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A Note on Using this Text

Thank you for reading this short preface. Allow us to share a few key points
about the text so that youmay beƩer understand what you will find beyond this
page.

This text is Part II of a three–text series on Calculus. The first part covers
material taught in many “Calc 1” courses: limits, derivaƟves, and the basics of
integraƟon, found in Chapters 1 through 6.1. The second text covers material
oŌen taught in “Calc 2:” integraƟon and its applicaƟons, along with an introduc-
Ɵon to sequences, series and Taylor Polynomials, found in Chapters 5 through
8. The third text covers topics common in “Calc 3” or “mulƟvariable calc:” para-
metric equaƟons, polar coordinates, vector–valued funcƟons, and funcƟons of
more than one variable, found in Chapters 9 through 14. All three are available
separately for free at www.apexcalculus.com. These three texts are intended
to work together and make one cohesive text, APEX Calculus, which can also be
downloaded from the website.

PrinƟng the enƟre text as one volumemakes for a large, heavy, cumbersome
book. One can certainly only print the pages they currently need, but some
prefer to have a nice, bound copy of the text. Therefore this text has been split
into these three manageable parts, each of which can be purchased for about
$15 at Amazon.com.

A result of this spliƫng is that someƟmes a concept is said to be explored in
an “earlier/later secƟon,” though that secƟon does not actually appear in this
parƟcular text. Also, the index makes reference to topics, and page numbers,
that do not appear in this text. This is done intenƟonally to show the reader
what topics are available for study. Downloading the .pdf of APEX Calculus will
ensure that you have all the content.

For Students: How to Read this Text

MathemaƟcs textbooks have a reputaƟon for being hard to read. High–level
mathemaƟcal wriƟng oŌen seeks to say much with few words, and this style
oŌen seeps into texts of lower–level topics. This book was wriƩen with the goal
of being easier to read than many other calculus textbooks, without becoming
too verbose.

Each chapter and secƟon starts with an introducƟon of the coming material,
hopefully seƫng the stage for “why you should care,” and endswith a look ahead
to see how the just–learned material helps address future problems.

Please read the text; it is wriƩen to explain the concepts of Calculus. There
are numerous examples to demonstrate the meaning of definiƟons, the truth
of theorems, and the applicaƟon of mathemaƟcal techniques. When you en-
counter a sentence you don’t understand, read it again. If it sƟll doesn’t make
sense, read on anyway, as someƟmes confusing sentences are explained by later
sentences.

You don’t have to read every equaƟon. The examples generally show “all”
the steps needed to solve a problem. SomeƟmes reading through each step is
helpful; someƟmes it is confusing. When the steps are illustraƟng a new tech-
nique, one probably should follow each step closely to learn the new technique.
When the steps are showing the mathemaƟcs needed to find a number to be
used later, one can usually skip ahead and see how that number is being used,
instead of geƫng bogged down in reading how the number was found.

http://apexcalculus.com
http://amazon.com


Most proofs have been omiƩed. In mathemaƟcs, proving something is al-
ways true is extremely important, and entails much more than tesƟng to see if
it works twice. However, students oŌen are confused by the details of a proof,
or become concerned that they should have been able to construct this proof
on their own. To alleviate this potenƟal problem, we do not include the proofs
to most theorems in the text. The interested reader is highly encouraged to find
proofs online or from their instructor. In most cases, one is very capable of un-
derstanding what a theorem means and how to apply it without knowing fully
why it is true.

InteracƟve, 3D Graphics

New to Version 3.0 was the addiƟon of interacƟve, 3D graphics in the .pdf
version. Nearly all graphs of objects in space can be rotated, shiŌed, and zoomed
in/out so the reader can beƩer understand the object illustrated.

As of this wriƟng, the only pdf viewers that support these 3D graphics are
Adobe Reader & Acrobat (and only the versions for PC/Mac/Unix/Linux com-
puters, not tablets or smartphones). To acƟvate the interacƟve mode, click on
the image. Once acƟvated, one can click/drag to rotate the object and use the
scroll wheel on a mouse to zoom in/out. (A great way to invesƟgate an image
is to first zoom in on the page of the pdf viewer so the graphic itself takes up
much of the screen, then zoom inside the graphic itself.) A CTRL-click/drag pans
the object leŌ/right or up/down. By right-clicking on the graph one can access
a menu of other opƟons, such as changing the lighƟng scheme or perspecƟve.
One can also revert the graph back to its default view. If you wish to deacƟvate
the interacƟvity, one can right-click and choose the “Disable Content” opƟon.

Thanks

There are many people who deserve recogniƟon for the important role they
have played in the development of this text. First, I thank Michelle for her sup-
port and encouragement, even as this “project from work” occupied my Ɵme
and aƩenƟon at home. Many thanks to Troy Siemers, whose most important
contribuƟons extend far beyond the secƟons he wrote or the 227 figures he
coded in Asymptote for 3D interacƟon. He provided incredible support, advice
and encouragement for which I am very grateful. My thanks to Brian Heinold
and Dimplekumar Chalishajar for their contribuƟons and to Jennifer Bowen for
reading through somuchmaterial and providing great feedback early on. Thanks
to Troy, Lee Dewald, Dan Joseph, Meagan Herald, Bill Lowe, John David, Vonda
Walsh, Geoff Cox, Jessica LiberƟni and other faculty of VMI who have given me
numerous suggesƟons and correcƟons based on their experience with teaching
from the text. (Special thanks to Troy, Lee & Dan for their paƟence in teaching
Calc III while I was sƟll wriƟng the Calc III material.) Thanks to Randy Cone for
encouraging his tutors of VMI’s Open Math Lab to read through the text and
check the soluƟons, and thanks to the tutors for spending their Ɵme doing so.
A very special thanks to KrisƟ Brown and Paul Janiczek who took this opportu-
nity far above & beyond what I expected, meƟculously checking every soluƟon
and carefully reading every example. Their comments have been extraordinarily
helpful. I am also thankful for the support provided by Wane Schneiter, who as
my Dean provided me with extra Ɵme to work on this project. Finally, a huge
heap of thanks is to be bestowed on the numerous people I do not know who
took the Ɵme to email me correcƟons and suggesƟons. I am blessed to have so
many people give of their Ɵme to make this book beƩer.



APEX – Affordable Print and Electronic teXts

APEX is a consorƟum of authors who collaborate to produce high–quality,
low–cost textbooks. The current textbook–wriƟng paradigm is facing a poten-
Ɵal revoluƟon as desktop publishing and electronic formats increase in popular-
ity. However, wriƟng a good textbook is no easy task, as the Ɵme requirements
alone are substanƟal. It takes countless hours of work to produce text, write
examples and exercises, edit and publish. Through collaboraƟon, however, the
cost to any individual can be lessened, allowing us to create texts that we freely
distribute electronically and sell in printed form for an incredibly low cost. Hav-
ing said that, nothing is enƟrely free; someone always bears some cost. This text
“cost” the authors of this book their Ɵme, and that was not enough. APEX Cal-
culuswould not exist had not the Virginia Military InsƟtute, through a generous
Jackson–Hope grant, given the lead author significant Ɵme away from teaching
so he could focus on this text.

Each text is available as a free .pdf, protected by a CreaƟve Commons At-
tribuƟon - Noncommercial 4.0 copyright. That means you can give the .pdf to
anyone you like, print it in any form you like, and even edit the original content
and redistribute it. If you do the laƩer, you must clearly reference this work and
you cannot sell your edited work for money.

We encourage others to adapt this work to fit their own needs. One might
add secƟons that are “missing” or remove secƟons that your students won’t
need. The source files can be found at github.com/APEXCalculus.

You can learn more at www.vmi.edu/APEX.

Version 4.0

Key changes from Version 3.0 to 4.0:

• Numerous typographical and “small”mathemaƟcal correcƟons (again, thanks
to all my close readers!).

• “Large”mathemaƟcal correcƟons and adjustments. Therewere a number
of places in Version 3.0 where a definiƟon/theorem was not correct as
stated. See www.apexcalculus.com for more informaƟon.

• More useful numbering of Examples, Theorems, etc. “DefiniƟon 11.4.2”
refers to the second definiƟon of Chapter 11, SecƟon 4.

• The addiƟon of SecƟon 13.7: Triple IntegraƟonwith Cylindrical and Spher-
ical Coordinates

• The addiƟon of Chapter 14: Vector Analysis.

https://github.com/APEXCalculus
http://www.vmi.edu/APEX
http://apexcalculus.com




5: IÄã�¦Ù�ã®ÊÄ
We have spent considerable Ɵme considering the derivaƟves of a funcƟon and
their applicaƟons. In the following chapters, we are going to starƟng thinking
in “the other direcƟon.” That is, given a funcƟon f(x), we are going to consider
funcƟons F(x) such that F ′(x) = f(x). There are numerous reasons this will
prove to be useful: these funcƟons will help us compute area, volume, mass,
force, pressure, work, and much more.

5.1 AnƟderivaƟves and Indefinite IntegraƟon
Given a funcƟon y = f(x), a differenƟal equaƟon is one that incorporates y, x,
and the derivaƟves of y. For instance, a simple differenƟal equaƟon is:

y ′ = 2x.

Solving a differenƟal equaƟon amounts to finding a funcƟon y that saƟsfies
the given equaƟon. Take a moment and consider that equaƟon; can you find a
funcƟon y such that y ′ = 2x?

Can you find another?
And yet another?
Hopefully one was able to come upwith at least one soluƟon: y = x2. “Find-

ing another” may have seemed impossible unƟl one realizes that a funcƟon like
y = x2 + 1 also has a derivaƟve of 2x. Once that discovery is made, finding “yet
another” is not difficult; the funcƟon y = x2 + 123, 456, 789 also has a deriva-
Ɵve of 2x. The differenƟal equaƟon y ′ = 2x has many soluƟons. This leads us
to some definiƟons.

DefiniƟon 5.1.1 AnƟderivaƟves and Indefinite Integrals

Let a funcƟon f(x) be given. An anƟderivaƟve of f(x) is a funcƟon F(x)
such that F ′(x) = f(x).

The set of all anƟderivaƟves of f(x) is the indefinite integral of f, denoted
by ∫

f(x) dx.

Make a note about our definiƟon: we refer to an anƟderivaƟve of f, as op-
posed to the anƟderivaƟve of f, since there is always an infinite number of them.
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We oŌen use upper-case leƩers to denote anƟderivaƟves.
Knowing one anƟderivaƟve of f allows us to find infinitely more, simply by

adding a constant. Not only does this give usmore anƟderivaƟves, it gives us all
of them.

