are polyballs . Our ignafahce of whether

they are polyballs when n = 4 implies our ignorance of whoilier they are even

polymanifolds when n = 5 (the links of boundary vertices may go haywire) .

Remark 2 .

The proof of Theorem 2 and 3 is done together by induction on n .

The induction starts trivially with n = 0 . %e shall show £irst that
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Theorem 2n is equivalent ‘o Theorem Sn o The inductive step is achieved

1
by showing that '
Theorem 2_ ; ¥ £ n 2

j === Theorem 5

Theorem 32:‘ y r L n

The inductive step is long, invelving Lemmas 10 = 17 and Theorems 4 - 8 ,
during which we shall often have to make inductive use of Theorems 2 and 3.

However we can avoid going round in a circle by
i) assuming everything to be of dimensiong n
ii) avoiding the use of Theorem 3n

until Theoren Bn is proved . To emphasise vwhich statements are involved in
the induction, and at the same time avold repetition, we put a star against
all those lemmas or theorems which depend upon. Theoren 21' and its Corollary ,

rgmn, and’l‘heoremBr g T .

Lemma 10 « Any homeomorvhism between the boundaries of two balls

can be extended to the interiors .

Procf » e are given fF : Br—;B

2
 Choose triangulations g AL — Bi . Define h A m—-yé‘x by the commutative

; - diagram '

h A o
e S .

A
\L & { &
| ¢

¥ f .
B &

Extend h conewise to a homeomorphiem h'i: A 5 A .

Then the required homeomorphism f' : B, —3 B

3 5 is given by the commutative

B i e e UL S N S S
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diagram
A ht iy
e S
g g,
1 2
Voo
- B
5 > o
Theorem & ':'Ls'equivalent to Theorem 3 . -
s bet Tl
. n~1 i, s s
Proof » Assume Theorem Qn . Given B <8 y then joining
to & point =z, we have Bnﬂl‘< x5t . Let AT be a simplex with face
AL ang opposite vertex y . Choose a homeomorphisn SRRy L , and
extend it to 8Tt —s A® | Therefore gt gt is homeomorphic to fthe

bell y AT,

. , n-1 n
Conversely assume Theorem 3p » Given B Z B, %hen we know

-1
B?; Bpul is a ball . Therefore given & homeomorphisn Bn”l-mé oL y We can

extend Bn“l-avésnml to a hemeomorphisn én—Bnrl-—~+ y annl s by Lemma 10 .
Therefore we have defined én.—>ixn', and can extend to Bn-¢~zﬁnl, again by

Temma 10 .

ar subdivision

Recall from Chapter 1 that an glementary steller subdivigion of X

ig given by

» 0
¥' = (K - st(8,X) v a A 1k(4,K) where a €A, AGK.

A stellar subdivision of X, writteno X, is the resudlt of a finite

nunber of elementary opnes .

Exemples 1) An OB derived is & stellar .

" ii) If KDL, then any stellar subdivision of K

determines a unique stellar subdivision of L , and conversely »
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iii) Z:Qék is not & stellar subdivision of a triangie .

Collapging

If XOL , we say there is an glementary simplicisl collapse from

XK to L if K-1L consists of a principal simplex A of X togsther

with a free face . Therefore if A=a3B, then

B

K=1 U A -k “'E"' L

aB =L N 4

Ve describe the elementary simplicial collapse by saying gollapse A onto a B,

or collapse A\ from B,

e . e . .
Ve say K slmplicially gellenses to L, written K™ 3L , if there is a-

sequence of elementary simolicial collapsesgoing from K fto L . If L is

a point we call K simplicially collapsible, and write X ~2,0 .,

Examples .

i) 4 oone simplicially collepses onto any subcons . For just collapse

ail the other simplexes in towards the vertex .

) A

Mere precisely let a X be the cone on K, and a L be the subcone on L ,

"where L < K o, Then order the simplexes Bl""’Br of K ~-1 in order of

decreasing dimension , and collapse a Ei from Bi PR = P
ii) A cone is simplicially collapsible .

143) A simplex is simplicially collapsible . Both these are special

cases of i) o
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We now repeat the definition for polyhedra . If X3 Y are polybedra ,

- o \ 1
we say there is an elementary collapse frem X %o T if there exists Bn>»an

such that

X=7YusB | B?
3%~y na®

paw——

We describe the elementary collapse by saying

n el n Ln Tl
collapse B onfc B , or collepse B from B~ - B .

We say X _collapsesto Y , written X~4Y , if there is a sequence of elementary
collapses going from X Yo Y. If Y is a point we call X gollapsible ,

and write X 0 ., TFor example a ball is collapsible .

We now investigate the relationship between simplicial colleapsing
: and collapsing . We write K~uIL if {X{~ L] . The significance of this
{ ? last definition is that the balls across which the collapse takes place may not

be‘éubcomplexes of K . It is trivially true that
o ; ‘ K“’"‘ﬁﬁ L = K‘"“\j_L ;
but the converse is unknown . ¥What we can prove is i

% Theorem 4 . If K ==L , then there exists a subdivision K', L1

of X, L such that K!' =Sy 71,

% Corollary 1 . If X —>Y +then there exists a triansulation such -

i that K ~8. L .

# Corcllary 2 . If X is cellepsible, then there exists a

; triangulation that is simplicially collapsible .

Before proving Theorem 4 we digress a little to indicate the

-conseqpences of the definition of éollapsing .

P R R VP A T PP )
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Simple hometopry tvype

The relation XY betwsen X and Y is ordered . If we forget
the ordering, then we generate an equivalence relation belween polylhedra called

simple hemotopy tvoe « Since a collapse is a homotopy equivalence, this is a

finer equivalence relation than homotopy ftype . It is strictly finer, because,
for example, the lens spaces L(7,1, L{7,2) are of the same homotopy type ,
“but not of the same simple homotopy type . But for simply-connected spaces
homotopy type = simply homotopy type , and there are simply-connected non-

homeomorphic manifolds of the same homotopy type .

The Dunce Hat

If we preserve the order X —»Y then the relabion between X, ¥
is much sharper . Trivially if X is.collapsidble then X is contractible
(hemotopywise) . But the converse is not true. For example'consider the
Dunce Hat D which is defined to be a triangle with its sides
identified ab = ac = be . Then D is contractible
{although the contraction is hard to visualise) , and s0 D

15 the same simple homotopy type as a point; but D is not

[
e 20 e M S A i

collapsible becsuse there is novhere to start. Although

D30 , it can be shown that D x I~,0 .

Conlenture . 1T Kd is & contraciible P-complex then K x IO

This conjecture is interesting because it implies the 3~dimensional
J &

Peincaré Conjecture, as follows . Let M3 be a compact contractible Femanifold;

: b
it is sufficient to show that M  is a ball . Call X is a spine of M if

M —sX . Now ME has a contractible spine K? . By the conjecture
M3 x I‘“ﬁK? % IT~%0 , and we shall show in Theorem 8 Corollary 1 that this
inplies MB * 1= 34,, Hence MBz: 94 = 85 , and by the Schvnflies Theorenm

M3 = 33 , & ball.
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In pariicular the conjecture ig true for the Dunce Hat‘ , and go any
: M*, n=73, having D as a spine is a ball . This is also.frue for n 5
’ becauss D unkndts iny 5 dimensions . However it is not ftrue for n=4
‘because there is an M4 #* B4 {in fact Tfl(ﬁ4);& 0) having D as a spine .
The construction of M£iL is due to Mazur, and defined by attaching a 2-handle 1o
Stox 83 ; by a curve in the boundary that is homotopic , dbut nd’c igotopic , To

~the first factor :

- .
Lempa 11 « If K ™a L, then we can reorder the elementary

collapses so that thevy are in order of decreasing dimension .

Proof‘ . Duppose K, ™ K2 S K3 are consecutive elementary collapses,

1
‘the first being across A from Pt , and the second across €% -from p& L,
We shall show that if p £ q then we can interchange the ordsr of the collapses
(which is not true if »p > q) . The lemma follows by performing a finite

. number of such interchanges .
dince p <« g, ¢t is notv a face of & oor Bp“]' . Therefore C%,

which is principal in K2 y Temains ijrinci'pal in K‘| « Also Dqﬂl\;ﬁ: A or B,

becauss A, B do not lie in K2 . and s0 Dq"l cannot be a face of A or



.
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B (again since p <€ ¢-1) . Therefore D remains a free face of € in K, o
Therefore , if- I{; = K1 - (C LD}, then there is an elementary collapse
K1 s K; across ¢ from D . Meanvhile 4 remains principal in KZ ; and

B remains a free face . Therefore there is an elementary collapse KZ‘»‘. K1

across A from B s The lemma is proved .

Remark . Although Lemma 11 indicates a certain freedom %o rearrange
the order of collapses, we cannot rearrange arbitrarily . For example if B3
is a simplicially collapsible 3-ball , if we start collapsing B3 carelegsiy
we may get-stuck before reaching a point - for instance the dunce hat is a spine
of B3 , 50 that by mistske we might get stuck at the dunce hat . This problem
is the reason why the methods which classified 2-manifolds failed to Qlassify |
3-manifolds . )

Again , if K\Sa\ L and X' is an arbitrary subdivision of X,
then trivially X' L' but we do nq‘t- know if K! ‘\i LY , However we can

prove a more limited result :

Lepma 12 » If K'\%L then ¢~ K \E; g 1. for any stellar subdivision

Proof . By induction we may assume both the simplicial collapse and

stellar subdivision to be elementary . Suppose

K=LULA

it

aB=L0NA4 , and suppose

it

g- K is obtained by starring C at ¢ . There are three cases
(1Y If G4 A, then the lemma is trivial
{41) If C4 B, then the cone al¢"B) collapsesto the subcone ala B)

(333) If C L A, but CX B, let C=ab ,13:131}32‘.
_ . .
By

1
Tren ¢~ KNg L v cone a(c"B
N g LU subcone alec }.31B2).‘m L.
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¥emna 1% « If X w1 iz an elepentary collapse . then there exists

g subdivision such that X! \>S\ L! and L' dis stellaer (but K' may not be) .

Proof . Let A=K-L, and B=ANOL . Then A4 is an
n-ball wend B a face . Let A, I be an n-simplex and an {n~1)=face .
By Theorem 2n choose a homeomorprnilsm |

-

R AB - O, T

) |
]\"\
7
=

Choose subdivisions so that h is a simplicial isomorphism h : A',B! 2, AR

-

Let 7 t & —5 I Ye the linear projection , mapping the vertex opposite r

-y

to the barycentre of [ . Chooss subdivisions A" , ™" of A', |
“that

' go

11 .: A

is simplicial . Call such a subdivision of A gylindrical o Let A" , B" be

the isomorphic subdivisions of A", BY" ., Let B"' be an rth derived of B ,

. subdividing B" , and let [ "' the correspording subdivision of [ " . By
Lemma 5 , choose a subdivision A "' of A" suh that 7 A" s [
simplicial , and let A'" be the corresponding subdivision of A" . Then B'
is_ a stellar subdivision of B , and induces a stellar subdivision LY bf L .
Define X' = AMWuUL' . Since A"' iy cylindrical , AM! \\ir‘"'
cylinderwise , in decreasing order of dimension . Hence A‘““*\i B"' , and so0

K' =S,
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Preoeof of Theorem 4

S

We are given a collapse X Y Y ; +that is to say a éequence of

elemen‘bal‘y COll&pSES
\ . - ’ P
J K l == ::r ~ -::r 1 \\1 eae \) ::o = I L ’

' By Theorem 1 we can find a subdivision Kr of K, such that , for each i ,
§ there is a subcomplex Ki 'covering Xi « Therefore we may write the

elsmentary collapseé
KI‘\\\_}'KI‘-wl\".\\ KO L]

; If r=1 the result follows by Lemma 13 . If r> 1 we show the result by

i induction . Asswne ve have fournd a subdivision K’r 1 of Krnl such that

8
' ~ L . 71
K el s K o By Lemma BJextend K el ‘
Apply Lemma 13 to the elementary collapse X! X! to obtain a
r STl .
1 ! where Knrml is a stellar subdivision
of Kfr—l » The latter fact enables us to appeal %o Lemma 12 to deduce

to a gubdivision K! of X .
r T

simplicial collapss K“r“fl§ X"

' B
Kn B It KN 1 .
el TRy K o’ and so X > s K o

Full subcomplexes

If X< J are complexes , we say K is full in J if no simplex
of J -~ K has all its vertices in X . We can deduce the elementary properties

of fullness t

(1) If KC J, and J' a first derived complox of J then K' is
£l in I .

