MATH 7A

Summer 2022
Group Activity 4 Solution
The formula for the volume of the water in a semi-spherical bowl in terms of the water's height h and the radius of the water's surface a is given by

$$
V=\frac{1}{6} \pi h\left(3 a^{2}+h^{2}\right)
$$

for $0 \leq h \leq R$ and $0 \leq a \leq R$.

Water is being filled in the semi-spherical bowl at a rate of $1,200 \mathrm{~cm}^{3} / \mathrm{sec}$. If the maximal radius of the bowl is 40 cm , what is the rate of the water rising when the height of the water is 20 cm ?

Either express your final answer as an exact expression or approximate it to two decimal places. Don't forget units in your final answer! You may use a calculator for this activity.

Solution. First, notice that we can eliminate the parameter a and re-express our volume formula in terms of h and R, which would be advantageous because R is a constant value.

Indeed, by the Pythagorean Theorem for the red triangle in our figure above, we have

$$
a^{2}+(R-h)^{2}=R^{2},
$$

which implies

$$
\begin{aligned}
a^{2} & =R^{2}-(R-h)^{2} \\
& =R^{2}-\left(R^{2}-2 R h+h^{2}\right) \\
& =R^{2}-R^{2}+2 R h-h^{2} \\
& =2 R h-h^{2} .
\end{aligned}
$$

So we can rewrite our formula for the volume of the water in the semi-spherical bowl as

$$
\begin{aligned}
V & =\frac{1}{6} \pi h\left(3 a^{2}+h^{2}\right) \\
& =\frac{1}{6} \pi h\left(3\left(2 R h-h^{2}\right)+h^{2}\right) \\
& =\frac{1}{6} \pi h\left(6 R h-3 h^{2}+h^{2}\right) \\
& =\frac{1}{6} \pi h\left(6 R h-2 h^{2}\right) \\
& =\frac{1}{6} \pi h(2 h(3 R-h)) \\
& =\frac{1}{3} \pi h^{2}(3 R-h) .
\end{aligned}
$$

As we said before, R is a constant. So the only variables that change with respect to time are V and h. By applying implicit differentiation with respect to time t, as well as the product rule and chain rule, we obtain

$$
\begin{aligned}
\frac{d V}{d t} & =\frac{d}{d t}\left(\frac{1}{3} \pi h^{2}(3 R-h)\right) \\
& =\frac{1}{3} \pi \frac{d}{d t}\left(h^{2}(3 R-h)\right) \\
& =\frac{1}{3} \pi\left(\frac{d}{d t}\left(h^{2}\right)(3 R-h)+h^{2} \frac{d}{d t}(3 R-h)\right) \\
& =\frac{1}{3} \pi\left(\left(2 h \frac{d h}{d t}\right)(3 R-h)+h^{2} \frac{d}{d t}(3 R-h)\right) \\
& =\frac{1}{3} \pi\left(2 h \frac{d h}{d t}(3 R-h)+h^{2}\left(0-\frac{d h}{d t}\right)\right) \\
& =\frac{1}{3} \pi\left(2 h \frac{d h}{d t}(3 R-h)-h^{2} \frac{d h}{d t}\right) \\
& =\frac{1}{3} \pi h \frac{d h}{d t}(2(3 R-h)-h) \\
& =\frac{1}{3} \pi h \frac{d h}{d t}(6 R-2 h-h) \\
& =\frac{1}{3} \pi h \frac{d h}{d t}(6 R-3 h) \\
& =\frac{1}{\not \partial} \pi h \frac{d h}{d t} \not p(2 R-h) \\
& =\pi h \frac{d h}{d t}(2 R-h) \\
& =\pi h(2 R-h) \frac{d h}{d t} .
\end{aligned}
$$

So the rate of which the height of the water in the bowl is rising is

$$
\frac{d h}{d t}=\frac{1}{\pi h(2 R-h)} \frac{d V}{d t} .
$$

Finally, we substitute $R=40 \mathrm{~cm}, h=20 \mathrm{~cm}$, and $\frac{d V}{d t}=1200 \mathrm{~cm}^{3} / \mathrm{sec}$ to obtain

$$
\begin{aligned}
\frac{d h}{d t} & =\frac{1}{\pi h(2 R-h)} \frac{d V}{d t} \\
& =\frac{1}{\pi(20)(2(40)-20)} 1200 \\
& =\frac{1}{1200 \pi} 1200 \\
& =\frac{1}{\pi} \mathrm{~cm} / \mathrm{sec} \\
& \approx 0.32 \mathrm{~cm} / \mathrm{sec}
\end{aligned}
$$