Theorem 5.1.1 AnƟderivaƟve Forms

Let F(x) and G(x) be anƟderivaƟves of f(x) on an interval I. Then there
exists a constant C such that, on I,

G(x) = F(x) + C.

Given a funcƟon f defined on an interval I and one of its anƟderivaƟves F,
we know all anƟderivaƟves of f on I have the form F(x) + C for some constant
C. Using DefiniƟon 5.1.1, we can say that∫

f(x) dx = F(x) + C.

Let’s analyze this indefinite integral notaƟon.

..

∫
f(x) dx = F(x) + C

.

Integrand

.

IntegraƟon
symbol

.

DifferenƟal
of x

.

One
anƟderivaƟve

.

Constant of
integraƟon

Figure 5.1.1: Understanding the indefinite integral notaƟon.

Figure 5.1.1 shows the typical notaƟon of the indefinite integral. The inte-
graƟon symbol,

∫
, is in reality an “elongated S,” represenƟng “take the sum.”

We will later see how sums and anƟderivaƟves are related.
The funcƟon we want to find an anƟderivaƟve of is called the integrand. It

contains the differenƟal of the variable we are integraƟngwith respect to. The
∫

symbol and the differenƟal dx are not “bookends” with a funcƟon sandwiched in
between; rather, the symbol

∫
means “find all anƟderivaƟves of what follows,”

and the funcƟon f(x) and dx are mulƟplied together; the dx does not “just sit
there.”

Let’s pracƟce using this notaƟon.

Notes:
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5.1 AnƟderivaƟves and Indefinite IntegraƟon

Example 5.1.1 EvaluaƟng indefinite integrals
Evaluate

∫
sin x dx.

SÊ½çã®ÊÄ We are asked to find all funcƟons F(x) such that F ′(x) =
sin x. Some thoughtwill leadus to one soluƟon: F(x) = − cos x, because d

dx (− cos x) =
sin x.

The indefinite integral of sin x is thus− cos x, plus a constant of integraƟon.
So: ∫

sin x dx = − cos x+ C.

A commonly asked quesƟon is “What happened to the dx?” The unenlight-
ened response is “Don’t worry about it. It just goes away.” A full understanding
includes the following.

This process of anƟdifferenƟaƟon is really solving a differenƟal quesƟon. The
integral ∫

sin x dx

presents us with a differenƟal, dy = sin x dx. It is asking: “What is y?” We found
lots of soluƟons, all of the form y = − cos x+ C.

Leƫng dy = sin x dx, rewrite∫
sin x dx as

∫
dy.

This is asking: “What funcƟons have a differenƟal of the form dy?” The answer
is “FuncƟons of the form y+ C, where C is a constant.” What is y? We have lots
of choices, all differing by a constant; the simplest choice is y = − cos x.

Understanding all of this is more important later as we try to find anƟderiva-
Ɵves of more complicated funcƟons. In this secƟon, we will simply explore the
rules of indefinite integraƟon, and one can succeed for now with answering
“What happened to the dx?” with “It went away.”

Let’s pracƟce once more before staƟng integraƟon rules.

Example 5.1.2 EvaluaƟng indefinite integrals
Evaluate

∫
(3x2 + 4x+ 5) dx.

SÊ½çã®ÊÄ We seek a funcƟon F(x) whose derivaƟve is 3x2 + 4x + 5.
When taking derivaƟves, we can consider funcƟons term–by–term, so we can
likely do that here.

What funcƟons have a derivaƟve of 3x2? Some thought will lead us to a
cubic, specifically x3 + C1, where C1 is a constant.

Notes:
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What funcƟons have a derivaƟve of 4x? Here the x term is raised to the first
power, so we likely seek a quadraƟc. Some thought should lead us to 2x2 + C2,
where C2 is a constant.

Finally, what funcƟons have a derivaƟve of 5? FuncƟons of the form 5x+C3,
where C3 is a constant.

Our answer appears to be

∫
(3x2 + 4x+ 5) dx = x3 + C1 + 2x2 + C2 + 5x+ C3.

We do not need three separate constants of integraƟon; combine them as one
constant, giving the final answer of

∫
(3x2 + 4x+ 5) dx = x3 + 2x2 + 5x+ C.

It is easy to verify our answer; take the derivaƟve of x3 + 2x3 + 5x + C and
see we indeed get 3x2 + 4x+ 5.

This final step of “verifying our answer” is important both pracƟcally and
theoreƟcally. In general, taking derivaƟves is easier than finding anƟderivaƟves
so checking our work is easy and vital as we learn.

We also see that taking the derivaƟve of our answer returns the funcƟon in
the integrand. Thus we can say that:

d
dx

(∫
f(x) dx

)
= f(x).

DifferenƟaƟon “undoes” the work done by anƟdifferenƟaƟon.

Theorem 2.7.3 gave a list of the derivaƟves of common funcƟons we had
learned at that point. We restate part of that list here to stress the relaƟonship
between derivaƟves and anƟderivaƟves. This list will also be useful as a glossary
of common anƟderivaƟves as we learn.

Notes:
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5.1 AnƟderivaƟves and Indefinite IntegraƟon

Theorem 5.1.2 DerivaƟves and AnƟderivaƟves

Common DifferenƟaƟon Rules

1. d
dx

(
cf(x)

)
= c · f ′(x)

2. d
dx

(
f(x)± g(x)

)
=

f ′(x)± g′(x)

3. d
dx

(
C
)
= 0

4. d
dx

(
x
)
= 1

5. d
dx

(
xn
)
= n · xn−1

6. d
dx

(
sin x

)
= cos x

7. d
dx

(
cos x

)
= − sin x

8. d
dx

(
tan x

)
= sec2 x

9. d
dx

(
csc x

)
= − csc x cot x

10. d
dx

(
sec x

)
= sec x tan x

11. d
dx

(
cot x

)
= − csc2 x

12. d
dx

(
ex
)
= ex

13. d
dx

(
ax
)
= ln a · ax

14. d
dx

(
ln x
)
= 1

x

Common Indefinite Integral Rules

1.
∫
c · f(x) dx = c ·

∫
f(x) dx

2.
∫ (

f(x)± g(x)
)
dx =∫

f(x) dx±
∫
g(x) dx

3.
∫
0 dx = C

4.
∫
1 dx =

∫
dx = x+ C

5.
∫
xn dx = 1

n+1x
n+1 + C (n ̸= −1)

6.
∫
cos x dx = sin x+ C

7.
∫
sin x dx = − cos x+ C

8.
∫
sec2 x dx = tan x+ C

9.
∫
csc x cot x dx = − csc x+ C

10.
∫
sec x tan x dx = sec x+ C

11.
∫
csc2 x dx = − cot x+ C

12.
∫
ex dx = ex + C

13.
∫
ax dx = 1

ln a · a
x + C

14.
∫ 1

x dx = ln |x|+ C

We highlight a few important points from Theorem 5.1.2:

• Rule #1 states
∫
c · f(x) dx = c ·

∫
f(x) dx. This is the Constant MulƟple

Rule: we can temporarily ignore constants when finding anƟderivaƟves,
just as we did when compuƟng derivaƟves (i.e., d

dx

(
3x2
)
is just as easy to

compute as d
dx

(
x2
)
). An example:∫

5 cos x dx = 5 ·
∫

cos x dx = 5 · (sin x+ C) = 5 sin x+ C.

In the last step we can consider the constant as also being mulƟplied by

Notes:
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Chapter 5 IntegraƟon

5, but “5 Ɵmes a constant” is sƟll a constant, so we just write “C ”.

• Rule #2 is the Sum/Difference Rule: we can split integrals apart when the
integrand contains terms that are added/subtracted, as we did in Example
5.1.2. So:∫

(3x2 + 4x+ 5) dx =
∫

3x2 dx+
∫

4x dx+
∫

5 dx

= 3
∫

x2 dx+ 4
∫

x dx+
∫

5 dx

= 3 · 1
3
x3 + 4 · 1

2
x2 + 5x+ C

= x3 + 2x2 + 5x+ C

In pracƟce we generally do not write out all these steps, but we demon-
strate them here for completeness.

• Rule #5 is the Power Rule of indefinite integraƟon. There are two impor-
tant things to keep in mind:

1. NoƟce the restricƟon that n ̸= −1. This is important:
∫ 1

x dx ̸=
“ 10x

0 + C”; rather, see Rule #14.
2. We are presenƟng anƟdifferenƟaƟon as the “inverse operaƟon” of

differenƟaƟon. Here is a useful quote to remember:
“Inverse operaƟons do the opposite things in the opposite
order.”

When taking a derivaƟve using the Power Rule, we first mulƟply by
the power, then second subtract 1 from the power. To find the an-
ƟderivaƟve, do the opposite things in the opposite order: first add
one to the power, then second divide by the power.

• Note that Rule #14 incorporates the absolute value of x. The exercises will
work the reader through why this is the case; for now, know the absolute
value is important and cannot be ignored.

IniƟal Value Problems

In SecƟon 2.3we saw that the derivaƟve of a posiƟon funcƟon gave a velocity
funcƟon, and the derivaƟve of a velocity funcƟon describes acceleraƟon. We
can now go “the other way:” the anƟderivaƟve of an acceleraƟon funcƟon gives
a velocity funcƟon, etc. While there is just one derivaƟve of a given funcƟon,
there are infinitely many anƟderivaƟves. Therefore we cannot ask “What is the
velocity of an object whose acceleraƟon is−32Ō/s2?”, since there is more than
one answer.

Notes:
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5.1 AnƟderivaƟves and Indefinite IntegraƟon

We can find the answer if we provide more informaƟon with the quesƟon,
as done in the following example. OŌen the addiƟonal informaƟon comes in the
form of an iniƟal value, a value of the funcƟon that one knows beforehand.

Example 5.1.3 Solving iniƟal value problems
The acceleraƟon due to gravity of a falling object is −32 Ō/s2. At Ɵme t = 3,
a falling object had a velocity of −10 Ō/s. Find the equaƟon of the object’s
velocity.

SÊ½çã®ÊÄ We want to know a velocity funcƟon, v(t). We know two
things:

• The acceleraƟon, i.e., v ′(t) = −32, and

• the velocity at a specific Ɵme, i.e., v(3) = −10.

Using the first piece of informaƟon, we know that v(t) is an anƟderivaƟve of
v ′(t) = −32. So we begin by finding the indefinite integral of−32:∫

(−32) dt = −32t+ C = v(t).