L

(1) If K fwllin J, end J% any subdivision of J , thea K¥
full in J¥ . '

e VTR ol e s e . 3 B P o o et 8 Py S im i 3 e

(1id) If ¥ fuwll din J, end A a simplex of J , then ANK is

enpty or a face. of A .

e v

““““““ 5 e
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(iv) If X full in J , then there is a unique simplicial map

£ 3 J—»I (the unit interval) such that o=k,

o

Yeigphbourhoods

Let J be a complex and let X C }J} . The gimplicial

neighbourhood N {X,J) is the smallest‘subcoﬁplex of J containing a

topological neighbourhood of X . It consisbts of all (closed) simplexes of

J meeting X, together with their faces .

Now suppose X is a polyhedron in an n-manifold \M . Ve construct
derived neighbourhoods of X din ¥ as follows . If M is compact choose a
; triangulation J , K of N, X . If M is not compact choose a triangulation
| J, K of ﬁoi, X where Mo is a subpolyhedron containing a topological
i neighbourhood of X in M . Now in general Mb\ will not be a manifold round

the edges , tut it will be a manifold near X ' which is all that matters .

. Tl ;

Do More precisely , if A& W (X, J) +hen 1k (A,J) = fﬁs p AC ?

\ 3™l ac
For simplicity of exposition we identify M = 1Jl o, X= K} .

! Choose now an rta derived complex J(r) of J .

Call N =X (X,J(r)) an % dorived neishbourhood of X in M

If r=1 and K full in J we call N a derived neighbourhood of X in M .

¢ A fortiorilif r 3 2, then any rth derived neighbourhood is a derived neigh-
§ bourhood, because K(r_l) full in J(rdl) . If Jt, J" denote first and

second deriveds, it is easy to show that

(1) & (x, J9
x &K,

!

L ost (x,7'), the union taken over all vertices

JESE———— e )

(11) ¥ (x, 7)) = U st (A,.9"), the wion taken over all simplexes

A€ K, where A denotes the point at which 4 is atarred in J!
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Lemma 14 .  Anv two devived neighbourhcodsof X in ¥ are

homeomorphic , keeving X fixed .

Proof . Let N, =X (x, J'l) y Ny = X (x, J'z) be the two given
neighbourhoeds . If M 1s compact , let JO be a common subdivision of

Jl R J2 . If ¥ is not compact choose subdivisions of J‘l ’ .}’2 that intersect
in a common subcomplex , and let JO be this subcomplex . Choose a first
derived J' ~of J and let N =W (x, J'O) .

Yoax,

Let 13 J’l'.-_.fi be the unique simplicial map such that £
which exists by the hypoihesis of fullness . Choose & »o and such that
€ < fx, forall vertices x€ J_,x & X. Lot J; (i =0, 1) denote

a first devived of Ji obtained by starring A& Ji on f l& if fA=1

i

L]

i
et
r—
[
-]
Cr
.t
s
'J
H
<
[

and arbitrarily otherwise » Then | N (X, Ji‘ )

- f K ._.'/"' T
,_.««:‘,""'":‘:77{’/ A / p ‘.’
S S Wl 0 Al S s o
’if-.?\ \ ;. ,KX\/"I-/"’/ :

. ?7‘7*"21‘!' Re ¢

X

Therefore

=
H

N (X g Ji) ; lsomorphic
s ¥ (x, Jé’) , homeomorphic by identity map
= No s lsomorphic .
e~ N2 s similarly .
Remark . Lemma 14 fails Tor first derived neighbourhocds without
the fuliness cordition, which indicates the reason for having to pass To the
second derived in general to cbtain a derived neighbourhood. For example

suppose X is the boundary of a I-simplex in J . Then the first derived

neighbourhood is comnected , but the second derived is not .o
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Corollary . Any derived neighbourhood of X in M‘ collapges Yo X &

Proof « 3By Lemma 14 it suffices %o prove for ons particuler derived
neighbourhood. Therefore choose a triangulation J , ¥ of M, X such that
K dsfullin J, and let N =W (X, JE ) where .76 ie defined ag in the

proof of Lemma 14 .

Order the simplexes Al’ cony A of J« X that meet X in
order of decreasing dimension . mach Al meets N in a

convex cell Bi ; with a face C, = 4, N fgl . There is

an elementary collapse of Bi frem Ci s and the sequence

/%)

of collepses 1 =1, ..s, * determines the collapses

Ny Z.

Lemma 15 .‘ et h i K=K be a homeomorphism of a complex that mansg

each simplex onto itself, and kesps a subcomplex L fixed . Then h is

ambient isotopic to the identity keeping T, fixed .

Proof . The obvious isotopy moving along straight paths is nod
piecewise linear by the standard misteke . However it is easy %o construct a
piecewise linear isotopy H : Kx I — Kx I inductively on the prisms
Ax 1, AgK, in order of increasing dimension . For each prism ,‘[H!TA x I
is given by irduction, H | 4 x O is the identity , and H {a,1) = ha .
Therefore H[ (4 x I)° is already-defined, so mep the centre of the priem o
iteelf and join linearly . By co..struction H keeps L fixed .

.o

Gorollary 1 . The - . ‘rphism between any two first derived

. complexes is ambient isotopic t: vhe identity .

Corcllary 2 . Any two derived neighbourhoodz of X din M are

smbient isotopic , keeping X fived . If X C W . the isobopy can be chosen

to keep ﬁ fixed .
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For in the proof of Lemma 14 the homeomorphism was achieved by
two isomorphisms between first deriveds , both keeping X fixed . The first
deriveds can be chosen to agree outside the neighbourhoods, and so the isotopy

m@sﬁ fixed if XC?.

*Theorem 5 » A derived neizhbourhood of a gollapaible polvhedron

is an nenanifold is an m-ball .

Proof . By induclztion on n , starting trivially with n=0.
By Lemma 14 it suffices to prove the theorem for one particular derived
neighbourhood , and so we choose a second derived neighbourhood N = N {X,J"),
where X = (K}, KCJ, and J" is the second baryceniric derived complex
of J . Simce X is collapsible, we can choose K such that K~{0 by
Theorem 4 . : _

Let r be the number of elementary simplicial collapses involved
in X ‘E;O o We show N dis a ball by irduction on T + The induction starts
trivially with r =0, for then X is a point ; and N its closed star, '
whiéh is a ball by Lemwa 9 . For the inductive step , let. K~L be the
first elementary simplicial collapse, collapsing‘a simplex- A from B , say ,

~

~ ” ~ .
where A=aB . Let A, B denote the barycentres of A, B . Now

N=§N (&, J"=PUvgouR ,

wvhere P=N{L,J, Q=¥(,J") ,R=N(B , I .

Now P is a ball by irduction , and Q , R are balls since they are closed
stars of vertices . If we can show that Q is glued onto P by a common
face , then P WU Q is a ball by thé Corollary to Theorem 2n : osimilerly if

R is glued onto P v Q by a common face then N is a ball . Therefore the .
proof is reduced to shoving the P Q, and (P U@ n R are (n-1)-balls
because if they are balls then they must be common feces , since“fhe interiors

of P, Q, R are disjoint .
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New PO Qc Q = 1k (A, dv) . Let

i

J.o=1k (A, IO = A (k@) s.

*

where the prime thought this proof always denotes the barycentric first dexived
complex » There is an isomorphism

v

g g
& ,
Q -Eos I,

~~

. . -~
determined by the vertex map AC ~—>C , for all C & Ty o Under this

iscmorphism

~
i »

PO Q-—m--m}N (8.8 ¢ J'* )a
Now a B is collapsible , being a cone , and {(a B)! is fwil in’ J, » vhich
is an (n-1)-sphere or ball , by Lemma 9 . Therefore N (a B , J'.) 1s a

derived neighbourhoed of & collapsible polyhedron , and is an (r~1)-ball by

irduction on n . Hence P Q is an (n-1)-ball

Similerly (PuQ)nRc R, and if we now choose J, =1k (B, J1) ,
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then there is an isomorphism R n§§>J'* s throwing (P v Q) A R onto
N(AB, Jt.) + For the same reason as before we deduce (PU Q) M R is an

(n—l)mball « This completes the proof of Theorem 5 .

¥Theorem 5 « Supnose the manifold o and the ball B- meet in

a common face . Let X be a closed subset of Mn net meeting Bn .  Then

, . i n n . ,
there is a homeomorphism MnWMg M v B keeping X fixed .

Proof . Since X is closed , MY - X is a manifold Lét anl
be the common face , and let A" be a derived neighbourhood of B * in

n Ce : On _ On N1
W'-X , which is a ball by Theorem 5 . Since A C W , B does not meet

A

and s0 Bnﬂl is a face of A" . Since A" . B" neet in the common face Bnﬁl,
n~l  In gn«l

their union is a ball by the Corollary to Theorem 2n . Let Bl =B . s

which is & ball by Theorem 3

n-1

We now construct %he homeomorphism h . Define h to be the identity
on (0F = A7) U (A"« B™Y) | In particular h is the identity on X . Dxbend
h=1: ”n—l—w§ B§~l to a homeomorphism Bn 1”_yB:“l by Lemma 10 .

Similarly extend h g A" s (170 B to the interiors . Then h has the

desired propefties .

Lemma 16 « Any homeomorphism of a ball onto itself keening the

boundary fixed is isotopic to the identity keeping the boundary fixed .




BT S it s P o AL

- 20 - IIT.

Proof . 1t suffices to prove for a simplex » Given h : A ..y A

we construct the isotopy f: A x 1 A x I as follews .» Let

hx,tﬂ{)
X, b=l or xx & A o

'PThis gives f level preserving on ( A X I)' . Define £ level preserving

on A x I by mapping the centre of thé prism to itself, and joining to the
boundary linearly . Then f is the desgired isotopy .

no,
¥Lemma 17 « Suppose Mnc‘. Qn are manifolds , and that M dis =&

on n n . .
ologsed subset of O . Then @ -~ M dig & manifold .

Proof . Let M; = Q,n - 1" . Ve have to show that every point

X E M';(: hag a ball neighbourhood in MI;- L If xeQ - ; then x has
n
1 7
. n el n n
cloged in Q@ . If , on the other hand , X CH N Ml y then = €Q Dby

Wothesis , and so ' lies in the interior of a ball in Qn . Triasngwlate

a ball neighbourhood in Qn that is contained in N because " is

this ball o that =¢ is a vertex , and so that its meets M° in a

1 i the link of x , then ST MY is a ball by

Lemna 9 « Therefore the closure of the complement , §%1 A Mil , is a ball

gubcomplex . If g™
by Theorem 3 . Hemoe x has & ball meighbourhood in .M;l .

¥Pheorem 7 . Suppose MO OF  are manifolds , and that N is &

On n . Jn . n
closed subset of O ., Let B be an n-ball in @ meeting M in g

N 1 . n
common face . Let X be a closed subset of O not meeting B . Then

there is an smbient isotony of Qn moving Mn onto IVIn |9 Br1 , and keoping.

XV Ot fixed .
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Proof ,

) N o
Let B” be the common face ; and let B L B;’”l ,
which is a bsll by Theorem 3 Let M = Q ~ (I-E U Bn) ¢ which is

) n-l ° 1
a manifold by Lemma 17 , since Mnu 8" is a manifold by Theorem 6 .

Lot D” be & derived neighbourhood of B in the manifold Q° - O =

Then D" 4is a ball by Theoren 5 . Let A% = D°n 1, 1__1) nml

. If when constructing i we choose a ftriangulation that meebs M ’ 3" in

subcomplexes , thls ensures that I R Ail are respectively derived neigh-
bourhoods of B =1 B;l"l in W s Mil and therefore are balls . 'An meets

B* in the common face B , and Al , meets B in the common face By
Therefore A" UB" A’l‘ U B" are balls by Corollary to Theorem 2_ ..
Next we construct a homecmorphism h of D" onto itself as
® L] 0 . L1 !
follows » Define h=1 on D UGR® = B*Y) ., Bxtend n': 3™ l,.%:si oo

the inberiors by Lemma 10 . Similarly extend A" —»(A" 0 3™ amd

] (Bnl,,d A e Al to the interiors . By Lemma 16 the identity is isotopic

to h, keeplng D" fixed . Extend this to an ambient isotopy of Q°

o)
keeping fixed Q,n - DY (in particular X U Q ) s By construc’cign this

isotopy moves 1* onto M U BY

n--l‘
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Repgular neishbourhoods .

The definition of regular neighbourhood is more powerful than that

_ } ' of derived neighbourhood because it is intrinsic , and leads at once to an

existence and uniqueness theorem .

Let X be a polyhedron in a manifold M . A regular neighbourhood
N 6f X in M is a polyhedron such that . '

i) N daa neighbourhood of X in ¥ .
ii) ¥ is an n-manifold (n = dim M)

131) NN X .

*¥Theorem 8

(1) Any derived neighbourbood of X in M is remular .

i : - {2) Any two resulsr neighbourhoods of X in M are homeom@rphic P

O keeping X fixed ,

0 0
(3) If_XC M., then any two regular neishbourhoods of X in N

i are ambient isotopic keepine XU M fired .

Remerk .

Clearly (%) is stronger than (2) . However it is valuable to have
(2) in cases where (3) does not apply . For example suppoée X is a gpine of
M in the interior of M ; then by (2) M is homeemorphic o any reguler
neighbourhood N of X in M . But obviously M and ¥ are'not ambient

igotopic .

Proof of Theorsm 8 ;

Part (1) « Let N =¥ (X, J*} be a derived neighbourhood of X
in ¥ . We have to verify the three conditions for regularity . Condition (i)
follows from the definition, and (iii) from the Corollary to Lemma 14 . To

A o e e e e v e
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verify (ii) we check the link of each vertex x € ¥ . Let L = 1k (x, It .
If *x&X, then 1k (c, ¥) = L , which is & sphere or bell . If = &X, =
then 22 & K , where A is a wnique simplex in J -~ K, K being the
subcomplex of J corvering X . By the fullness of K in J, AnK=238 -

a face of 4.
Now L = A'S , where 5 is isomorphic to (1k (4,9)), and so is
8 ball or sphere « Since S 1ies in the interior of st (4,K) it does not

- meet X, and therefore L N X = A\ X =B' ., Therefore

1

=
P}

-
=
p

1k (x,X)

it il
==
! e P
o ke
e Bee
-
['s] R

which is a'ball , because N(B',A') is a ball by Theorem 5 , being a derived .
neighbourhoed of B in 4 . The proof of part (1) is complete ..

For part (2) it suffices by Lemma 14 to show that any regulaer
reighbourheed is homeomorphic to a derived neighbourhood , keeping X fixed .
If N is the regular reighbourhood , use Theorem 4 to choose a triangulation

J, K of N, X such that J collepses simplicially to K

J::Kr\a Kr“l\ﬂcai\!KoﬂK '

Let J" bve the barycentric second derived of J , and let . Ni = N (Ki , I
Then N_ is a derived neighbourhood of X in M , and N, =N . Asin the
proof of Theorem 5 , Ni is obtained from Ni 1 by glueing on two balls .

Neither of these balls meets X , because Ni— is & neigﬁbourhood of X and

1L

80 by Theorem & there is a homeomorphism Ni l-dyNi keeping X fixed .

Composihg these , we have the desired homeomorpnism No-m% J

For part (3) we meke the same construction ceg for part (2) y 8nd .
instead of Lemma 14 and Theorem 6 we use Corollary 2 to Lemma fS and
Theorem 7 to ghow that the two neighbourhoods are ambient isotopic keeping

!

XUN fixed . The proof of Thecrem 8 ig complete .
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Proof of Thzorem 31‘1

At last we come to the end of our mammoth induction « We recall that
in the proofs of Theorem 4 -~ 8 we have used Theorem 2r s T4 n and Theorem 3r ’
r £ n, but not Theorenm 3n . Ve now-use'Theorem 8 to prove Theorem 3n o This
will maxe Thsorem 2 - 8 and the accompanying lemmas valid for all n .

i

Given B® € 5% we have to show that S° — BO
' ontl '

is a ball » Choose
Tkl

" a homeomorphism £ i A — s* throwing a vertex x of A onto a

point y & B0, Let A% = £ (stlx, & ™)) . Then the bails A%, 3% are

both regular neighbourhoods of y in S° , and so by Theorem 8 Part 3 are
ambient isotopic « Therefore the closures of their complements are
homeomorphic . But &F ~ AN = f A" s where A % is the face of A Ml.

opposite x . Hence S - B is & ball .

We conclude the chapter with some useful corollaries to Theorem 8 .

Corollary 1 . A manifold is collapsible if and only if it is a ball .

For if it is collepsible , then it is a regular neighbourhood (in itself) of any
point , and therefore a ball by Theorem 5 . |

0 ' - o
Corollary 2 . If X <M, and N, Nl are regular neighbourhoods

of X in M, such thab N, &

=0l 1y

' 9
» then Nl = NxI,

Proof . Construct two derived neighbourhoods as in the proof of

Lemna 14 . S

N%:fml[O‘,é] , <N§nf~l [o ",53.

whare 0(5454.3. . Then

\ o -] -
* % 1\.5'

™

Nle.-:f

I

Therefom the result is true for N¥, N")ie » By Theorem 8 (2) choosge &
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nomeomorphism h t N¥ey N keeping X fixed ., Now h N¥*, N are both
0 1771 T

“regular neighbourhoods of X in N, and so by Theorem 8 (3) we can smbient

isotope h~N§ onto Nl Xeeping N fixed . Therefore

Corollary 5 . The combinatorial annulus theorem . If A, B are

9 0 -
two n=balls such that A 2B, then A= B & g™ L x I ., Proof by Corollary 2.

of M (i@e, MY X)) o If XuY or YNX then Y is also a spine of M .

"

Progf « If X WY the result is trivial , because them M N X NY .

If YNX, let ¥ be a regular neigbbourhood of Y in fl . Then
FYY~X, and so N is also a regular neighbourhood of X . By Corollary 2,
f). .
M-NEMxI, and so MM E . Therefore MNNYWY , and s0 ¥ is a spine
of M. | - '

process . However such factorization is only true for manifolds , and not trus

for polyhedra in general . For instance

TEN 0

Y NO T A XN Y

X o7

Consider the following examvle . Let x y 2z be a triangle , and let y', z'
be two interior points rot concurrent wi*h x . Let X be the space obtained
by identifying the intervals Xy e=xy', X2 =x3", and,;o% Y be the image

lof v % in X..
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J

Then X YO conewise ‘, and T \sO because Y is an arc . But XY because
any initial elementary simplicial collapse of any triangulation of X must
have its free face in Y , and so must remove part of B. Similarly can build

examples to show that

X ~s.0
Y~s0 bzFpxurwo
XNT~s0 J

Bemark 2 + Corollary 4 is useful for simplifying spines « For |

- example the spine of a bounded 3-manifold can be normaliged in the following

sense : we can find a spine , which is a 2-dimensional cell complex in which
every edge bounds exactly 3 faces , and every vertex _bounds exactly 4 edges
and 6 faces . For chocse.a spine in the interior; expand each edgé like a

banana and collapse from one side; then expand each vertex like a pineapple
and collzpse from one face . By Corollary 4 any sequence of expansions and

collapsesleaves us with a spine, and the process described makes it normal .

. * ot e om
sl wwd ol wel om ) o
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Chapter 4 : UNKNOTTING BALLS AND SPHERES

.

Suppose IfmCl P’q are manifolds; we say the embedding is proper

if e 1t and ch. Mq' . A (gm)emanifold pajr MYT (4N is a pair

such that Me 4 properly » The godimension of the pair is © = g = I

The boundaxry U™ - %) is a pair of the seme codimension . We write
A it e n® and W =N,

In this chapter we are interested in gphere Eairs g¥™  ang bal)

BP™ | The Loundary of a ball pair is a sphere pair. If

pairs
q:{“l’m“i‘l

¢ p¥e }.Yiq+1’m+l we call BY® & face of M
Phe standard (q,m)-ball pair iz A P7 o ( E. T AT AT where A b
is the standerd megimplex, and E,‘q-f’m denotea (gem)=fold suspension o -

 The standard {q,m)=sphere pair is A Gyl . Wo say & sphere or ball pair

is upknotted if it is homeomorphic to a standerd pair . The cone on an unknotted
(q,m) ball or sphers pair gives an unknotted (q+l,m+1l) ball pair . =

Treorem 9 o Any sphere or ball pair of codimepgion> 3 is uninotted.

Remark 1 » In codimension 2 the theorem fails for both spheres
and balls. The (3,1) sphere pairs give classicel knob .
theory, and in higher dimensions knots can be tied for

example by suspending and spinning (3,1) knots .

LI 2
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Conjecture 1 . The sphere pair (Sq.SQ72) is unknotted if g a2

iz a homotopy S1 . If g =3 the result ig true by a theorem of Papskyriako~ A

poulos « If g 3 5 an analogous topological theorem of Stallings says that if
the sphere is topologically locally unknotted then it is topologicalyunknotted.

Conjecture 2 . Sohere and ball pairs unkrot in codimension 1 . This

is the Schidnfiles conjecfure vhich is true for ¢ { 3, and unsolved for g >4 .

-

Conjecture 3 . If B 1ig a ball pair contained in- an unknotted sohore

pair of the same dimension, %hon B is vrknotted . This is true for ccdimension
,; 3 by Theorem 9 . It is true for codimension 2 when g =3 by the uniqus
factorization of classical knot fheory {an unkrotted curve is not the sum~of two
knots) . It is true for codimension 1 when q £ 3 Dby the Schinflies Theoren .

But otherwise in codimensions 1 and 2 is unsolved .

A modified result ig thet B<C 8 are both unknotted than the

complementary ball pair S~ B is aiso unkniotted « This proved by Theorem 8

Remark 2 . In differential theory Theorem 9 is no longer true because

Heefliger has knotted S0 aifferentially in S°° . Above this cribical

dimension, in the stable range, he has unknotted all gohere pairs .

of the proof of Theorem 9 .,

Most of this chevter is devoted to proving Theerem 9 « The prael
P ~? B

s by induction on m keeping the codimension ¢ = g -~ m fixed . Ve eventually

show that

Thenrem 9qu,m~l s Theoren gq,m
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The induction starts trivially with m = 0 ; for, given ¢, then a(c,0) ball

pair is a ball B° with an interior point B° ,  which ig homeomorphic %o a
gtandard pair . '
Kext we observe that i

Unknotting of (qgm)-ball pairs implies unknotting of (g,m)=sphere pairs .

Proof . Given Sq’m::(sq,sm) y triangulate the pair and chocse a

vertex x & Sm « Let

BUT (59 wgi(x,5%) , & —able,5V) .

m1, Am

If A =¥ . is the standard simplex, then

A. eleml _pam A Gu

By hypothesis choose an urknotting homeomorphism qum ._.»._; A Y™ s then map
A g+l,mil '

L)

x to y and extend linearly to an unknotting s ™

Leme 18 « Let (L B™) and (€% ¢™) be two unknotted ball pairs .

Then any homeomorphismg f 32 ‘__)éq and g Bm--s.»Cm that sgree on B

can be extended to a homeomorphism h @ Bq——e(}q .

Proof . Bxtend f conewise to f: B —»C% as in the proof of

Lemma 0 . Let e:Cm----}Cm- be the composition

—

il £ m | € m
0" G B ey (0
a [

Then e Keeps o fixed , since £ , g agree on B By ths unh}ottedness
we can suspend e t0 a homeomorphism o3 Gq-—M}q fixed on {'Bq . Then

h o= of H Bq-——) o4 agrees with both £ and g, and proves the Lemma .
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Corollary . Any hemeomornhism between the boundarieg of two

unknotted ball pairs can be extended to the interiors .

Tewma 19 « Assune Theoren 9 Then if two unknotted (q,m)

. q-l,i}’l-l *
ball pairsg meet in a common face their union is a unknotted ball pair .

Proof . Let Bl’.Bg
Let 2 A be the suspension of the standard (g-l,m-l) ball pair A , with
| say « Choose an unknotting F —-> 4 by hypothesis.
0

be the ball pairs meeting in the face F .

suspension points Xy X,

Extend F -4 to unknottings éi - B o X, [k by the above corollary .