Now we use the fact that v(3) = −10 to find C:

v(t) = −32t+ C
v(3) = −10

−32(3) + C = −10
C = 86

Thus v(t) = −32t+ 86. We can use this equaƟon to understand the moƟon
of the object: when t = 0, the object had a velocity of v(0) = 86 Ō/s. Since the
velocity is posiƟve, the object was moving upward.

When did the object begin moving down? Immediately aŌer v(t) = 0:

−32t+ 86 = 0 ⇒ t =
43
16

≈ 2.69s.

Recognize that we are able to determine quite a bit about the path of the object
knowing just its acceleraƟon and its velocity at a single point in Ɵme.

Example 5.1.4 Solving iniƟal value problems
Find f(t), given that f ′′(t) = cos t, f ′(0) = 3 and f(0) = 5.

SÊ½çã®ÊÄ We start by finding f ′(t), which is an anƟderivaƟve of f ′′(t):∫
f ′′(t) dt =

∫
cos t dt = sin t+ C = f ′(t).

Notes:
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So f ′(t) = sin t + C for the correct value of C. We are given that f ′(0) = 3,
so:

f ′(0) = 3 ⇒ sin 0+ C = 3 ⇒ C = 3.

Using the iniƟal value, we have found f ′(t) = sin t+ 3.
We now find f(t) by integraƟng again.

f(t) =
∫

f ′(t) dt =
∫

(sin t+ 3) dt = − cos t+ 3t+ C.

We are given that f(0) = 5, so

− cos 0+ 3(0) + C = 5
−1+ C = 5

C = 6

Thus f(t) = − cos t+ 3t+ 6.

This secƟon introduced anƟderivaƟves and the indefinite integral. We found
they are needed when finding a funcƟon given informaƟon about its deriva-
Ɵve(s). For instance, we found a velocity funcƟon given an acceleraƟon func-
Ɵon.

In the next secƟon, we will see how posiƟon and velocity are unexpectedly
related by the areas of certain regions on a graph of the velocity funcƟon. Then,
in SecƟon 5.4, wewill see howareas and anƟderivaƟves are closely Ɵed together.
This connecƟon is incredibly important, as indicated by the nameof the theorem
that describes it: The Fundamental Theorem of Calculus.

Notes:
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Exercises 5.1
Terms and Concepts
1. Define the term “anƟderivaƟve” in your own words.

2. Is it more accurate to refer to “the” anƟderivaƟve of f(x) or
“an” anƟderivaƟve of f(x)?

3. Use your own words to define the indefinite integral of
f(x).

4. Fill in the blanks: “Inverse operaƟons do the
things in the order.”

5. What is an “iniƟal value problem”?

6. The derivaƟve of a posiƟon funcƟon is a func-
Ɵon.

7. The anƟderivaƟve of an acceleraƟon funcƟon is a
funcƟon.

8. If F(x) is an anƟderivaƟve of f(x), and G(x) is an anƟderiva-
Ɵve of g(x), give an anƟderivaƟve of f(x) + g(x).

Problems
In Exercises 9 – 27, evaluate the given indefinite integral.

9.
∫

3x3 dx

10.
∫

x8 dx

11.
∫

(10x2 − 2) dx

12.
∫

dt

13.
∫

1 ds

14.
∫

1
3t2

dt

15.
∫

3
t2

dt

16.
∫

1√
x
dx

17.
∫

sec2 θ dθ

18.
∫

sin θ dθ

19.
∫

(sec x tan x+ csc x cot x) dx

20.
∫

5eθ dθ

21.
∫

3t dt

22.
∫

5t

2
dt

23.
∫

(2t+ 3)2 dt

24.
∫

(t2 + 3)(t3 − 2t) dt

25.
∫

x2x3 dx

26.
∫

eπ dx

27.
∫

a dx

28. This problem invesƟgates why Theorem 5.1.2 states that∫
1
x
dx = ln |x|+ C.

(a) What is the domain of y = ln x?
(b) Find d

dx

(
ln x
)
.

(c) What is the domain of y = ln(−x)?
(d) Find d

dx

(
ln(−x)

)
.

(e) You should find that 1/x has two types of anƟderiva-
Ɵves, depending on whether x > 0 or x < 0. In
one expression, give a formula for

∫
1
x
dx that takes

these different domains into account, and explain
your answer.

In Exercises 29 – 39, find f(x) described by the given iniƟal
value problem.

29. f ′(x) = sin x and f(0) = 2

30. f ′(x) = 5ex and f(0) = 10

31. f ′(x) = 4x3 − 3x2 and f(−1) = 9

32. f ′(x) = sec2 x and f(π/4) = 5

33. f ′(x) = 7x and f(2) = 1

34. f ′′(x) = 5 and f ′(0) = 7, f(0) = 3

35. f ′′(x) = 7x and f ′(1) = −1, f(1) = 10

205



36. f ′′(x) = 5ex and f ′(0) = 3, f(0) = 5

37. f ′′(θ) = sin θ and f ′(π) = 2, f(π) = 4

38. f ′′(x) = 24x2 + 2x − cos x and f ′(0) = 5, f(0) = 0

39. f ′′(x) = 0 and f ′(1) = 3, f(1) = 1

Review

40. Use informaƟon gained from the first and second deriva-
Ɵves to sketch f(x) = 1

ex + 1
.

41. Given y = x2ex cos x, find dy.
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5.2 The Definite Integral

5.2 The Definite Integral
We start with an easy problem. An object travels in a straight line at a constant
velocity of 5Ō/s for 10 seconds. How far away from its starƟng point is the ob-
ject?

We approach this problemwith the familiar “Distance= Rate× Time” equa-
Ɵon. In this case, Distance = 5Ō/s× 10s= 50 feet.

It is interesƟng to note that this soluƟon of 50 feet can be represented graph-
ically. Consider Figure 5.2.1, where the constant velocity of 5Ō/s is graphed on
the axes. Shading the area under the line from t = 0 to t = 10 gives a rectangle
with an area of 50 square units; when one considers the units of the axes, we
can say this area represents 50 Ō.

Now consider a slightly harder situaƟon (and not parƟcularly realisƟc): an
object travels in a straight line with a constant velocity of 5Ō/s for 10 seconds,
then instantly reverses course at a rate of 2Ō/s for 4 seconds. (Since the object
is traveling in the opposite direcƟon when reversing course, we say the velocity
is a constant−2Ō/s.) How far away from the starƟng point is the object – what
is its displacement?

Here we use “Distance= Rate1 × Time1 + Rate2 × Time2,” which is

Distance = 5 · 10+ (−2) · 4 = 42 Ō.

Hence the object is 42 feet from its starƟng locaƟon.
We can again depict this situaƟon graphically. In Figure 5.2.2 we have the

velociƟes graphed as straight lines on [0, 10] and [10, 14], respecƟvely. The dis-
placement of the object is

“Area above the t–axis − Area below the t–axis,”

which is easy to calculate as 50− 8 = 42 feet.
Now consider a more difficult problem.

Example 5.2.1 Finding posiƟon using velocity
The velocity of an object moving straight up/down under the acceleraƟon of
gravity is given as v(t) = −32t+48, where Ɵme t is given in seconds and velocity
is in Ō/s. When t = 0, the object had a height of 0 Ō.

1. What was the iniƟal velocity of the object?

2. What was the maximum height of the object?

3. What was the height of the object at Ɵme t = 2?

SÊ½çã®ÊÄ It is straighƞorward to find the iniƟal velocity; at Ɵme t = 0,
v(0) = −32 · 0+ 48 = 48 Ō/s.

Notes:
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Chapter 5 IntegraƟon

To answer quesƟons about the height of the object, we need to find the
object’s posiƟon funcƟon s(t). This is an iniƟal value problem, which we studied
in the previous secƟon. We are told the iniƟal height is 0, i.e., s(0) = 0. We
know s ′(t) = v(t) = −32t+ 48. To find s, we find the indefinite integral of v(t):∫

v(t) dt =
∫
(−32t+ 48) dt = −16t2 + 48t+ C = s(t).

Since s(0) = 0, we conclude that C = 0 and s(t) = −16t2 + 48t.
To find the maximum height of the object, we need to find the maximum of

s. Recalling our work finding extreme values, we find the criƟcal points of s by
seƫng its derivaƟve equal to 0 and solving for t:

s ′(t) = −32t+ 48 = 0 ⇒ t = 48/32 = 1.5s.

(NoƟce how we ended up just finding when the velocity was 0Ō/s!) The first
derivaƟve test shows this is a maximum, so the maximum height of the object
is found at

s(1.5) = −16(1.5)2 + 48(1.5) = 36Ō.

The height at Ɵme t = 2 is now straighƞorward to compute: it is s(2) = 32Ō.

While we have answered all three quesƟons, let’s look at them again graph-
ically, using the concepts of area that we explored earlier.

Figure 5.2.3 shows a graph of v(t) on axes from t = 0 to t = 3. It is again
straighƞorward to find v(0). How can we use the graph to find the maximum
height of the object?

Recall how in our previous work that the displacement of the object (in this
case, its height) was found as the area under the velocity curve, as shaded in the
figure. Moreover, the area between the curve and the t–axis that is below the
t–axis counted as “negaƟve” area. That is, it represents the object coming back
toward its starƟng posiƟon. So to find the maximum distance from the starƟng
point – the maximum height – we find the area under the velocity line that is
above the t–axis, i.e., from t = 0 to t = 1.5. This region is a triangle; its area is

Area =
1
2
Base× Height =

1
2
× 1.5s× 48Ō/s = 36Ō,

which matches our previous calculaƟon of the maximum height.
Finally, to find the height of the object at Ɵme t = 2 we calculate the total

“signed area” (where some area is negaƟve) under the velocity funcƟon from
t = 0 to t = 2. This signed area is equal to s(2), the displacement (i.e., signed
distance) from the starƟng posiƟon at t = 0 to the posiƟon at Ɵme t = 2. That
is,

Displacement = Area above the t–axis− Area below t–axis.

Notes:
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5.2 The Definite Integral

The regions are triangles, and we find

Displacement =
1
2
(1.5s)(48Ō/s)− 1

2
(.5s)(16Ō/s) = 32Ō.

This also matches our previous calculaƟon of the height at t = 2.
NoƟce howweanswered each quesƟon in this example in twoways. Our first

methodwas tomanipulate equaƟons using our understanding of anƟderivaƟves
and derivaƟves. Our second method was geometric: we answered quesƟons
looking at a graph and finding the areas of certain regions of this graph.

The above example does not prove a relaƟonship between area under a ve-
locity funcƟon and displacement, but it does imply a relaƟonship exists. SecƟon
5.4 will fully establish fact that the area under a velocity funcƟon is displace-
ment.