Similarly extend Bi--—~>(xi A )° to the interiors . Then Blu B2 is

wnknotted by the homeomorphism onto & A&

Lemma 20 « If (BLB™) 45 & ball pair of codimension > 3 - then
5% N BT,

. Remark . Lemma 20 fails in codimension 2 ; for example a knotted
arc properly embedded in 133 is not a spine of B3 « The proof of Lemma 20
involves some geometrical construction, and we postpone it until after Lemma 23,
which is the crux of the matier . First let us show how Lemma 20 implies

Theorem @ .

0of Theorem 9 assuming Lemma 20

We assume Theorem 9 vhers ¢m » 3 . By the observation

_ q-l,m=-1'
that unknotting balls implies unkmotting spheres, 1t suffices to show that a

_given ball pair B = (BLE") is unknotted .

Choose a triangulation J , K of Bq,Bnl guch that X is éimplicially

~collapsible

K ‘-::: KI‘ Ty KI'—*}.\ voe x KO E pOint s |




V.

¢

Let J" Ybe the second barycentric derived of J , and let B, be the ball pair

i

. ® A | t :
Bi.._‘(N(K , I, N(Ki,x)) .
J:- We show inductively that Bi is unknotted .

The induction st.arts with 1 = 0 , because Bo iz a
cone on the ball or sphere pair (11{(1{0,3"),1}{(1{0,1{”))
which is wnknotted by Theorem 9 . TFor the
inductive step assume Bi—»l unknotted » A4s in
Theorem 5 -, we notice that Bi is obtained by

glueing on two more small ball pairs, each by a

- common face , and each of which being vnknotted like
B0 »  Hence Bi is unknotted by Lemma 19 . At the end of the induction Br
is unknotted . |

o | . Fow B, = (% B") , where NY is o regulal neighbournood of BY
( ' in B%. But by Lemna 20 , BY itself is another regular neighbourhood .
Therefore by Theorem 8 Part 2 there is a hcomecmorpaiem 3% st keeping
B™ Pixed » or , in other words , a home cmorphi sn B--)fBr , showing B
unknotted .

Coanical sgsudbdivisions

We shall need a lemma about subdividing cones » Let € = vX be a

cone on a polyhedron X, with vertex v . If Y& G, the subcone through Y

15 the smallest subset of C containing Y of the form vZ , Z< X . For’

example a subcone through a point is a generator of the cone . A triangulation

of C is called conical if the subcone through each simplex is a subcomplex .

Lemma 21 . Any triangulation of .C_hag & conical subdivigion o




L

e :Iv'.
Proof . Let € also denote the given triangulaﬁion‘, Let f: C -3
denote the piecewise linear map such that fﬂl(O) =V, fﬁi(l) =x , end cuch
that f maps each generator linearly . Choose & > 0, and such that £ 4 fx
for every vertex o & C, < $é v o Choosa a first derived £' of € such
that each simplex of € neeting f"l(ﬁ ) _is-starred on fﬂl(&,) . Then
f—l [:5 ,l] ' f”l(g) are subcomplexes , Kk , L say , of C! , and
C'=Kwv L. Let g: K-»L be radiai ﬁroéeoﬁion , which is a projective
map and not piecewise linear . Then f x g: K-n9[ E.,l] xL isa projective

homeomorphisa

thgt maps K projectively onte an istmorphic complex , Ki say triangwlating .
[6, 3.] x L . The projecticn T?z; Kl-—g.L onto the sscond facter is '
piecewise linear, and so t?ere are subdivisions such that T : Ki =3y Lt is
simplicial . Let XK' = (f x g)_l K. Then K' is a subdivision of T,
containing L' as a subcomplex , becauvse TC{f g) : L <> is the identity .
Let C"=XK'u v L', Then C" is a subdivieion of C s aﬁd is conical

because Ki is cylindrical .

Shadowas

Lot I% e the g-cube . ¥e single out the last coordinate for

special reference and write 1% . Ier x I « Intuitively we regaxrd 1 as




Iv.
-] -

vertical , and 1Y 45 norizontal , and identify 1% yith the base of the .
cube . Let X be a polyhedron in IF . Imsgine the sun vertically overhead ,
causing X to cast a shadow; a point of ¥ 1ies in the shadow of. X if it
is vertically below gome point of X . |

Definition . Let X be the closure of the set of points of X that
iie in the same vertical line as some other ﬁoinﬁ of X (i.e. the set of points
of X ‘that either overshadow , or else are overéhadowed by , some'otherApoint

of X) . Then X is a subpolyhedron of X,

Lemma 22 . Given & ball pair BL M) of codimension > 3, then

there is a homecmorphism BYBT ——2 I3 X such thek

" i} X dees not meet the base of the cube

ii) X meefis each verticél line findtely

idi) dim X & m-2.

Proof . Tirst choose the homeomorphism to satisfy 1) , which is
easy . Now triangulate .Iq,X . Then shift all the vertices of th;s triangulation
by arbitrary small moves into general position , in such a way that any vertex
in the interior of ¥ remaihs in the interior, and any vertex in a face of
¥ remains inside that face . If the moves are sufficiently small, the new
positions of vertices determine an isomorphic triangulation , and a |
homeomorphisn of ¥ onto itself . The general posiftion ensures that conditions

(i1) and (1ii) are satisfied , because m L q- 3,

\ -)".—‘ .

and o dim X é(m+1)+m—q$_m~2 .
Remark . The “general position" of the above proof may bte analysed B

more rigorously as follews . Each vertex is in the interior of some face ,

and has coordinates in that face . The set of all such coordinates of all

vertices determine a point JC some high dimensional euclidean space , and
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the sufficient smallness mezans that & 1is permitted to vary in an cpen et ,
U say . To satisfy the conditions (11) * and (1iii) we merely have %o

choose = €U, so as to avoid a certain finite set of proper linear subspaces »

Ssununy collapsing

Suppose we are given polyhedra loxoy , such that X Y ds
an elementary ¢611apse . We call this collapse‘sunny if no point of X =~ Y
1ies in the shadow of X . ‘We call a sequence of elementary sunny colliapses

s sunny collapse , and if ¥ is a point we call X sunpy collapsible .

Corollary to Theorem 4 . If X is sunny collapsible then some

trisneulation is simpliciallv sunny collapsible . For each elementary sunny

collapse is factored in a sequence of elementary simplicial sunny collapses o

Lemma 235 « If (4% is (qum)-bell pair of codimension ¥ 3

satisfyine the conditions of Lemma 22 then X is sunny collapsible

Remark . Lemma 23 fails with codiménsion 2 . The classical exampie

of a knotted arc in 13 gives a good intuitive feeling for the obstruction

- : to a sunny collapse : locking down from above it is
‘, 5\\\5- ' possible to start collapsing away until we hit
\ . g ‘underpasses , which are in shadow and so prevent
<P>// ‘ any further progress . T
d ’ _ '

Definition « 4 princival ke—complex is a complex in which every.

principel simplex is k~dimensional .



Iv.

"Proof of Lemma 23 .

Ve shall construct inductively a decreasing ssquence of subpolyhedra'
-l D..u} = 3 ‘
X XC o Xi Xﬁ & point ,
and , for each 1 , a homeomorphism
o i ied
t X
fi L — v K@
onto a cone on & principal (m»iwl)mcomplex, satisfying the three conditions :
* .
l) fi Xi does not contain the vertex of the come , and meets each
generator of the cone finitely .
'- .’K‘ N}
2) dim Xi & mei-2 .
3) There is a swiny collapse X i ™~ X

The irduction starts with X = XO o

Condition (2) is by hypothesis and (3) is vacuous . Choose a homeomorphism
£, X —> A, vhere A. is the standard w-simplex . SinceO fOX* is a sub-
polyhedron of dimension & n~2 y WO 2an choose a point v &€ A - fOX* y and
in general position relative to fOX . Starring A at v mekes A into

the cone v A on A , which is principal . Condition (2) is satisfied by

our choice of v o

The induction finishes with Xm = a point , end so we shall have

a sunny collapse

XN X N XN = N X

“which will prove fthe lemma .
The hard part is the inductive step -

Suppose we are given fiwl H Xi_lum——yv'KE“l , satisfying the three conditions,
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we have to construct £, , X, , 3t prove the three conditions o

" ¥ \
Let C, L triangulate v g , fi 1 Ximl « By Lemma 21 we can

choose € to be conical . In particular € contains a subdivision
K™ of ¥, Define

7 | ghe (noi-1)-skeleton of (K1), which is a
principal complex since K- = was principal . .Let GO be the subcomplex
of € triangulating the subcone v Kmﬁlwl + Let e, CO-> C be the

inclusion map . We shall construct another embedding
e Co - C

that differs slightly , but significantly , from 8, - Having chosen e , then °

there is a unique subpolyhedron Xﬁ y and homeomorphism fi s such that the

‘diagram

X > i1
i fia
v
G ,m___?_..m..} o)

is commutative .

* *
It is no good choosing e = e, because then Xi ez Xi ] which

would be of too high a &imeﬁsion « In fact this is the crux of the matter :
‘we must arrange some device for collapsing away the top-dimensional shadowé

.x:.
of X, + The first thing to cbserve is that the triangulation L of

i3

#
fi—l X:'L-»-l 1

The inverse images of simplexes of L may wrap around and overshadow each

is in no way related to the embedding of Xz in the cube 1 .

other hopelessly, s8¢ our next task is to take a subdivision that remedies
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this confusion . We have piecewise linear meps

-1
£ | |
oA, oy T, gl

qel

where the first is a hemeomorphism , and 17 is vertical projection onto the

base of the oube I+ . By Theorem 1 we can choose subdivisions LY of L,

(qul), of Iqu end & triangulation M of X,

i1 guch that the maps

o~ . - £ - "Tr . 1
A 5___.3‘;1'}__ M s (Iq‘.l)r

are simplicial .

Recsll that dim M ¢ m-i-1 , by induction on i o Let A

Ashyyeensh | e the (n-i~1)-simplexes of M . Each A is projected NOTIee

degenerately by 17, because of Lemma 22 (ii) . If 3 #é k there are two
pOSSlbllltleS : ezther T A LT Ak or T 5 7T'Ak In the first case
T maps A Ak dlsaolntly and S0 No poznt of A u Ak overshadows any

‘ o
other . In ﬁpe second case either AJ overshadows Ak or vice versa .

Congequently overshadowing induces a partial ordering amongst the A'S s

and we choose the ordering Ay Boyeesyh o e compatible with this partial

ordering . We summarise the conclusion :

Sublemma . ALl n01nts of X +that overshadow Ak are contalned

U

We now pass to L' . Let Bj = fj lAj € L' . The next step in the
proof is to construct a little (Bei+l)~dimensional biister Zj about each B

J

in the cone € . The blisters are the device that enable ug to make the sunny
collapse, and the fact that there is just sufficient room to construct them is
an indication of why codimension » 3 is a necessary and sufficient con&iﬁion'

for unlmotting .
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. A N . '
Pix j. Let Bj be the barycentre of B » Since the base of the

cone is principal , there is simplex D~ & (K ) such that Bj ig

contained in the subcone v B . There are twe cases depending on whether or
*

not B, lies in D, in the base of the cone . If ByC D, 1ot by bea

Q

-~
point in D near BJ , and Jet aj

be a point in the generator v Bj near

~

(8] A
B§ . If 3B; (; D , let bJ be a point in v D near Bj , and let aj be a

pair of p01nts ol the generafor through BJ ; hear 4Bj and either side of

-~

d
2, =
J

B, « In either case define the blister

abB. .
iss "

We choose the points sufficiently near %o the
barycentres so that no two blisters meet
mo?é th?n is necessary (i.e. Zj n Zk =

- Bj N Bk) . The bottom of the blister

is aB, and the fon is ajbij . Let~

ej ne the map

@,18,8, gy ab B,
41 333

that raises the blister, end is given by

. ~
mapping ij-:» bj o

Now CO neets each vlister in its bobttom . Therefore we can define

the embedding e : Co—erC by choosing e = ej on the intersection with each

bligber , amd e = 1 otherwiass .
the blisters . Having defined e
and f, ¢ X v ghinl

There remains to verify

because by our construction X? o

.In other words e is a map thai ralses all

, we have completed the definition of X

the three conditions . Corndition (2) holds

A1 N X.

the (m~i-2)-3keleton of M .
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Condition (1) holds , because

#* *

i = X
i‘i i i-1 i

1

for which the comdition holds by induction .

Finally We come o condition (3) » Let 2= L) Zj » For each

(n-i)-simplex D & (K", vD -2 is a ball because it is a simplex

with a few blisters pushed in round %the edge, and D = 2 1is a face . Therefore

collapss each v D~ 2 from D -~ 2 . We have collapsed
CNy eC UL .

and the inverse image under fi determines a sunny collapse

1

-1
LaN K@ £,

' *

sunny because_we have not yet removed any point of Xi 1
Ve now collapse the blisters as follows . Bach blister meets e CD

in its top , and so by collapsing each blister onto its top in turn, J=l,...,7,

we effect a collapse
eC vVZivMelC .
] )

=1
if Yj = fi—l

sequence of elementary collapses

Zj y then the inverse image of this collapse determines a

T . T '
_x' Ukj Y. \5-5 X. ) U Y, \1 o6 e \\ X. .
i J i 3 i
1 2 .
Each of these elementary collapses is sunny by the Sublemma, because by the
time we come to collapse Yk sy 8ay , the only poinfs that might have been in

: 0
ghadow are fthose in Ak » out these are sunny for we have already removed
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e&erything that overshadows them . We have demonstrated the summy collapse
Xi 1 N Xi , which completes the proof of Lemma 23 .

Proof of Lemma 20 .

We caﬁ,now return to the proof of Lemma 20 , which will conclude
the proof of Theorem 9 . Given a ball palr (quBm) of codimension > 3 ,‘
we have to show BY N B . By Lemma 22 it suffices to show for a bhall
pair (1%, X) satisfying the conditions of Lemma 22

By Lemma 23 and the Corcllary tc Theorem 4 we can choose &

triangulation K of X that is simplicially sunmny collapsible .
- hN - ;
K=X '\ Kl\g. +++ N K = apoint,

Let Li be the polyhedron consisting of IQfltix together with all points '
in the shadow of Ki « We shall show that

q_ ‘ »
I N L\ R O N T

o]

The first step is asfollows . Choose a ¢oylindrical subdivigion (Iq)'
of 1% containing a subdivision Lé of L . Then collapse (IN 1Yy Lé

prismwise from the top, in order of decreasing dimension of the prisms .

The last step is easy , bscause Lr consigtg of - IQ?l V X Joined
by a single arc » Collapse Iqu onto the bottom of this arc, and then
collapse the arc . There remain the intermediate steps Li 1 Y Li s

iml’ono,rl

P

O r
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Fix i, and suppose the eiementary simplicial sunny collapse

Ki—l g Ki collapses AA frem B, when A=gaB, Gh00seﬁa point b
below the barycentre B of B, and sufficiently close to B for AN X = A
(this is possibly by Lemma 22 (ii))‘._ et T = Li togqther with all points
in'ﬁhe ghadow of ab é . Since the collapse iz sunny, no pdints nf Ki
evershadow.,z &)g s and so TND A= alp B)', TWY A= Liwl . In other

words collapsing b A from v B gives.an elementary collapse
L Ny LT .
i=1 p o

Pinally collapse iy N Li prismwise downwards from abB , as in the first

' case . This completes the proof of Lemma 20 and Theorem 9

L

Isotopies of balls and s phexres

Recall that Lemma 16 proved that any homeomorphism of a ball unto
itself keeping the bourndary fixed is isotopic to the ideniity keeping the

boundary fixed .




e

T TR

iv,
- 15

Corollary 1 to Theorem 9 . If og-m > 35 , then any two proper

embeddings g™ ¢ n4 that assree on Ea are ambient isctopic keeping B fixed.

Proof « Let f,z be the embeddings . By Lemna 18 we can extend

* v

1: Bq_;.Bq and gf"l : T Bmw¢ 2y g™ y which agree on 3" ; %0 a homeomorphism

netween the ball pairs
m . m
h: @%fB)ua(B%gB).

By consiruction W o= g , and, by Lemma 16, h is ambient isotopic to the

identity keeping BY fixed .

\ . . . n o,
Theorem 10 .  Any orientstion preservine homeomorphism of S  is

igotopic to the identity .

Preof @+ by induction on n, starting frivially with n =0 . Let
f Ye the given homeomorphism . Chocse a point X € " s and ambient isotopic

fo toXx . Thismoves f to fl-, say , where f. = oo .

1

IB are regular

neighbourhoods of ¥ , and so by Theorem 8 ambient isotope le onto B .

Chonse & ball B containing x in its interior . Then 3,7

This moves f, ‘to f,, say , where fB'=B . The vestriction f, |3

preserves orientation , and is therefore isotopic to the identity by inductien .

Extend the isotopy conewise to B and S™ - B, making it into an ambient

isotopy , that moves f2

each of B, 8% w B to ambient isotepe f3

. L]
b0 £, , saywhere £ |B =1 . Apply Lemna 16 to

into the identity .

Gorollary 2 to Theorem 9 . If ¢-m > 3 , then any two embeddings

Smci Sq‘ are zmbient isctopic .

Proof « If (845", a5 m, is en unknotted sphere pair, then 8%

is the {qw-m)-fold suspension of S , and so there is

(1) ean orientation reversing hiomeomorphism of Sq, throwing g™
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onto iteelf, and

(2) an orientation preserving homeomorphism of Sq_, throwing g™

onto itself with reversed orientation .

let £, g s 5% be the two given embeddings . Since ¢-m 2 3,

the unknotting gives a hémeomorphism (Sq,fsm).ﬂe (Sq,gSm), which we can
" .
choose to be orientation preserving on 5% hy (1) s, and which is therefors

isotopic to the identity by Theorem 10 . Therefore £ is ambient isotopic

m, A el 0 n
S =8 o Let hegftt£8°_ors . By

(2) above and Theorem 10 , we can choose f, 5o that h is orientation

to fl , say , such that f

preserving .

Now apply Theorem 10 %6 the smaller sphere g y to obtain an isotopy from the
identity to h ; suspend this isotopy of s® into en ambient isotopy of g
moving fl into g .

Remark . The above two corollaries are also true for unknotted ball
and sphere pairs of codimension 1 end 2 . The aim of the next four chapters

is to obtain similar results for arbitrary manifolds . '

[} . .
LR ME SR
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Chapter 5 : IS0ICPY

\

The natural way to clasgify embeddings of one manifold in another
ig by means of isotopy. Bui there are several definitions of isofopy, and the
purpoée of thig chapter is to prove three of the definitions equivalent. The
three tha%hwe consider {of which the first two were mentioned in Chap%ér 2)

- are

(1) ZIsotopy, sliding the smaller manifold in the larger through a l

Tamily of embeddings

(2) -Ambient isctopy, rotating the lgrger manifold on itself, carrying

the smaller with it

(3) Isotopy by moves, making a finite number of local move s, each'

inside a ball in the larger manifold, analogous to moving & complex in
Zuclidean space by shifting the vertices, like the moves of classical knot

theOI’y .
Since any homeomorphism of a ball keeping the boundary fixed is
isctopic to the identity it follows at once thai

isotopy by moves  =z=—p ambient isotopy w=m==3» dsotopy .

In Theorems 11 and 12 we shall show that these arrows can be reversed .
To reverse the second arrow, that is to cover an isotopy by an ambient isotopy,

it is necessary to impose a local unknottedness condition on the isotopy .

+o0 s beew
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For ofherwise the lmots of classical knot theory give counterexamples of

embeddings that are mutually isotopic but not ambient isotopic. However the

results of Chapter 4 show that this phenomenon occurs only in codimension 2,

and possibly codimension i .

Throvghout this chapfier we shall be considering embeddings of a

- gompact memanifold M in a g-manifold Q , which may or may not be compact o

-D'e fin

Ve restrict atteh%ion to proper embeddings f : NM->»Q ; recall that f is
_10 +

proper provided £ @ = M'; in particular if M is closed , then any embedding .

o, | . .
of M in @ is proper . By a homeomorphism of Q , we mean a homeomorphism

of Q onto itself ; in particular a homeomorbhism is a proper embedding .

itions of Isotopy

Recall definitions that have been given in previous chapteré v

(1) A homeomorphism h of ¥ is a homeomorphism of M onto itself .

If " YC N and b | ¥ = the identity we say h keeps Y Tixed .

(2) An isotopy of M in Q is a proper level preserving embedding

FiMxI-->¢xI .

Denote by F

v the proper embedding‘ M—5Q defined by T (x,%) = (th,t) ;
all x & M . The subspace U FtM ‘of Q' is called the track left by the
te 7 '
isotopy .

If XCMW, we say F keeps X fixed if F(x,t) = F(x,0), all x & X eand
t a1,

(3) The embeddings f , g : M->Q are isotopic if there exists
an isotopy F of M in Q with F =f, F . =g. o '
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'(4) An ambient isotopy of Q is a level.preserviﬁg homeOmorphisﬁ

H: @x I-—Qx T such that B = the identity, where as sbove H . is defined
by H(x,t) = (Htx,t), all x¢ Q. W say that H cgoverg the isotopy F_ if
the diagram i | '

Qx I _
N \\I—Ié

= Qxl

' . f-;?

/ T

Mx I

is commutative; in other words Ft = HfFO , all tel .

(5) The embeddings T,g :-Mw%rQ are ambient isotopic if there is
an ambient isotopy H of @ such that Hlf =g .

Remerk « If M =@, then a proper embedding M x I -5 G x I is the
same as a homeomorphism Q x I — Q x I . Thevefore since we have restricted
attention to proper embeddings , the only difference between én isotopy of
Q@ in Q, and an ambient isotopy of Q , is that the latber has to start
wiﬁh the identity ; .consequently two homeomorphisms of Q axe isotopio if and

only if they are ambient isctopic .

(6) A homeomorphism or ambient isotopy of Q is said to be
suggorted by X if it keeps Q- X fixed . By contlnulty the frontier
XN Q~ZX of X in Q must also be kept fixed .

[y

(7) An interior move of Q .is a homeomorphism of Q - supported by a

ball keeping the boundary of the ball fixed . A boundary move of §Q is a
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homeomorphism of Q supported by a ball thal meets @ in a face ; the
complementary face is the frontier of the ball that is kept fixed by continuity.

(8) The embeddings f,g ore isotopic by moves if there is a
finite sequence hl,h,a,...,hn of moveg of @ ‘suoh that h1 h2 o hhf =&

1y unknotted embeddings

- Let f: M-3.Q bYe aproper embedding . Let Q be 'a regular
neighbourhood of £l in € . Let ¥,L be trianguiations of M, Q\J guch

that £ : K~» 1L is simplicial . We say that f is a locally walmobted

embedding if, for each vertex v & ¥, the pair
(1 (fv,L),f(lk(v,K)) .

is unknctted . Notice that since the embedding is proper, the pair is either

8] [
& sphere or ball pair according to whether vé M or v& M.

Sorollary 3 to Lemma $ . Any vroper embedding of codimension > 3

ig locally unknotted . Therefore then we say‘"locally unknotted" in fubure

we refer only to the cases of codimension 1 or 2 .

Remark 1 « The definition is independent of QO , and the

triangulations, because if all the links are unknotted, then the same is ftrue

~ for any subdivisions of K, L , and hence also true for any other

triangulations .

Remark 2 . An equivalent condition is to say that the closed sters
of vertices are unknotted bvall palirs',' but in codimensions 1 and 2 the

equivelence, for a boundary vertex , depends upon a result that we have

[
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quoted, but not proved, that if an unknotied ball pair has an uhknotted face

then the complementary face is also wnknobted .

Remark 3 . If f: M-»Q is locally uﬁknotted embedding, then so

is the restriction to the boundaries f : Ne—3Q .

Remark 4 . We say a ball pair (BLB") is locelly wnkmotted if the
inclusion is so ; for example this always happens in codimension » 3 or in ?
the classical case (qm) = (3,1) . Suppose (B%B™) is locally unknotted ,
and let NY be g regular neighbourhood of BT in B, Then although
(8%,8") may ve (gicbally) knotted, it can be shown that (4L E™) is unknotted ,

- by adapting the proofs of Lemma 19 and Theorem 9 .