Given a graph of a funcƟon y = f(x), we will find that there is great use in
compuƟng the area between the curve y = f(x) and the x-axis. Because of this,
we need to define some terms.

DefiniƟon 5.2.1 The Definite Integral, Total Signed Area

Let y = f(x) be defined on a closed interval [a, b]. The total signed area
from x = a to x = b under f is:
(area under f and above the x–axis on [a, b])− (area above f and under

the x–axis on [a, b]).

The definite integral of f on [a, b] is the total signed area of f on [a, b],
denoted ∫ b

a
f(x) dx,

where a and b are the bounds of integraƟon.

By our definiƟon, the definite integral gives the “signed area under f.” We
usually drop the word “signed” when talking about the definite integral, and
simply say the definite integral gives “the area under f ” or, more commonly,
“the area under the curve.”

The previous secƟon introduced the indefinite integral, which related to an-
ƟderivaƟves. We have now defined the definite integral, which relates to areas
under a funcƟon. The two are very much related, as we’ll see when we learn
the Fundamental Theorem of Calculus in SecƟon 5.4. Recall that earlier we said
that the “

∫
” symbol was an “elongated S” that represented finding a “sum.” In

the context of the definite integral, this notaƟon makes a bit more sense, as we
are adding up areas under the funcƟon f.

Notes:
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We pracƟce using this notaƟon.

Example 5.2.2 EvaluaƟng definite integrals
Consider the funcƟon f given in Figure 5.2.4.

Find:

1.
∫ 3

0
f(x) dx

2.
∫ 5

3
f(x) dx

3.
∫ 5

0
f(x) dx

4.
∫ 3

0
5f(x) dx

5.
∫ 1

1
f(x) dx

SÊ½çã®ÊÄ

1.
∫ 3
0 f(x) dx is the area under f on the interval [0, 3]. This region is a triangle,
so the area is

∫ 3
0 f(x) dx = 1

2 (3)(1) = 1.5.

2.
∫ 5
3 f(x) dx represents the area of the triangle found under the x–axis on
[3, 5]. The area is 1

2 (2)(1) = 1; since it is found under the x–axis, this is
“negaƟve area.” Therefore

∫ 5
3 f(x) dx = −1.

3.
∫ 5
0 f(x) dx is the total signed area under fon [0, 5]. This is 1.5+(−1) = 0.5.

4.
∫ 3
0 5f(x) dx is the area under 5f on [0, 3]. This is sketched in Figure 5.2.5.
Again, the region is a triangle, with height 5 Ɵmes that of the height of the
original triangle. Thus the area is

∫ 3
0 5f(x) dx = 1

2 (15)(1) = 7.5.

5.
∫ 1
1 f(x) dx is the area under f on the “interval” [1, 1]. This describes a line
segment, not a region; it has no width. Therefore the area is 0.

This example illustrates some of the properƟes of the definite integral, given
here.

Notes:
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5.2 The Definite Integral

Theorem 5.2.1 ProperƟes of the Definite Integral

Let f and g be defined on a closed interval I that contains the values a, b
and c, and let k be a constant. The following hold:

1.
∫ a

a
f(x) dx = 0

2.
∫ b

a
f(x) dx+

∫ c

b
f(x) dx =

∫ c

a
f(x) dx

3.
∫ b

a
f(x) dx = −

∫ a

b
f(x) dx

4.
∫ b

a

(
f(x)± g(x)

)
dx =

∫ b

a
f(x) dx±

∫ b

a
g(x) dx

5.
∫ b

a
k · f(x) dx = k ·

∫ b

a
f(x) dx

We give a brief jusƟficaƟon of Theorem 5.2.1 here.

1. As demonstrated in Example 5.2.2, there is no “area under the curve”
when the region has no width; hence this definite integral is 0.

2. This states that total area is the sum of the areas of subregions. It is easily
considered when we let a < b < c. We can break the interval [a, c] into
two subintervals, [a, b] and [b, c]. The total area over [a, c] is the area over
[a, b] plus the area over [b, c].
It is important to note that this sƟll holds true even if a < b < c is not
true. We discuss this in the next point.

3. This property can be viewed a merely a convenƟon to make other proper-
Ɵesworkwell. (Later wewill see how this property has a jusƟficaƟon all its
own, not necessarily in support of other properƟes.) Suppose b < a < c.
The discussion from the previous point clearly jusƟfies∫ a

b
f(x) dx+

∫ c

a
f(x) dx =

∫ c

b
f(x) dx. (5.1)

However, we sƟll claim that, as originally stated,∫ b

a
f(x) dx+

∫ c

b
f(x) dx =

∫ c

a
f(x) dx. (5.2)

Notes:
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How do EquaƟons (5.1) and (5.2) relate? Start with EquaƟon (5.1):∫ a

b
f(x) dx+

∫ c

a
f(x) dx =

∫ c

b
f(x) dx∫ c

a
f(x) dx = −

∫ a

b
f(x) dx+

∫ c

b
f(x) dx

Property (3) jusƟfies changing the sign and switching the bounds of inte-

graƟon on the −
∫ a

b
f(x) dx term; when this is done, EquaƟons (5.1) and

(5.2) are equivalent.
The conclusion is this: by adopƟng the convenƟon of Property (3), Prop-
erty (2) holds no maƩer the order of a, b and c. Again, in the next secƟon
we will see another jusƟficaƟon for this property.

4,5. Each of these may be non–intuiƟve. Property (5) states that when one
scales a funcƟon by, for instance, 7, the area of the enclosed region also
is scaled by a factor of 7. Both ProperƟes (4) and (5) can be proved using
geometry. The details are not complicated but are not discussed here.

Example 5.2.3 EvaluaƟng definite integrals using Theorem 5.2.1.
Consider the graph of a funcƟon f(x) shown in Figure 5.2.6. Answer the follow-
ing:

1. Which value is greater:
∫ b

a
f(x) dx or

∫ c

b
f(x) dx?

2. Is
∫ c

a
f(x) dx greater or less than 0?

3. Which value is greater:
∫ b

a
f(x) dx or

∫ b

c
f(x) dx?

SÊ½çã®ÊÄ

1.
∫ b
a f(x) dx has a posiƟve value (since the area is above the x–axis) whereas∫ c
b f(x) dx has a negaƟve value. Hence

∫ b
a f(x) dx is bigger.

2.
∫ c
a f(x) dx is the total signed area under f between x = a and x = c. Since
the region below the x–axis looks to be larger than the region above, we
conclude that the definite integral has a value less than 0.

3. Note how the second integral has the bounds “reversed.” Therefore
∫ b
c f(x)dx

represents a posiƟve number, greater than the area described by the first
definite integral. Hence

∫ b
c f(x) dx is greater.

Notes:
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5.2 The Definite Integral

The area definiƟon of the definite integral allows us to use geometry to com-
pute the definite integral of some simple funcƟons.

Example 5.2.4 EvaluaƟng definite integrals using geometry
Evaluate the following definite integrals:

1.
∫ 5

−2
(2x− 4) dx 2.

∫ 3

−3

√
9− x2 dx.

SÊ½çã®ÊÄ

1. It is useful to sketch the funcƟon in the integrand, as shown in Figure
5.2.7(a). We see we need to compute the areas of two regions, which
we have labeled R1 and R2. Both are triangles, so the area computaƟon is
straighƞorward:

R1 :
1
2
(4)(8) = 16 R2 :

1
2
(3)6 = 9.

Region R1 lies under the x–axis, hence it is counted as negaƟve area (we
can think of the triangle’s height as being “−8”), so∫ 5

−2
(2x− 4) dx = −16+ 9 = −7.

2. Recognize that the integrand of this definite integral describes a half circle,
as sketched in Figure 5.2.7(b), with radius 3. Thus the area is:∫ 3

−3

√
9− x2 dx =

1
2
πr2 =

9
2
π.

Example 5.2.5 Understanding moƟon given velocity
Consider the graph of a velocity funcƟon of an object moving in a straight line,
given in Figure 5.2.8, where the numbers in the given regions gives the area of
that region. Assume that the definite integral of a velocity funcƟon gives dis-
placement. Find the maximum speed of the object and its maximum displace-
ment from its starƟng posiƟon.

SÊ½çã®ÊÄ Since the graph gives velocity, finding the maximum speed
is simple: it looks to be 15Ō/s.

At Ɵme t = 0, the displacement is 0; the object is at its starƟng posiƟon. At
Ɵme t = a, the object has moved backward 11 feet. Between Ɵmes t = a and

Notes:
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Chapter 5 IntegraƟon

t = b, the object moves forward 38 feet, bringing it into a posiƟon 27 feet for-
ward of its starƟng posiƟon. From t = b to t = c the object is moving backwards
again, hence its maximum displacement is 27 feet from its starƟng posiƟon.

In our examples, we have either found the areas of regions that have nice
geometric shapes (such as rectangles, triangles and circles) or the areas were
given to us. Consider Figure 5.2.9, where a region below y = x2 is shaded. What
is its area? The funcƟon y = x2 is relaƟvely simple, yet the shape it defines has
an area that is not simple to find geometrically.

In the next secƟon we will explore how to find the areas of such regions.

Notes:
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Exercises 5.2
Terms and Concepts

1. What is “total signed area”?

2. What is “displacement”?

3. What is
∫ 3

3
sin x dx?

4. Give a single definite integral that has the same value as∫ 1

0
(2x+ 3) dx+

∫ 2

1
(2x+ 3) dx.

Problems

In Exercises 5 – 10, a graph of a funcƟon f(x) is given. Using
the geometry of the graph, evaluate the definite integrals.

5.

.....

y = −2x + 4

.

2

.

4

. −4.

−2

.

2

.

4
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y

(a)
∫ 1

0
(−2x+ 4) dx

(b)
∫ 2

0
(−2x+ 4) dx

(c)
∫ 3

0
(−2x+ 4) dx

(d)
∫ 3

1
(−2x+ 4) dx

(e)
∫ 4

2
(−2x+ 4) dx

(f)
∫ 1

0
(−6x+ 12) dx

6.

.....

y = f(x)

.

1

.

2

.

3
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5

.−2.
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.
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.

2

.

x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 3

0
f(x) dx

(c)
∫ 5

0
f(x) dx

(d)
∫ 5

2
f(x) dx

(e)
∫ 3

5
f(x) dx

(f)
∫ 3

0
−2f(x) dx

7.

.....

y = f(x)

. 1. 2. 3. 4.

2

.

4

.
x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

2
2f(x) dx

(d)
∫ 1

0
4x dx

(e)
∫ 3

2
(2x− 4) dx

(f)
∫ 3

2
(4x− 8) dx

8.

.....

y = x − 1

.

1

.

2

.

3

.

4

.
−1

.

1

.

2

.

3

.

x

.

y

(a)
∫ 1

0
(x− 1) dx

(b)
∫ 2

0
(x− 1) dx

(c)
∫ 3

0
(x− 1) dx

(d)
∫ 3

2
(x− 1) dx

(e)
∫ 4

1
(x− 1) dx

(f)
∫ 4

1

(
(x− 1) + 1

)
dx

9.

.....

f(x) =
√

4 − (x − 2)2

. 1. 2. 3. 4.

1

.

2

.

3

.
x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

0
f(x) dx

(d)
∫ 4

0
5f(x) dx
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10.

f(x) = 3

5 10

1

2

3

x

y

(a)
∫ 5

0
f(x) dx

(b)
∫ 7

3
f(x) dx

(c)
∫ 0

0
f(x) dx

(d)
∫ b

a
f(x) dx, where

0 ≤ a ≤ b ≤ 10

In Exercises 11 – 14, a graph of a funcƟon f(x) is given; the
numbers inside the shaded regions give the area of that re-
gion. Evaluate the definite integrals using this area informa-
Ɵon.

11.

.....

y = f(x)

.

59

.
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21
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.−100.

−50
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50

.

x
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y

(a)
∫ 1

0
f(x) dx

(b)
∫ 2

0
f(x) dx

(c)
∫ 3

0
f(x) dx

(d)
∫ 2

1
−3f(x) dx

12.

.....

f(x) = sin(πx/2)

.

4/π

.

4/π

.

1
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.

−1

.

1

.

x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

0
f(x) dx

(d)
∫ 1

0
f(x) dx

13.

f(x) = 3x2 − 3

4 4

4−2 −1 1 2

−5

5

10

x

y

(a)
∫ −1

−2
f(x) dx

(b)
∫ 2

1
f(x) dx

(c)
∫ 1

−1
f(x) dx

(d)
∫ 1

0
f(x) dx

14.

.....

f(x) = x2

. 1/3. 7/3.
1

.
2

.

1

.

2

.

3

.

4

. x.

y

(a)
∫ 2

0
5x2 dx

(b)
∫ 2

0
(x2 + 3) dx

(c)
∫ 3

1
(x− 1)2 dx

(d)
∫ 4

2

(
(x− 2)2 + 5

)
dx

In Exercises 15 – 16, a graph of the velocity funcƟon of an ob-
ject moving in a straight line is given. Answer the quesƟons
based on that graph.

15.

.....

1

.

2

.

3

.−1.

1

.

2

.

t (s)

.

y (Ō/s)

(a) What is the object’s maximum velocity?
(b) What is the object’s maximum displacement?
(c) What is the object’s total displacement on [0, 3]?

16.

..... 1. 2. 3. 4. 5.

1

.

2

.

3

.
t (s)

.

y (Ō/s)

(a) What is the object’s maximum velocity?
(b) What is the object’s maximum displacement?
(c) What is the object’s total displacement on [0, 5]?
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17. An object is thrown straight up with a velocity, in Ō/s, given
by v(t) = −32t + 64, where t is in seconds, from a height
of 48 feet.

(a) What is the object’s maximum velocity?
(b) What is the object’s maximum displacement?
(c) When does the maximum displacement occur?
(d) When will the object reach a height of 0? (Hint: find

when the displacement is−48Ō.)

18. An object is thrown straight up with a velocity, in Ō/s, given
by v(t) = −32t + 96, where t is in seconds, from a height
of 64 feet.

(a) What is the object’s iniƟal velocity?
(b) When is the object’s displacement 0?
(c) How long does it take for the object to return to its

iniƟal height?
(d) When will the object reach a height of 210 feet?

In Exercises 19 – 22, let

•
∫ 2

0
f(x) dx = 5,

•
∫ 3

0
f(x) dx = 7,

•
∫ 2

0
g(x) dx = −3, and

•
∫ 3

2
g(x) dx = 5.

Use these values to evaluate the given definite integrals.

19.
∫ 2

0

(
f(x) + g(x)

)
dx

20.
∫ 3

0

(
f(x)− g(x)

)
dx

21.
∫ 3

2

(
3f(x) + 2g(x)

)
dx

22. Find nonzero values for a and b such that∫ 3

0

(
af(x) + bg(x)

)
dx = 0

In Exercises 23 – 26, let

•
∫ 3

0
s(t) dt = 10,

•
∫ 5

3
s(t) dt = 8,

•
∫ 5

3
r(t) dt = −1, and

•
∫ 5

0
r(t) dt = 11.

Use these values to evaluate the given definite integrals.

23.
∫ 3

0

(
s(t) + r(t)

)
dt

24.
∫ 0

5

(
s(t)− r(t)

)
dt

25.
∫ 3

3

(
πs(t)− 7r(t)

)
dt

26. Find nonzero values for a and b such that∫ 5

0

(
ar(t) + bs(t)

)
dt = 0

Review
In Exercises 27 – 30, evaluate the given indefinite integral.

27.
∫ (

x3 − 2x2 + 7x− 9
)
dx

28.
∫ (

sin x− cos x+ sec2 x
)
dx

29.
∫ ( 3√t+ 1

t2
+ 2t

)
dt

30.
∫ (

1
x
− csc x cot x

)
dx
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Figure 5.3.1: A graph of f(x) = 4x − x2.
What is the area of the shaded region?
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Figure 5.3.2: ApproximaƟng
∫ 4
0 (4x −

x2) dx using rectangles. The heights of the
rectangles are determined using different
rules.

Chapter 5 IntegraƟon

5.3 Riemann Sums
In the previous secƟon we defined the definite integral of a funcƟon on [a, b] to
be the signed area between the curve and the x–axis. Some areas were simple
to compute; we ended the secƟon with a region whose area was not simple to
compute. In this secƟon we develop a technique to find such areas.

A fundamental calculus technique is to first answer a given problem with an
approximaƟon, then refine that approximaƟon to make it beƩer, then use limits
in the refining process to find the exact answer. That is what we will do here.

Consider the region given in Figure 5.3.1, which is the area under y = 4x−x2
on [0, 4]. What is the signed area of this region – i.e., what is

∫ 4
0 (4x− x2) dx?

We start by approximaƟng. We can surround the region with a rectangle
with height and width of 4 and find the area is approximately 16 square units.
This is obviously an over–approximaƟon; we are including area in the rectangle
that is not under the parabola.

We have an approximaƟon of the area, using one rectangle. How can we
refine our approximaƟon tomake it beƩer? The key to this secƟon is this answer:
use more rectangles.

Let’s use 4 rectangles with an equal width of 1. This parƟƟons the interval
[0, 4] into 4 subintervals, [0, 1], [1, 2], [2, 3] and [3, 4]. On each subinterval we
will draw a rectangle.

There are three common ways to determine the height of these rectangles:
the LeŌ Hand Rule, the Right Hand Rule, and theMidpoint Rule. The LeŌ Hand
Rule says to evaluate the funcƟon at the leŌ–hand endpoint of the subinterval
and make the rectangle that height. In Figure 5.3.2, the rectangle drawn on the
interval [2, 3] has height determined by the LeŌ Hand Rule; it has a height of
f(2). (The rectangle is labeled “LHR.”)

The Right Hand Rule says the opposite: on each subinterval, evaluate the
funcƟon at the right endpoint and make the rectangle that height. In the figure,
the rectangle drawn on [0, 1] is drawn using f(1) as its height; this rectangle is
labeled “RHR.”.

The Midpoint Rule says that on each subinterval, evaluate the funcƟon at
the midpoint and make the rectangle that height. The rectangle drawn on [1, 2]
was made using the Midpoint Rule, with a height of f(1.5). That rectangle is
labeled “MPR.”

These are the three most common rules for determining the heights of ap-
proximaƟng rectangles, but one is not forced to use one of these threemethods.
The rectangle on [3, 4] has a height of approximately f(3.53), very close to the
Midpoint Rule. It was chosen so that the area of the rectangle is exactly the area
of the region under f on [3, 4]. (Later you’ll be able to figure how to do this, too.)

The following example will approximate the value of
∫ 4
0 (4x − x2) dx using

these rules.

Notes:
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Figure 5.3.3: ApproximaƟng
∫ 4
0 (4x −

x2) dx in Example 5.3.1. In (a), the LeŌ
Hand Rule is used; in (b), the Right Hand
Rule is used; in (c), the Midpoint Rule is
used.

5.3 Riemann Sums

Example 5.3.1 Using the LeŌ Hand, Right Hand and Midpoint Rules
Approximate the value of

∫ 4
0 (4x − x2) dx using the LeŌ Hand Rule, the Right

Hand Rule, and the Midpoint Rule, using 4 equally spaced subintervals.

SÊ½çã®ÊÄ We break the interval [0, 4] into four subintervals as before.
In Figure 5.3.3(a) we see 4 rectangles drawn on f(x) = 4x − x2 using the LeŌ
Hand Rule. (The areas of the rectangles are given in each figure.)

Note how in the first subinterval, [0, 1], the rectangle has height f(0) = 0.
We add up the areas of each rectangle (height× width) for our LeŌ Hand Rule
approximaƟon:

f(0) · 1+ f(1) · 1+ f(2) · 1+ f(3) · 1 =

0+ 3+ 4+ 3 = 10.

Figure 5.3.3(b) shows 4 rectangles drawn under f using the Right Hand Rule;
note how the [3, 4] subinterval has a rectangle of height 0.

In this example, these rectangle seem to be the mirror image of those found
in part (a) of the Figure. This is because of the symmetry of our shaded region.
Our approximaƟon gives the same answer as before, though calculated a differ-
ent way:

f(1) · 1+ f(2) · 1+ f(3) · 1+ f(4) · 1 =

3+ 4+ 3+ 0 = 10.

Figure 5.3.3(c) shows 4 rectangles drawn under f using the Midpoint Rule.
This gives an approximaƟon of

∫ 4
0 (4x− x2) dx as:

f(0.5) · 1+ f(1.5) · 1+ f(2.5) · 1+ f(3.5) · 1 =

1.75+ 3.75+ 3.75+ 1.75 = 11.

Our three methods provide two approximaƟons of
∫ 4
0 (4x− x2) dx: 10 and 11.

SummaƟon NotaƟon

It is hard to tell at this moment which is a beƩer approximaƟon: 10 or 11?
We can conƟnue to refine our approximaƟon by using more rectangles. The
notaƟon can become unwieldy, though, as we add up longer and longer lists of
numbers. We introduce summaƟon notaƟon to ameliorate this problem.