Local

ly unknotted isotopies

T g £ s A o P A 4 81 i i S Se8, S e

We sgy an isotopy F : Mx I-—»Qx I is locally unknotted if
(i) each level Ft : M- Q is a locally unknotted embedding , and

(11} for each subinterval J ¢ I , the restriction F & M x Ty QxJ
is a locally unknotted embedding . ‘

Remark 1 . If P is a locally unknotted isotopy, then so is

the restriction to the boundaries F st Mx I—->Qx I . The proof is nonetrivial

(as in Remark 2 above) and is ‘omitted . As we need to vse the fact in |

Corollary 1 to Theorem 12 below » we should either accept it without proof ,
or else add it as an additional condition in the definition of locally

unknotted isotopy .
demark 2 . Any isotopy of codimension 3 3 is locally unknobted .

Remark 3 . The above definition is tailored to our needs .

There is an aliernative definition as follows ; we say an isotopy is locally
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trivial if , for each (x,t) e M x I y there exists an m~ball neighbourhood A
of x in M, and an interval nelghbourhood J of t din I ; and a

cOmmutatlve diagram

AxJ < s> EAxT
< G
Voo P ‘

Mx1I — Qx I

where éi denotes (Qfm)—f91d suspension s and G is a level presefving

- embedding onto & neighbourhood of F(x,t) « It is easy to verify that

F is a locally trivial isotbpy

)

P is a 1ocaily unimotted  isotopy

4

F is an isotopy and a locelly unknotted embedding .

We shall prove in Corollary to Theorem 12 that the top arrow can be reversed .
Therefore a locally trivial 1sotopy is the seme as a locally unknotted 1sotopy .
We congecture the bottom arrow can also be reversed - it isa problem depending

i

upon the Schiénflies probiem, an& the unique factorisation of sphere knots .

We now state the theorems , and then prove them in the order stated .

Thgorem 11 « Let H be an ambient isotopy of Q@ with compact

1
finite number of moves keeping Y fived . ' e

support keepine Y fixed . Then H.  can be expressed as the product of a
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Addendum o - Given any triangulation of a‘neighbourhooé of X , then

the moves can be chosen to be supported by the vertex stars . Therefore the

moves can be made arbitrarily small .

Fa

Corollary.. et M be compact , let f : ¥M.>0 be a proper locally

unlmotted embedding , and let & be a homeoporphism of M that is igotopic to

the identity keeping M fixed . Then g can be covered by a homeomorphism

h of Q keepinrg é fixed : in other words the diasrem is commutative ¢

Remark .

In fact the corcllary is improved by Theorem 12 below , to the extent
of covering not only the homeomorphism bub the whole isotopy . However we
need o use the coroliary in the proof of Theorem 14 , in the course of

proving Theorem 12 .

Theorem 12 » (Covering isotopy theorem) .

Let T : MxTes0x T bealocally unknotted isotopy keeping If fixed ,

and let N be a neighbourhood of the track left by the isoltopy . Then F can

be covered by an amvient isotooy supported by N -keeping @ fixed .

Addendum . Let X be a compect subset of Q and N a meighbourhood

of X din O . Thon an embient isobopy of é supported by X can be erxtented

to an ambient isotopy of & supported by N .
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Corollary 1 . Theorem 2 remalns true if we omit "keeping M fixed".

’

" from the hypothesis and "keeping Q 'fixed" from the thesig .

LY

Corollary 2 « Let f,z : M —»0Q be two proper locally unknofted

embeddings . Then the followineg four conditions are equivalent :

(1) f.or are isotopic by a locally unknotted isotopy

(2) £,z are ambient isotopic

(3) f,e ere ambient isotopic by en ambient isotopy with compact

support

(4) f.og are isotopic by moves .

Corollary. 3 . An isotopy is locally trivial if and only if it ig

locally unknotted o

Proof of Theorem i1

We are given an embient isotopy E: Q@x I ~»Q x I with compact

gupport, and have to show that B. is a composition of moves . We first prove

i _
the theorem for the case when Q@ 1s a combinatorial menifold , namely a
simpliicial complex in En, say +» Then Q@ x I ig a cell complex in B x 1 .

We regard E' as horizontal end I as vertical.

Let K, L be subdivisions of Q x I such that H : K~ L is
simplicial (in fact a simpliciial i‘somorphism) . Let A be a principal simplex
of L, and B a vertical line element in A . Define A (4) %o be the |
angle between H—l(B) and the vertical . Since H : K~3 1 is simplicial, this
does not depend upon the choice of B . Since H is level preserving ,. ‘ ‘
g (s (,’_,,';E’ . Define £ =max & (&) , the meximum teken over all principal

simplexes of L . Then B ¢ 10
2
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Now let W denote the set of all linear maps Q1 (:.»e. meps
that mep each simplex of Q linesrly into I) . Le% '

*

{few;mmfzmmf<8}.

If £&W, denote by £ the graph of £ , given by

£ =1xfT:Q—axI .

Then f£¥ maps each simplex of Q linearly into B x I » Let (59 (£) be the
maximum angle that any simplex of £° Q makes with the horizontal . .
Given £ D0, there exists 0 » O, such that if fe Wé, then N ¢,

for choose & sufficiently small compared with the i{-simplexes of Q .

Choose & <E ~ £, and choose 5 accordingly .
2

o
.

Now let f be a map.-in WS" and q a point of Q . Consider the :
intersections of the arc Hﬂl(q x 1) with % Q 3 we claim there is exactly -

one intersection .

QxI Flgx1) | QxI
WM/Y\ —E— ax I
£ p
Q kL Q ‘L q

* *. ' *
For gince f is a graph, f Q separates the complement (Q x I} - £ Q -into

points above and below the graph . If there were no intersection , then ihe

. arce would connect the below-point 'H"’l-(q, 0) to the above-point Hnl'(q,i) ,

contradicting their separation . At each intersection, since (f (f) + Bl
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the arc , oriented by I , passes from below to sbove . Hence thers can be af .

nest one intersection .

Let p: Qx I—>»Q denote the projection onto the first factor .
Then | L

k:pﬁf*:qf+Q

igsal -1 map by the sbove claim , and a0 is a (piecéwise Linear) -

homeomorphism of Q .

By the compactness of Q and I , choose & sequence of maps

‘fo,fl{.ae,fn in Wg, such that fO(Q) = 0 ,'fn(q) =1, and for edch ,

f,jend £, sgree on all but one , v, say . of the vertices of Q . Define
» * ___ _ . . ~ N . _ wl
ki = p R fi » Then ko = HO = the identity, and kn = H Define hi = k&k

1° feml

Then h, is a homeomorphism of Q supported by the ball ki'(EE(vi,Q)) s

keaplng ki (1k(vi,Q)) fixed , and so igs a move « Therefore Hl = hnhn~l°'°h1 ’
a compesition of moves . ’
If H keeps Y fixed , %hen %|Ym%|¥,%rmm i, and so

each move hi keeps Y fixed . In particular the moves keep Q- X fixed ,

and are supported by X .

Suppose now that @ is a compact manifold ; let T—+Q be a

triangulation in the structure . We have proved the Yheorem for T and s0

it also follows for Q .

Suppose now that Q is non-compasct « Tet N Dbe é'regular
neighbourhood of X in Q. Then N is a compact subnanifold , and
NON(Q-%) €Y. Therefore H| N x I is an ambient isotopy of N keeping

NNY fixed , and by the compact case H, | ¥ is a composition of moves

1
supported by X keeping N N Y fixed . The moves can be extended by the

identity to moves of Q keeping Y fixed , and so H, is composition of

1
moves of Q « The proof of Theorem 11 is complets .

L]
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2roof of the Addendum to Thoorem 11

We are given a triangulation T3 N of a neighbourhood of £, and
have to show that the moves chosen to be supported by the vertex stars of T .
Without ioss of generality we can assume N is a regular neighbourhood ,
because any neighbourhood contains a i'egular neighbourhood . Therefore T

is & combinatorial manifold . Let B denote the open covering of N x I
ﬁs = {s’s(w,’l“) xI;weTd } s

where w runs over the vertices of T . Let A ‘be the Lebesgue number of

the covering Hmlﬁ) of Wx1I. Chooese a subdivision T' of T such that
the mesh of the star covering of T! is. less than A /2 . In the above
proof of Theorem 11 use T' instead of @ , and choose - é with the additional

. restriction that 8 <L )\/2 '

\\ e : . \\\ . ) \\
\\\ H , : N\ AN
\ | 7 '

N //Z ~” ‘ | Ll K \{f/f/ ‘
\Q\\\ R

——
N SOONCN
I N —
gt (Vi’ ') . ’ " st (Wi’ 'I-T)

Continuing with the seme notation as in the proof of Theorem t1 , for each

i the ball f;’_i (st(v,, 1)) , is of diameter less than A , and so is

contained in fl(st(wi, T) x I) for some vertex w, & T+ Therefore
support b, C k, @E(vi, ) € stlw, T)

ag desired .
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Proof of the Corollary to Theoren 11 .

g £ - |
Given M > M » &, where g is isotopic to the identity

keeping M fixed , we leave to cover g by a homeoﬁorphim h of Q.

Let N be a regular neighbourhood of M in Q , and choose
triangulations of M , N - call them by the seme names ~ such that f M N

ig gimplicial . By the Addendum we can write

g = glgE'“gn '

where g, is sapported by the batl Bli o st(vi,M) » TOr some vertex v, & N .

Let Bg = —s:c"(fvi; G) . Then the ball pair (BE— , T B?) 'ig urimotted., because -
f is locally unknotted , and therefore the homeomorphism fgi f”l of the
amaller ball can be suspended to a hqmeomorphism,, hi say, of the larger ball .
Since g keeps M fixed g, keeps éz fixed , and 50 b, keops B ixed.
Therefore hi extenc%s to a move of @ keeping Q fixed . _The composition

( h=h.hy...h covers g. -

i

Collars

Before proving Theorem 12, it is necessary to prove a couple of
theorems about collars of compact manifolds . The theorems can be generalised
to non-compact manifolds, buf we shall only need the compact case . Define a

collar of M to be an embedding
et Mx I > M
such that e{x,0) = x, all. X £N .

Let £ 1 M —3Q "be a proper locally-unknotted embedding between two compact

manifolds,l and st ¢, d lbe' collars of M, Q. We say ¢ , d are
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compatible with £ if the diagram

. d
Qx I ey Q

]

MXI.........G..........}MI i

&

ig commutative and imd MNin f = im fo .

Lemma 24 »  Glven a proper locally unknobbed embedding betwéen

compact nanifolds, there exist compatible collars »

Corollary . Any compact manifold has & collar » (For in the lemma

choose the smaller manifold to be a point) .

"Proof of Lemma 24 . ‘ o

o Let ¥ denote the mapping cylinder of ﬁ ¢ M. Then
M = Mx I UM, with the identification (%, 1) =%, and the induced
structure . Then " has a natural collar . The given proper embedding
f i+ M—Q induces a proper embedding £ :‘M+~*9-Q+ with which the naturai

collars are compatible .

L@t ?' denote the retraction maps of the mapping cylinders ,

shrinking the collars ; then the diagram

Q" ~——---—fi---—a Q
! .

il £
'l P >
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is commutative . We shall produce homeomorphisms c¢,d (not’mefeiy meps)

‘such that
+ d '
Q > Q.
£* £
+ o ‘
M " S M

is commutative, and such that ¢,d agree with ? on the boundaries .

The restrictions of c,d *fo the natural collars will prove the lemma .

" Choose triengulations of M,Q ~ call them by the same names -
such that f is C*:unplzclal, and let M' , Q' denote the barycentric derived
complexes » Tor each p-simplex A£ M y let A denote its dual in ﬁ ;

more precisely A% is the (mwl—p)wball in M' giveh by

= Y s )

K o ved

Using the linear structure of the prisms A x I , & 21 , define the mwball
A€ M xI o be the join

s

A= (A x O)‘(A* x 1) .

The set of all such balls cover M x I and determine a triangﬁlation of
Mx I the latter agrees with H' on the overlap , and so together with

M' determines a triangulation of w .

Order the simplexes A yA A& of K in an order of locally

Pttty
increasing dimension (i.e. of Ai L Aj' ther 1€ 3) » Similarly order the

- simplexes Bl s

ByyeeesB of L guch'that fA =B, lgigr ‘.‘
Define inductively , '




- 15 -
+
— t 3 —
Mo =M, M o=M, U A
Q. = Q! Q =@ . u B .
0 t i 1=l i

We have ascending sequences of subcomplexes

\f[' = C. C (R} C M “"..... M = se e — IE =

IJ{O Ml T T4+l 5 &

) ) ‘ +
Q o= QO C Q.lClocun--oo.atacooocolrnoicb.ol Q’SMQ‘ ¥

such that f+Mi € q, , for each i . Ve shall show inductively there exist

homeomoTphisms o5, such that

4.
a

Q, > Q

A L
vl | £
, ¥

H

s is commutative, and such that Gi’di agree with ¢ on the boundaries .
The imuotion begins trivially with ¢, = d(’) = identities, and ends with

whet we want .

a to be

For the inductive step, fix i , and assume éi—l s

defined . Thers are two caseg .
Case (i), i & r ., For = O;é let aJ. denote the barycentre

of A %3, and let bj=f+ a, + Let P denote the (@ =1, m = 1) ball

peir

ot
P = (lk (bl ] Qi""}.) § lk(blg f Miﬂ}.)) ,‘

which is unknotted becauss by hypcfhesis f: ¥ewyQ ig Jocally unimotted
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and so by inductlon £t 1-->; Q, , iz also . Then b},P is the cone
pair on P, end b b, P "the cone pa:u:' on b P .

1

iy de R mm mewe e e me ke e b

QF /

o an h mm e G aee)

i=l

. , . .
Sublemma » There exists a homeomorphism 1 @ bublPUb]_P”}blP that

AP s 'bu—-‘x bl , iz the identity on P _, and maps bUP - blf’ linearly e

Proof « If T were & standard ball pair , and D P a cone on P,
and b, the barycentre of (‘she maller of the pair) b P ; ’chen the proof.
would be trivial by linear projection . - An unknotting homeomprphlsm from P -
onto a standard pair meps the given set-up onto the ghandard saf«-up y gnd

the sublemma follows by oompOS:Ltlon ’

Returning to the proof of the lemma, notlce that D ‘olP ig none '
other than the ball pair ('B"; , £ A‘;) , and so h exbends by the identity %o

a homgomorphism of manifold pairs

o |
(Qi,fmi) _.__ma.(cg 1,f1\11_l) .

e et £ e i i 33 e ez e S v
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o _ Fyol, b e ‘ L
Define c, = Ciml(f ) nfT and di = diwlh « Then C; di are hemeomorphisms

satisfying the commutativity condition .

Finally we have to show that Ci’d% agree with § on the boundaries-

For points outside Ai , Bi this follows by induction . For points in
Az , B; it follows from the diagram ‘ '
(] h -ul . ) T '
) bO P mﬁmmuf~m*y bl ‘ - : o
- 0 o= . . o P
4 = / F =4 -
A . - ' , :
b (p?) ‘ |

which is commufative by the linearity of the sublemma .

Case (ii) i-> r . This case is simplex, because only the larger

manifold Q 1is concerned . In case (i) ignore the smaller ball ; the proof
: ] t 0 s ceh = et '
gives s homeomorphism h ! Qi-u~>Qiml keeping Mi Miml Timed .

Define ¢, = c, and 4, =4, . h o« The proof of Lemma 24 is complete .
i i-1 i =l :

Our next task is to improve Lemma 24 in Theorem 14 to the extent
of moving the smaller coliar from thesis to hypothesis . First it is T
necessary to show , in Theorem 13 , that any two coilars of the same manifold
are amblent isotopic , and for this we need three lemmas » Lemma 24 is about
shortening a collar ; Lemma 25 is aboud isotoping a homeomorphism which is
not level preserving into one which is level preserving over a small
subinterval ; and Lemma 26 is aboui isotoping an isotopy.e In each lemma an
isotopy is constructed, and we must be careful to avoid thé standard misteake

and make sure that it is a polymap (i.e. piecewise linear) .

Notation . Suppose 0 < & & 1. Let I . denote the interval
L

LO"’d . Given a collar ¢ of M , define the shcrteﬁed collar .
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by o¢ (eyt) =0 (g, %), all xeM, s &I .

&

Lemma 25 » The collars ¢ cé are ambient isotopic keeping M

fixed .

Proof . Tirst lengthen the collar ¢ as follows , The image of
¢ is a submanifeld of M, and so the closure of the complement is also &
submanifold (by Lemma 17), with boundary c(i;§ x 1) « Therefore the latter
has & collar , which we can add to ¢ to give a collar , 4 say , of M

" o eT E= -
_suéh that ¢ 61/2 hen 05 dg/e

By Lemma 16 there is an émbient igotopy G of I, keeping i
fixed , and finishing with the homeomorphism that meps [0, i/2 ], [1/2, 1]
linearly onto IO, 5/2] , [E/Z, 3.] « Let 1 x G be the ambient isotopy
| of MxI y and let H be the image of I-x G under d . Since 1 x G keeps
I:I x 1 fived , we can extend H by the identity to em smbient isotopy H of
M keeping N fixed . Then ch = cg 5 proving the lemma .

P .
t
ff

Lemma 26 . Let X be a polvhedron, snd f : X x Ig -~ X x I

an embedding such that £1 X x 0 is the identity . Then there exists

e

5 <<c L
, 0 £ d & oo and an embedding g o X x T3 X x I guch that :

¥

(i) g is level preserving in I ;
Pl

FL

(11) gz _is smbient isotopic to f keeping X x I Fixed ;

(444 If Y€ X, amd flY x Lo is alrveady level preservineg, then

we can choose o to agree with £ on Y x IE s 2nd the smbient isotopy to

keep T(Y x Ié) Tixed .

Proof « Let X, L Ve triangulations of X x IQ y Xx I such
that £ : K—»1 is simpliciel (in fact a simplicial embedding) . Choose & , -
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0 <« S < £ s 50 small that no vertices of K or L lie in the interval

0<t £ 5 . Choose first deriveds X', L' of X, L according to the rule :
if the interior of a simplex meets the level X x & s then star it at a point

on Xx & 3 otherwise star it barycentrically « Let g ¢ K'—s 1! !be the firsf

derived map . We verify the three properties :

Proﬁerty (1) holds because by construction g is level preserving
at the levels O and O , end any point in between these two levels lies on
a unigue interval that is mapped linearly onto another intervsl , both

intervals beginning (at the same point) in X x O and ending in X x 5 o

To prove property (ii) define encther first derived L' of L by
the rule : if a simplex lies in £ K then star it so that £ : K'-5L" is
simplicial: otherwise star it barycenirically . The isomorphism L" ~=L!

is isotopic to the identity by Lemma 15 Corollary 1, and so T, g are

.ambient isotopic . The isotopy keeps fixed any subcomplex of L on which

LY and L agree’, and in particular keeps X x I fixed .

To prove property (iii) we put extra conditlons on the choices of

¥ and L' . Choose X =0 as to contain. Y x I as a subcomplex . Having

&

"chosen X » X', and therefore 1" , then choose L' g0 as to agree with L"

on £(Yx I.) , this being compatible with the condition of sbarring on the -
: S .
Jzrel because Y x I,. is already level preserving . Therefore H keeps
(Y x Is) Fixed .

[

[N

Lemma 27 « Let g1 X x T ~>¥x I be an gmbient isotopy of X .

Let _h be the ambient isotouy of X that consists of the identity for half the

time followed by = ab twice the speed . Then 2 , h are ambient .isotopic

keeping X x I fixed .




2
square I  as shown, and let

w 20 -

"Proof . Triangulate the

u Ia-mg I be the simplicial map
determined by mapping the vertices

te G or 1 as shown . ,
Define G : (Xx D xI-—ExI)xl
oy

¢ (Gey8),8) = ((gu(s,'t)x,s),%) .

Then (i) & is 2 level preserving homeomorphism, and

(i1) & is piecewise linear, because the graph "G of G is the
intersection of %wo subpoiyhedra of (X x 12)a ‘

.
-

re = (xw?)tren(fxm),

where (1 x u)2 denotes the map (X x 12)2-9 (X x 1)2 ,"where' Mg is the

graph of g, and I 1 is the greph of the identity on °,

Therefore G is an isotopy of X x I ~din itself . By the
construction of u, G moves g to h keeping Lx I fixed . Therefore
g , h are ambient isobtopic keeping X x I fixed .

Theorem 13 « If M is compact, then any two collars of M- are

ambient isotonic keevine M fixed .

[

Proof . Given two collars , the idea is to (1) ambient isotope one
of them until it is level preserving relafive %o the other on a small interval,
(1i) isotope it further until it agrees with the other on a smaller interval,

and then (iii) isobope both onto this common shortenmed collar .



P
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let c,d + Mx I->M be the two given collars . Since each maps
onto a neighbourhood of M in M, we can choose & > O, such that ’
oM x Ig Yo am xI) . Since ¢,d are embeddings, we can factor ¢ =4 £,

where f is an embedding such that the diagram-

W /;}/ﬁ/;?

Mx I

is commutative, and £|M x 0 is the identity .

By Lemma 26 there exists 5 , 02 b ¢ & , and. an ambient isotopy P of
ﬁ x I moving f to g keeping Mx I fixed s and such that g is lovel
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preserving for 0 Lt £ 2 $ . The reasoﬂ for méking g level preserving .

is thaﬁ vo ?an now apply Lemma 27 a?d o?tain an ambient isotopy G of ‘ﬁ X 125
moving g M x 125 to h keeping ¥ x Ig& fixed , and s?ch that ? is the
identity for O ¢ t ¢ O . Extend h %o an embedding h & M x I Mx1 by

by making it agree with g outside M x I y and extend G by the identity

. 2y
to an ambient isotopy of M x I .-

L

 Then G T is an ambient isotopy moving £ to h keeping MxI
Tixed » Let H be the image of G P under 4 . Since G T keeps ﬁ ¥ 1
fixed , we can exbtend H by the identity to an ambient isobopy H of M

keeping M fixed . Let e =Hyc » Then e is a collar embient isotopic to

¢, and agreeing with the beginning of 4 , because of x &M and t &1 then

o (x,t) - elx, s t)

ch(x,g %)

a GlFld‘lc(x,é )
G, 7 £(x, £ %)

dh (x,éi:)

! ¢

i
o
fop}

#

= d(x, Et)
dg (x, %) .

il

Therefore e¢ = do
igotopic collars ¢, @&, e

i

s and 20 by Lemma 25 there is a sequence of ambient
- 4 . The proof of Theorem 13 is_complete .

Theorem 14 . Given o proper locally unknotted embedding

f i@ M«30 tetyeen comvact manifolds, and a collar o  of ﬁly then there

exists a compatible collar d of &..

. * ) ‘ .K.
Proof . Lemma 24 furnishes compatible collars , ¢ , a* say ,

of M, @ . By Theorem 13 there is an ambient isotopy & of M 'keepiﬁg

M fixed , such that G F = ¢ . By Corollary to Theorem 11 we can cover G

1
by a homeomorphism h of Q keeping @ fixed . Leb d = hd” .

1
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Then the cowmutativity of the diagram

éx i d S Q
\ \E;\\\\\w ////,/ﬁ/w /
: Q
£fx1 Tf - £
c*/ M Gl
P:ix I \ ‘H

imhd o imh £
h (im d¥ A in £)
h (im £ %)

im fc ,

-

and the fact that

imdpnin T

i

Ik

i

ensure that the collars ¢, 4 are compatible with f . The proof of

Theorem 14 is complete .

We now prove the sritical lemma for the covering isotopy theorem ,

Theorem 12 .

Lemna 28 . Let M+, O be compact, and F a locally unknotted

isotopy of M dn Q keeping ﬁ fixed , Then there exists & > 0, »nd a

short ambient isotopy H: G x I .~ 0 x Ig of Q that kegﬁgu,é fixod and
& o

covers the beginnineg of I . In other words the diaeram

) Qx1I



ia commutative .

Proof. TFor the convenience of the proof of this lemma we assume-

that F =T, . For , if mot , replace T by F* where T

Fro=(F, %2 S S

‘F%_t t 3 1/2 .