Notes:
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Chapter 5 IntegraƟon

Suppose we wish to add up a list of numbers a1, a2, a3, …, a9. Instead of
wriƟng

a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9,

we use summaƟon notaƟon and write

..

9∑
i=1

ai.

.i=index
of summaƟon

. lower
bound

.

upper
bound

.

summand

Figure 5.3.4: Understanding summaƟon notaƟon.

The upper case sigma represents the term “sum.” The index of summaƟon
in this example is i; any symbol can be used. By convenƟon, the index takes on
only the integer values between (and including) the lower and upper bounds.

Let’s pracƟce using this notaƟon.

Example 5.3.2 Using summaƟon notaƟon
Let the numbers {ai} be defined as ai = 2i − 1 for integers i, where i ≥ 1. So
a1 = 1, a2 = 3, a3 = 5, etc. (The output is the posiƟve odd integers). Evaluate
the following summaƟons:

1.
6∑

i=1
ai 2.

7∑
i=3

(3ai − 4) 3.
4∑

i=1
(ai)2

SÊ½çã®ÊÄ

1.
6∑

i=1
ai = a1 + a2 + a3 + a4 + a5 + a6

= 1+ 3+ 5+ 7+ 9+ 11
= 36.

2. Note the starƟng value is different than 1:

7∑
i=3

(3ai − 4) = (3a3 − 4) + (3a4 − 4) + (3a5 − 4) + (3a6 − 4) + (3a7 − 4)

= 11+ 17+ 23+ 29+ 35
= 115.

Notes:
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5.3 Riemann Sums

3.
4∑

i=1
(ai)2 = (a1)2 + (a2)2 + (a3)2 + (a4)2

= 12 + 32 + 52 + 72

= 84.

It might seem odd to stress a new, concise way of wriƟng summaƟons only
to write each term out as we add them up. It is. The following theorem gives
some of the properƟes of summaƟons that allow us to work with them without
wriƟng individual terms. Examples will follow.

Theorem 5.3.1 ProperƟes of SummaƟons

1.
n∑

i=1
c = c · n, where c is a constant.

2.
n∑

i=m

(ai ± bi) =
n∑

i=m

ai ±
n∑

i=m

bi

3.
n∑

i=m

c · ai = c ·
n∑

i=m

ai

4.
j∑

i=m

ai +
n∑

i=j+1
ai =

n∑
i=m

ai

5.
n∑

i=1
i =

n(n+ 1)
2

6.
n∑

i=1
i2 =

n(n+ 1)(2n+ 1)
6

7.
n∑

i=1
i3 =

(
n(n+ 1)

2

)2

Example 5.3.3 EvaluaƟng summaƟons using Theorem 5.3.1
Revisit Example 5.3.2 and, using Theorem 5.3.1, evaluate

6∑
i=1

ai =
6∑

i=1
(2i− 1).

Notes:
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Figure 5.3.5: Dividing [0, 4] into 16
equally spaced subintervals.

Chapter 5 IntegraƟon

SÊ½çã®ÊÄ

6∑
i=1

(2i− 1) =
6∑

i=1
2i−

6∑
i=1

(1)

=

(
2

6∑
i=1

i

)
− 6

= 2
6(6+ 1)

2
− 6

= 42− 6 = 36

We obtained the same answer without wriƟng out all six terms. When dealing
with small sizes of n, it may be faster to write the terms out by hand. However,
Theorem 5.3.1 is incredibly important when dealing with large sums as we’ll
soon see.

Riemann Sums

Consider again
∫ 4
0 (4x − x2) dx. We will approximate this definite integral

using 16 equally spaced subintervals and the Right Hand Rule in Example 5.3.4.
Before doing so, it will pay to do some careful preparaƟon.

Figure 5.3.5 shows a number line of [0, 4] divided, or parƟƟoned, into 16
equally spaced subintervals. Wedenote 0 as x1; wehavemarked the values of x5,
x9, x13 and x17. We couldmark themall, but the figurewould get crowded. While
it is easy to figure that x10 = 2.25, in general, we want a method of determining
the value of xi without consulƟng the figure. Consider:

..

xi = x1 + (i− 1)∆x

. starƟng
value

.

number of
subintervals

between x1 and xi

. subinterval
size

So x10 = x1 + 9(4/16) = 2.25.
If we had parƟƟoned [0, 4] into 100 equally spaced subintervals, each subin-

terval would have length∆x = 4/100 = 0.04. We could compute x32 as

x32 = x1 + 31(4/100) = 1.24.

(That was far faster than creaƟng a sketch first.)

Notes:
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5.3 Riemann Sums

Given any subdivision of [0, 4], the first subinterval is [x1, x2]; the second is
[x2, x3]; the i th subinterval is [xi, xi+1].

When using the LeŌ Hand Rule, the height of the i th rectangle will be f(xi).
Whenusing theRightHandRule, the height of the i th rectanglewill be f(xi+1).

Whenusing theMidpoint Rule, the height of the i th rectanglewill be f
(
xi + xi+1

2

)
.

Thus approximaƟng
∫ 4
0 (4x− x2) dx with 16 equally spaced subintervals can

be expressed as follows, where∆x = 4/16 = 1/4:

LeŌ Hand Rule:
16∑
i=1

f(xi)∆x

Right Hand Rule:
16∑
i=1

f(xi+1)∆x

Midpoint Rule:
16∑
i=1

f
(
xi + xi+1

2

)
∆x

Weuse these formulas in the next two examples. The following example lets
us pracƟce using the Right Hand Rule and the summaƟon formulas introduced
in Theorem 5.3.1.

Example 5.3.4 ApproximaƟng definite integrals using sums
Approximate

∫ 4
0 (4x−x2) dx using the Right Hand Rule and summaƟon formulas

with 16 and 1000 equally spaced intervals.

SÊ½çã®ÊÄ Using the formula derived before, using 16 equally spaced
intervals and the Right Hand Rule, we can approximate the definite integral as

16∑
i=1

f(xi+1)∆x.

We have∆x = 4/16 = 0.25. Since xi = 0+ (i− 1)∆x, we have

xi+1 = 0+
(
(i+ 1)− 1

)
∆x

= i∆x

Notes:
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Figure 5.3.6: ApproximaƟng
∫ 4
0 (4x −

x2) dx with the Right Hand Rule and 16
evenly spaced subintervals.

Chapter 5 IntegraƟon

Using the summaƟon formulas, consider:∫ 4

0
(4x− x2) dx ≈

16∑
i=1

f(xi+1)∆x

=

16∑
i=1

f(i∆x)∆x

=

16∑
i=1

(
4i∆x− (i∆x)2

)
∆x

=

16∑
i=1

(4i∆x2 − i2∆x3)

= (4∆x2)
16∑
i=1

i−∆x3
16∑
i=1

i2 (5.3)

= (4∆x2)
16 · 17

2
−∆x3

16(17)(33)
6

(∆x = 0.25)

= 10.625

We were able to sum up the areas of 16 rectangles with very liƩle computaƟon.
In Figure 5.3.6 the funcƟon and the 16 rectangles are graphed. While some
rectangles over–approximate the area, other under–approximate the area (by
about the same amount). Thus our approximate area of 10.625 is likely a fairly
good approximaƟon.

NoƟce EquaƟon (5.3); by changing the 16’s to 1,000’s (and appropriately
changing the value of ∆x), we can use that equaƟon to sum up 1000 rectan-
gles! We do so here, skipping from the original summand to the equivalent of
EquaƟon (5.3) to save space. Note that∆x = 4/1000 = 0.004.∫ 4

0
(4x− x2) dx ≈

1000∑
i=1

f(xi+1)∆x

= (4∆x2)
1000∑
i=1

i−∆x3
1000∑
i=1

i2

= (4∆x2)
1000 · 1001

2
−∆x3

1000(1001)(2001)
6

= 10.666656

Using many, many rectangles, we have a likely good approximaƟon of∫ 4
0 (4x− x2)∆x. That is,∫ 4

0
(4x− x2) dx ≈ 10.666656.

Notes:
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5.3 Riemann Sums

Before the above example, we statedwhat the summaƟons for the LeŌHand,
Right Hand and Midpoint Rules looked like. Each had the same basic structure,
which was:

1. each rectangle has the same width, which we referred to as∆x, and

2. each rectangle’s height is determined by evaluaƟng f at a parƟcular point
in each subinterval. For instance, the LeŌ Hand Rule states that each rect-
angle’s height is determined by evaluaƟng f at the leŌ hand endpoint of
the subinterval the rectangle lives on.

One could parƟƟon an interval [a, b]with subintervals that do not have the same
size. We refer to the length of the i th subinterval as∆xi. Also, one could deter-
mine each rectangle’s height by evaluaƟng f at any point ci in the i th subinterval.
Thus the height of the i th subinterval would be f(ci), and the area of the i th rect-
angle would be f(ci)∆xi. These ideas are formally defined below.

DefiniƟon 5.3.1 ParƟƟon

A parƟƟon ∆x of a closed interval [a, b] is a set of numbers x1, x2, . . .
xn+1 where

a = x1 < x2 < . . . < xn < xn+1 = b.

The length of the i th subinterval, [xi, xi+1], is ∆xi = xi+1 − xi. If [a, b] is
parƟƟoned into subintervals of equal length, we let ∆x represent the
length of each subinterval.

The size of the parƟƟon, denoted ||∆x||, is the length of the largest
subinterval of the parƟƟon.

SummaƟons of rectangleswith area f(ci)∆xi are named aŌermathemaƟcian
Georg Friedrich Bernhard Riemann, as given in the following definiƟon.

DefiniƟon 5.3.2 Riemann Sum

Let f be defined on a closed interval [a, b], let∆x be a parƟƟon of [a, b]
and let ci denote any value in the i th subinterval.
The sum

n∑
i=1

f(ci)∆xi

is a Riemann sum of f on [a, b].
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225



.....
1

.
2

.
3

.
4

.

1

.

2

.

3

.

4

.

x

.

y

Figure 5.3.7: An example of a general Rie-
mann sum to approximate

∫ 4
0 (4x−x2) dx.

Chapter 5 IntegraƟon

Figure 5.3.7 shows the approximaƟng rectangles of a Riemann sumof
∫ 4
0 (4x−

x2) dx. While the rectangles in this example do not approximate well the shaded
area, they demonstrate that the subinterval widths may vary and the heights of
the rectangles can be determined without following a parƟcular rule.

“Usually” Riemann sums are calculated using one of the three methods we
have introduced. The uniformity of construcƟon makes computaƟons easier.
Beforeworking another example, let’s summarize someofwhatwehave learned
in a convenient way.