Then, since F' F the proof below gives H covering the beginning of

1 !
P , which is the semé as the beginning of T if £ ¢ 1/2.
Therefore assume F = Fl | 'This means that the two proper

embeddings F, Fx 1 of M I in Qx T agree on the boundary (M x I) ,
because F 'keepg M fixed . Choose a collar ¢ of Mx I » and then by
Theorem 14 choose collars d , do‘ of Qx I such that ¢ , d are compatible

“with P, and ¢, do- are compatible with FO x 1 . We have & commutative

disgram of embeddings

P
\
a, e
i Fxl
Qx1I (MxI)xI
!. 0
Foxl W

MxI- | L

Hotice that both the ceollars 4 , do mapa (Q x O).x 0 to Q@ x O . Therefore-
im @ contains a neighbourhood of @x 0 in Qx I, and so containg Q x I% R
for some R ~» 0 . Similariy d d l(Q X Z ) ‘contains a nelghbourhood of

"Qx 0, and so conbains Qx I@< , for some X , 0 L &K £ [3.
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let G =4 a; PQx I, ~>0x lﬁ . Then G has the properties :

(1) ¢ | Qx 1~ identity, because 4 , do agree on (Qx I) x 0
(1) G | Q% 0 = identity .

(1i1) & covers the beginning of ¥ in the sense that the diagran

Qx Iy G
P x1 > oQx1I
F
M x Irx‘
‘is commutative . For if x €M and t€ I{x: , then by compatibility
] = 4m (F N dimd = i ,
(ro x, t) & im (ro x 1}r' i d = in (Fo x 1) ¢

Therefore for some y & (M x I). x1I, |

(Fox, ‘c)w(Foxl) oy =4, (_Fxl)y .
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Therefore "

1i

G'(Foxmx,t) () 4, (Fx1) y
 salPx1) y
= F ¢y

-l
= F(Foxl) (Foxl) cy -

il

FFFoxl)"lr(FOx,t)

= Fx,t) .

In other words G(Foxl) = I , which proves (131)

By Lemma 26 there is an &€ , 0 < & < %X and an embedding
H:QxI, — Qx Iﬁ: ambient isotopic fo G , such that H | Q x 0 = identity )
and H 1is level preserving in I < » Further, since G is already level
pregerving on @ UF M) x T , we can by Lemma 26 (1ii) choose H to agree
;(- with G on this subpolyhedron . In other words , the restriction
I H: Qx IE - Q-x IE, ig a short ambient isotopic covering the beginning of

Foand keeping Q fixed .

Proof of Theorerm 12 , the coverinz isotopy thoorem .

We are given a locally unknotted isotopy F:HxI—QxlI
keeping ﬁ fixed , and a subdivision N of the track of F, and we have to
cover F by an ambient isotépy H of Q gupported by N keeping é‘ Tixed .
We are given that’ M is compact , and we first consider the.case when @ is

also compact and N = Q .

If 6« t< 1, the definition of locally unknotted isotopy ensures.
that the restrictions of F to [0, +] and [t 1] are locally
unknotted embeddings , and therefore we can apply Lemma 7 {o both sides of
the level + , and cover F in the neighbourhoed of 't . More preéisaly,

for each t& I, there exists a neighbourhood J(t) of tin 1, and &
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level preserving homecmorphism H(t) of Qx.}'(t) guch that H(t) keeps
é. Tfixed , H(t) =1, and such that the diagram

5
Qx J<t) '
\ #(t)
Ft x1 _,7 Qx J(t)
F
i x 58

is commutative . By compactness of I we can cover I by a finite number .

of such intervals J’(t) . Therefore we can find values tl’tz’”"’tn and
- £ . - 1 N 4 . (.t')
0 8 ' 8, £ ven L 80l 1, such thai, for each i, [Si N Si-l»l]CJ i/ .
. t. ‘
Weite H - g T ..
We now define H by induction on 1, as follows . Define H§ =1 .

Suppose H_ 1 @~¥Q has been defined for O £t ¢ s, suchthat H F =F .
Then define '

Therefore

It
o=
) i
fea]
i....!.
S
i
| i
=i

it
S
o P

&2

At the end of the irduction we have Ht defined and Ht Fo = F’c s all t &1,
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Horeover H is piecewise linear, because it is composed of a finite number of
» " r
. . . . . . i
piecewise linear pieces, and H keeps @ fixed because H~ does . Therefore

the proof is complete for the case when Q is compact and N=Q .

We now extend the proof to the general case , when Q is not '
necessarily compact , end M < Q . Ve may assume that N is a regular
neighbourhood of the tracl , because any neighbourhood contains a regular
neighbourhood . Therefore ¥ is a compact submanifold of @ . By the |
compact case , cover F by an amblent isotopy of Q covering F supported

by N and keeping Q fixed . The proof of Theorem 12 is complete .

Proof of Addendum to Theorem 12 .

We have to extend a given ambient isotopy E of é with compact
support X to an ambient isctopy H%' of Q supported by a given neighbourhood
¥ of X in Q. (H isnota qorollary because the embedding é xI-Qx 1
irduced by H is not proper) . Without loss of generally we may assume the

reighbourhoed ¥ of X %o be regular , and therefore a compact manifold .

——

Restrict H to X and extend by the identity to an ambient isotopy , G

say , of N Xkeeping N - X fixed . N 0

! Triangulate the square I2 as
showm, and let n 125—&1 be the simplicial
map determined by mapping the vertices to O

or 1 as shown.

1

¥* * Lt
Define G : (Wx1I)xI —r (WD) x1 by

6" (Gere)t) = (6,0 yymedit ) -

. ‘
Ag in the proof of Lemma 27, it follows that G  is an embient isotopy of

NxI keeping (WxI)w (N~X) xI fixed .
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’ o % *
Choose a collar ¢ ¢ Nx I .y ¥ and let H be the dmage of G

% o *
under ¢ . Since G keeps Nx 1 fixed , H can be extended by the

* .
identity to an ambient isotopy of N ; and since G keeps (N - X) x O,

B keeps the frontier of N fixed , and so can be further extended to an
. 3 *
ambient isotopy H of Q supported by N . By consiruction H  extends

H, as desired .

Proof of Coroliarvy 1 to Theorem 12 .

Coroliary 1 is concerned with the case when the isotoyy Fr of M
in Q@ does not keep M fixed . Let T be the track of F in Q , which

is compact since ¥ is compact « Iet ¥ 3 Mx I-—3Qx I denote the

‘restriction of F to the boundary , which is locally unimotted because

7
is « Let X be a regular neighbourhood of the track T0HQ of F in Q,
end let NO beha‘regular neighbourhood of X in Q . By choosing X, No
sufficiently small , we can ensure that the given neighbourhood N of T .

is also a reighbourhood of NO .

Use Theorem 12 to cover 7 by an ambient isotopy of é supported
by £, and by the Addendum extend the latter to an embient isotopy , G. S8Y
of @ eupported by N . Then ¢P is an isotopy of M in Q keeping |
M fixed , whose track is contained in T U No . But N isa
neighbourhood of T LiNO y and s0 we can again use Theorem‘12 to cover Gﬁl ¥
by an ambient isobopy , H say , of Q supported by N . Therefore GH

covers I and is supported by N .

Recall Lemma 16 » Any homeomorphism of & ball keening the boundary fixed

is isotopic to the identity keepineg the boundary fixed .

Corollary . Any hOmeOmorphiSm of a ball keeping a face fixed ig

isotopic to the identity keeping the face fixed . TFor by Theovem 2 the ball
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ig homGOmorphlc to a cone on the complementary face . First lsotope the
complementary face back into position, and extend the isotopy conewise to the

ball ; then isotepe the ball .

Proof of Corollary 2 to Theorem 12 .

We have %o show the equivalence of . : ‘ :
(1) isotopic,
(2) ambient isoto?ic,

(3) embient isotopic by an smbient isotopy with éompact'supporﬁ,
and

{4) isotopic by moves .

(?) implies (3)ﬁby Theorem 12 and Corollary 1, because we can choose
the neighbourhood ¥ +o be compact. (3) implies (4) by Theorem 11 .
(4) implies (2) by Lemma 16 and Corollary, because then each move is

ambient isotopic to the identity . Finally (2) implies (1) trivially .

Proof of Corollary 3 %o Theorem 12 .

If F is a locally trivial isotopy , then by definition each point
in ¥ x I has a neighbourhood which is lecally unknotted s therefore F is
locally unknotted . Conversely if 7 is a locally unknotted isotomy , then
the level FO ;is a locally unknotted embedding , and so the constant isotopy
Fo x 1 ig 1ooaliy trivial . By Theorem 12 cover ¥ by H iy then T = H(F x 1)
is locally trivial , because the homeomorphism H preserves local trmVLalluy .
This completes the proofs of the theorsms and corollaries shated at the

beginning of the chapter .
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Remariks on combinatorial isotopy.

We have framed the definitions of isotopy and proved the theorems
in the polyhedral category , because that is the spirit of these seminars .
In other words , there is no reference to any specific lriangulations of
either of the manifolds concerned . However there is a definition of dscotopy -

in the combinatorial category when the réceiving manifold Q Thappens to be

Buclidean space , by virtue of the linear structure of Euclidean space . The
manifold M ié'given a fixed triangulation , X say , and the isotopy is
defined by moving the vertices of K . A% each moment the embedding of M

ig uniquely determined by the posifions of the vertices ; and by the linsar
structure of Euclidean space . Put a general polyhedral manifoeld Q has only 5

piecewise linear structure , not a linear structure, and so the positions of

- the vertices df K Go not determine a unique embedding 6f M. Itisno

good picking a fixed triangulation L of Q, and_cpnsidering_;igggg

embeddings XK — L , because this has the effect of‘trapping M locally ;

and preventing the movement of any simplex-of K across the boundary of any
simpiex of X . Therefore fto obtain any useful form of isotopy it is essential -
to retain the pelvhedral structure of Q , even though we may descend to the

combingforial stmcture of M . We now give a definition in these terms , which

looks at first sight much more special than the definitions of isotopy sbove ,
but in fact turns out to be equivalent ; we stafte the theorem without proof ;
The moral of the story is : stick to the polyhedral category and don't tinker
about with Fhe combinatorial category ; keep the latter out of definitions and
theorems , and use it only as it ought to be used , as an inductive tool for

proofs .
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Linear moves with respect to0o a tTriangulation

Let A% be the standard g-simpiex , and A" an n~dimensional
face , q>m . Let x be the barveentre of A Y, and y a point between - x
end the barycentre of AT . Let ot A% =3 A% b the home omorphi sm
throwing x to y , mapping the boundary by the identity , and Joining

linearly .

Let M be closed , X & triangulation of M s and let £, g1 M=20Q

be proper embeddings . e say there is a move from f to g linear with

respect to K if the following occurs :

There is a closed vertex star of XK, & = st {(v,K) say , and a

g-ball B < Q, and a homeomdrphism b B—=>A% such. that

o)

(i)  f,2 agree on X - A ,
(1) A=1"8=g"8,

(1ii) hf maps 1k{v,K) —s A » homeomorphically ,
Voo J{ $

A ey " s by Jjoining linearly .

(iv) gla = n* 4 h(f‘_] A) .
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Roughly spealting, h is a local coordinate system , chosen so
that the move froﬁ f %0 g locks as simple as possible , just moving one
vertex of X 1£kearly in the most harmless fashion, like a move of classical
knot theory .

Addendun (stated without proof) . Let M be closed , and K =an

arbitrary fixed trisnsulation of M . Iet f.2: M—>Q be prover embeddings

that_are locally wiknotted and ambient isotopic . If codimension > 0, then

f . 2 are isotopic by moves linear with respect to K

The addendum becomes swrprising if we imagine embeddings of a
2-gphere in a nanifold , and choose X +to be the bcﬁndary of a S-simplex ,
with exactly 4 vertices . Then we can move from any embedding to any other
isotopic embedding by assiduously ghifting just those 4 vertices linearly
back and forth . A1l the work is secrebly done by judicious choice of the
balls , or local coordinate systems in the receiving manifold y in which the

moves are made .

Remark . Notice the resiriction codimension > 0 that occurs in
the addendum (but not in Theorem 11 for example) » It is an open quegtion

&8s to whether or not the restriction is necessary . In particular we have the

problem : ig a homaomorphism of a ball that keeps the bourdary fixed isotopic

to the ddentity bv linear moves ?
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