Key Idea 5.3.1 Riemann Sum Concepts

Consider
∫ b

a
f(x) dx ≈

n∑
i=1

f(ci)∆xi.

1. When the n subintervals have equal length,∆xi = ∆x =
b− a
n

.

2. The i th term of an equally spaced parƟƟon is xi = a + (i − 1)∆x.
(Thus x1 = a and xn+1 = b.)

3. The LeŌ Hand Rule summaƟon is:
n∑

i=1
f(xi)∆x.

4. The Right Hand Rule summaƟon is:
n∑

i=1
f(xi+1)∆x.

5. The Midpoint Rule summaƟon is:
n∑

i=1
f
(
xi + xi+1

2

)
∆x.

Let’s do another example.

Example 5.3.5 ApproximaƟng definite integrals with sums
Approximate

∫ 3
−2(5x + 2) dx using the Midpoint Rule and 10 equally spaced

intervals.

SÊ½çã®ÊÄ Following Key Idea 5.3.1, we have

∆x =
3− (−2)

10
= 1/2 and xi = (−2) + (1/2)(i− 1) = i/2− 5/2.

Notes:
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Figure 5.3.8: ApproximaƟng
∫ 3
−2(5x +

2) dx using the Midpoint Rule and 10
evenly spaced subintervals in Example
5.3.5.

5.3 Riemann Sums

As we are using the Midpoint Rule, we will also need xi+1 and
xi + xi+1

2
. Since

xi = i/2− 5/2, xi+1 = (i+ 1)/2− 5/2 = i/2− 2. This gives

xi + xi+1

2
=

(i/2− 5/2) + (i/2− 2)
2

=
i− 9/2

2
= i/2− 9/4.

We now construct the Riemann sum and compute its value using summaƟon
formulas. ∫ 3

−2
(5x+ 2) dx ≈

10∑
i=1

f
(
xi + xi+1

2

)
∆x

=

10∑
i=1

f(i/2− 9/4)∆x

=

10∑
i=1

(
5(i/2− 9/4) + 2

)
∆x

= ∆x
10∑
i=1

[(
5
2

)
i− 37

4

]

= ∆x

(
5
2

10∑
i=1

(i)−
10∑
i=1

(
37
4

))

=
1
2

(
5
2
· 10(11)

2
− 10 · 37

4

)
=

45
2

= 22.5

Note the graph of f(x) = 5x + 2 in Figure 5.3.8. The regions whose area is
computed by the definite integral are triangles, meaning we can find the exact
answer without summaƟon techniques. We find that the exact answer is indeed
22.5. One of the strengths of the Midpoint Rule is that oŌen each rectangle
includes area that should not be counted, but misses other area that should.
When the parƟƟon size is small, these two amounts are about equal and these
errors almost “cancel each other out.” In this example, since our funcƟon is a
line, these errors are exactly equal and they do cancel each other out, giving us
the exact answer.

Note too thatwhen the funcƟon is negaƟve, the rectangles have a “negaƟve”
height. When we compute the area of the rectangle, we use f(ci)∆x; when f is
negaƟve, the area is counted as negaƟve.

NoƟce in the previous example that while we used 10 equally spaced inter-
vals, the number “10” didn’t play a big role in the calculaƟons unƟl the very end.
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MathemaƟcians love to abstract ideas; let’s approximate the area of another re-
gion using n subintervals, wherewe do not specify a value of n unƟl the very end.

Example 5.3.6 ApproximaƟngdefinite integralswith a formula, using sums
Revisit

∫ 4
0 (4x−x2)dx yet again. Approximate this definite integral using theRight

Hand Rule with n equally spaced subintervals.

SÊ½çã®ÊÄ Using Key Idea 5.3.1, we know ∆x = 4−0
n = 4/n. We also

find xi = 0 +∆x(i − 1) = 4(i − 1)/n. The Right Hand Rule uses xi+1, which is
xi+1 = 4i/n.

We construct the Right Hand Rule Riemann sum as follows. Be sure to fol-
low each step carefully. If you get stuck, and do not understand how one line
proceeds to the next, you may skip to the result and consider how this result
is used. You should come back, though, and work through each step for full
understanding.∫ 4

0
(4x− x2) dx ≈

n∑
i=1

f(xi+1)∆x

=

n∑
i=1

f
(
4i
n

)
∆x

=

n∑
i=1

[
4
4i
n
−
(
4i
n

)2
]
∆x

=

n∑
i=1

(
16∆x
n

)
i−

n∑
i=1

(
16∆x
n2

)
i2

=

(
16∆x
n

) n∑
i=1

i−
(
16∆x
n2

) n∑
i=1

i2

=

(
16∆x
n

)
· n(n+ 1)

2
−
(
16∆x
n2

)
n(n+ 1)(2n+ 1)

6

(
recall

∆x = 4/n

)
=

32(n+ 1)
n

− 32(n+ 1)(2n+ 1)
3n2

(now simplify)

=
32
3

(
1− 1

n2

)
The result is an amazing, easy to use formula. To approximate the definite

integral with 10 equally spaced subintervals and the Right Hand Rule, set n = 10
and compute ∫ 4

0
(4x− x2) dx ≈ 32

3

(
1− 1

102

)
= 10.56.
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5.3 Riemann Sums

Recall how earlier we approximated the definite integral with 4 subintervals;
with n = 4, the formula gives 10, our answer as before.

It is noweasy to approximate the integralwith 1,000,000 subintervals! Hand-
held calculators will round off the answer a bit prematurely giving an answer of
10.66666667. (The actual answer is 10.666666666656.)

We now take an important leap. Up to this point, our mathemaƟcs has been
limited to geometry and algebra (finding areas and manipulaƟng expressions).
Now we apply calculus. For any finite n, we know that∫ 4

0
(4x− x2) dx ≈ 32

3

(
1− 1

n2

)
.

Both common sense and high–level mathemaƟcs tell us that as n gets large, the
approximaƟon gets beƩer. In fact, if we take the limit as n → ∞, we get the
exact area described by

∫ 4
0 (4x− x2) dx. That is,∫ 4

0
(4x− x2) dx = lim

n→∞

32
3

(
1− 1

n2

)
=

32
3

(1− 0)

=
32
3

= 10.6

This is a fantasƟc result. By considering n equally–spaced subintervals, we ob-
tained a formula for an approximaƟon of the definite integral that involved our
variable n. As n grows large – without bound – the error shrinks to zero and we
obtain the exact area.

This secƟon started with a fundamental calculus technique: make an ap-
proximaƟon, refine the approximaƟon to make it beƩer, then use limits in the
refining process to get an exact answer. That is precisely what we just did.

Let’s pracƟce this again.

Example 5.3.7 ApproximaƟngdefinite integralswith a formula, using sums
Find a formula that approximates

∫ 5
−1 x

3 dx using the Right Hand Rule and n
equally spaced subintervals, then take the limit as n → ∞ to find the exact
area.

SÊ½çã®ÊÄ Following Key Idea 5.3.1, we have ∆x = 5−(−1)
n = 6/n.

We have xi = (−1) + (i − 1)∆x; as the Right Hand Rule uses xi+1, we have
xi+1 = (−1) + i∆x.

The Riemann sum corresponding to the Right Hand Rule is (followed by sim-

Notes:
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Figure 5.3.9: ApproximaƟng
∫ 5
−1 x

3 dx us-
ing the Right Hand Rule and 10 evenly
spaced subintervals.

Chapter 5 IntegraƟon

plificaƟons):∫ 5

−1
x3 dx ≈

n∑
i=1

f(xi+1)∆x

=

n∑
i=1

f(−1+ i∆x)∆x

=

n∑
i=1

(−1+ i∆x)3∆x

=

n∑
i=1

(
(i∆x)3 − 3(i∆x)2 + 3i∆x− 1

)
∆x (now distribute∆x)

=

n∑
i=1

(
i3∆x4 − 3i2∆x3 + 3i∆x2 −∆x

)
(now split up summaƟon)

= ∆x4
n∑

i=1
i3 − 3∆x3

n∑
i=1

i2 + 3∆x2
n∑

i=1
i−

n∑
i=1

∆x

= ∆x4
(
n(n+ 1)

2

)2

− 3∆x3
n(n+ 1)(2n+ 1)

6
+ 3∆x2

n(n+ 1)
2

− n∆x

(use∆x = 6/n)

=
1296
n4

· n
2(n+ 1)2

4
− 3

216
n3

· n(n+ 1)(2n+ 1)
6

+ 3
36
n2

n(n+ 1)
2

− 6

(now do a sizable amount of algebra to simplify)

= 156+
378
n

+
216
n2

Once again, we have found a compact formula for approximaƟng the definite
integral with n equally spaced subintervals and the Right Hand Rule. Using 10
subintervals, we have an approximaƟon of 195.96 (these rectangles are shown
in Figure 5.3.9). Using n = 100 gives an approximaƟon of 159.802.

Now find the exact answer using a limit:∫ 5

−1
x3 dx = lim

n→∞

(
156+

378
n

+
216
n2

)
= 156.

Limits of Riemann Sums

We have used limits to evaluate given definite integrals. Will this always
work? We will show, given not–very–restricƟve condiƟons, that yes, it will al-
ways work.
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5.3 Riemann Sums

The previous two examples demonstrated how an expression such as

n∑
i=1

f(xi+1)∆x

can be rewriƩen as an expression explicitly involving n, such as 32/3(1− 1/n2).
Viewed in this manner, we can think of the summaƟon as a funcƟon of n.

An n value is given (where n is a posiƟve integer), and the sum of areas of n
equally spaced rectangles is returned, using the LeŌ Hand, Right Hand, or Mid-
point Rules.

Given a definite integral
∫ b
a f(x) dx, let:

• SL(n) =
n∑

i=1
f(xi)∆x, the sum of equally spaced rectangles formed using

the LeŌ Hand Rule,

• SR(n) =
n∑

i=1
f(xi+1)∆x, the sum of equally spaced rectangles formed us-

ing the Right Hand Rule, and

• SM(n) =

n∑
i=1

f
(
xi + xi+1

2

)
∆x, the sum of equally spaced rectangles

formed using the Midpoint Rule.

Recall the definiƟon of a limit as n → ∞: lim
n→∞

SL(n) = K if, given any ε > 0,
there exists N > 0 such that

|SL(n)− K| < ε when n ≥ N.

The following theorem states that we can use any of our three rules to find
the exact value of a definite integral

∫ b
a f(x) dx. It also goes two steps further.

The theorem states that the height of each rectangle doesn’t have to be deter-
mined following a specific rule, but could be f(ci), where ci is any point in the i th
subinterval, as discussed before Riemann Sums were defined in DefiniƟon 5.3.2.

The theorem goes on to state that the rectangles do not need to be of the
same width. Using the notaƟon of DefiniƟon 5.3.1, let ∆xi denote the length
of the i th subinterval in a parƟƟon of [a, b] and let ||∆x|| represent the length
of the largest subinterval in the parƟƟon: that is, ||∆x|| is the largest of all the
∆xi’s. If ||∆x|| is small, then [a, b] must be parƟƟoned into many subintervals,
since all subintervals must have small lengths. “Taking the limit as ||∆x|| goes
to zero” implies that the number n of subintervals in the parƟƟon is growing to
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infinity, as the largest subinterval length is becoming arbitrarily small. We then
interpret the expression

lim
||∆x||→0

n∑
i=1

f(ci)∆xi

as “the limit of the sum of the areas of rectangles, where the width of each
rectangle can be different but geƫng small, and the height of each rectangle is
not necessarily determined by a parƟcular rule.” The theorem states that this
Riemann Sum also gives the value of the definite integral of f over [a, b].

Theorem 5.3.2 Definite Integrals and the Limit of Riemann Sums

Let f be conƟnuous on the closed interval [a, b] and let SL(n), SR(n),
SM(n),∆x,∆xi and ci be defined as before. Then:

1. lim
n→∞

SL(n) = lim
n→∞

SR(n) = lim
n→∞

SM(n) = lim
n→∞

n∑
i=1

f(ci)∆x,

2. lim
n→∞

n∑
i=1

f(ci)∆x =
∫ b

a
f(x) dx, and

3. lim
∥∆x∥→0

n∑
i=1

f(ci)∆xi =
∫ b

a
f(x) dx.

We summarize what we have learned over the past few secƟons here.

• Knowing the “area under the curve” can be useful. One commonexample:
the area under a velocity curve is displacement.

• We have defined the definite integral,
∫ b
a f(x) dx, to be the signed area

under f on the interval [a, b].

• While we can approximate a definite integral manyways, we have focused
on using rectangles whose heights can be determined using the LeŌ Hand
Rule, the Right Hand Rule and the Midpoint Rule.

• Sums of rectangles of this type are called Riemann sums.

• The exact value of the definite integral can be computed using the limit of
a Riemann sum. We generally use one of the above methods as it makes
the algebra simpler.
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5.3 Riemann Sums

We first learned of derivaƟves through limits then learned rules that made
the process simpler. We knowof away to evaluate a definite integral using limits;
in the next secƟonwewill see how the Fundamental Theorem of Calculusmakes
the process simpler. The key feature of this theorem is its connecƟon between
the indefinite integral and the definite integral.
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Exercises 5.3
Terms and Concepts
1. A fundamental calculus technique is to use to re-

fine approximaƟons to get an exact answer.

2. What is the upper bound in the summaƟon
14∑
i=7

(48i− 201)?

3. This secƟon approximates definite integrals using what ge-
ometric shape?

4. T/F: A sum using the Right Hand Rule is an example of a
Riemann Sum.

Problems
In Exercises 5 – 12, write out each term of the summaƟon and
compute the sum.

5.
4∑

i=2

i2

6.
3∑

i=−1

(4i− 2)

7.
2∑

i=−2

sin(πi/2)

8.
10∑
i=1

5

9.
5∑

i=1

1
i

10.
6∑

i=1

(−1)ii

11.
4∑

i=1

(
1
i
− 1

i+ 1

)

12.
5∑

i=0

(−1)i cos(πi)

In Exercises 13 – 16, write each sum in summaƟon notaƟon.

13. 3+ 6+ 9+ 12+ 15

14. −1+ 0+ 3+ 8+ 15+ 24+ 35+ 48+ 63

15. 1
2
+

2
3
+

3
4
+

4
5

16. 1− e+ e2 − e3 + e4

In Exercises 17 – 24, evaluate the summaƟon using Theorem
5.3.1.

17.
10∑
i=1

5

18.
25∑
i=1

i

19.
10∑
i=1

(3i2 − 2i)

20.
15∑
i=1

(2i3 − 10)

21.
10∑
i=1

(−4i3 + 10i2 − 7i+ 11)

22.
10∑
i=1

(i3 − 3i2 + 2i+ 7)

23. 1+ 2+ 3+ . . .+ 99+ 100

24. 1+ 4+ 9+ . . .+ 361+ 400

Theorem 5.3.1 states
n∑

i=1

ai =
k∑

i=1

ai +
n∑

i=k+1

ai , so

n∑
i=k+1

ai =
n∑

i=1

ai −
k∑

i=1

ai .

Use this fact, alongwith other parts of Theorem5.3.1, to eval-
uate the summaƟons given in Exercises 25 – 28.

25.
20∑

i=11

i

26.
25∑

i=16

i3

27.
12∑
i=7

4

28.
10∑
i=5

4i3
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In Exercises 29 – 34, a definite integral∫ b

a
f(x) dx is given.

(a) Graph f(x) on [a, b].
(b) Add to the sketch rectangles using the provided rule.

(c) Approximate
∫ b

a
f(x) dx by summing the areas of the

rectangles.

29.
∫ 3

−3
x2 dx, with 6 rectangles using the LeŌ Hand Rule.

30.
∫ 2

0
(5− x2) dx, with 4 rectangles using the Midpoint Rule.

31.
∫ π

0
sin x dx, with 6 rectangles using the Right Hand Rule.

32.
∫ 3

0
2x dx, with 5 rectangles using the LeŌ Hand Rule.

33.
∫ 2

1
ln x dx, with 3 rectangles using the Midpoint Rule.

34.
∫ 9

1

1
x
dx, with 4 rectangles using the Right Hand Rule.

In Exercises 35 – 40, a definite integral∫ b

a
f(x) dx is given. As demonstrated in Examples 5.3.6

and 5.3.7, do the following.

(a) Find a formula to approximate
∫ b

a
f(x) dx using n

subintervals and the provided rule.
(b) Evaluate the formula using n = 10, 100 and 1, 000.
(c) Find the limit of the formula, as n → ∞, to find the

exact value of
∫ b

a
f(x) dx.

35.
∫ 1

0
x3 dx, using the Right Hand Rule.

36.
∫ 1

−1
3x2 dx, using the LeŌ Hand Rule.

37.
∫ 3

−1
(3x− 1) dx, using the Midpoint Rule.

38.
∫ 4

1
(2x2 − 3) dx, using the LeŌ Hand Rule.

39.
∫ 10

−10
(5− x) dx, using the Right Hand Rule.

40.
∫ 1

0
(x3 − x2) dx, using the Right Hand Rule.

Review
In Exercises 41 – 46, find an anƟderivaƟve of the given func-
Ɵon.

41. f(x) = 5 sec2 x

42. f(x) = 7
x

43. g(t) = 4t5 − 5t3 + 8

44. g(t) = 5 · 8t

45. g(t) = cos t+ sin t

46. f(x) = 1√
x
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Figure 5.4.1: The area of the shaded re-
gion is F(x) =

∫ x
a f(t) dt.

Chapter 5 IntegraƟon

5.4 The Fundamental Theorem of Calculus

Let f(t)be a conƟnuous funcƟondefinedon [a, b]. The definite integral
∫ b
a f(x)dx

is the “area under f ” on [a, b]. We can turn this concept into a funcƟon by leƫng
the upper (or lower) bound vary.

Let F(x) =
∫ x
a f(t) dt. It computes the area under f on [a, x] as illustrated

in Figure 5.4.1. We can study this funcƟon using our knowledge of the definite
integral. For instance, F(a) = 0 since

∫ a
a f(t) dt = 0.

We can also apply calculus ideas to F(x); in parƟcular, we can compute its
derivaƟve. While thismay seem like an innocuous thing to do, it has far–reaching
implicaƟons, as demonstrated by the fact that the result is given as an important
theorem.

Theorem 5.4.1 The Fundamental Theorem of Calculus, Part 1

Let f be conƟnuous on [a, b] and let F(x) =
∫ x
a f(t) dt. Then F is a differ-

enƟable funcƟon on (a, b), and

F ′(x) = f(x).

IniƟally this seems simple, as demonstrated in the following example.

Example 5.4.1 Using the Fundamental Theorem of Calculus, Part 1
Let F(x) =

∫ x

−5
(t2 + sin t) dt. What is F ′(x)?

SÊ½çã®ÊÄ Using the Fundamental Theoremof Calculus, wehave F ′(x) =
x2 + sin x.

This simple example reveals something incredible: F(x) is an anƟderivaƟve
of x2 + sin x! Therefore, F(x) = 1

3x
3 − cos x + C for some value of C. (We can

find C, but generally we do not care. We know that F(−5) = 0, which allows us
to compute C. In this case, C = cos(−5) + 125

3 .)

We have done more than found a complicated way of compuƟng an an-
ƟderivaƟve. Consider a funcƟon f defined on an open interval containing a, b
and c. Suppose we want to compute

∫ b
a f(t) dt. First, let F(x) =

∫ x
c f(t) dt. Using

Notes:
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5.4 The Fundamental Theorem of Calculus

the properƟes of the definite integral found in Theorem 5.2.1, we know∫ b

a
f(t) dt =

∫ c

a
f(t) dt+

∫ b

c
f(t) dt

= −
∫ a

c
f(t) dt+

∫ b

c
f(t) dt

= −F(a) + F(b)
= F(b)− F(a).

We now see how indefinite integrals and definite integrals are related: we can
evaluate a definite integral using anƟderivaƟves! This is the second part of the
Fundamental Theorem of Calculus.

Theorem 5.4.2 The Fundamental Theorem of Calculus, Part 2

Let f be conƟnuous on [a, b] and let F be any anƟderivaƟve of f. Then∫ b

a
f(x) dx = F(b)− F(a).

Example 5.4.2 Using the Fundamental Theorem of Calculus, Part 2
We spent a great deal of Ɵme in the previous secƟon studying

∫ 4
0 (4x − x2) dx.

Using the Fundamental Theorem of Calculus, evaluate this definite integral.

SÊ½çã®ÊÄ We need an anƟderivaƟve of f(x) = 4x− x2. All anƟderiva-
Ɵves of f have the form F(x) = 2x2 − 1

3x
3 + C; for simplicity, choose C = 0.

The Fundamental Theorem of Calculus states∫ 4

0
(4x− x2) dx = F(4)− F(0) =

(
2(4)2 − 1

3
43
)
−
(
0− 0

)
= 32− 64

3
= 32/3.

This is the same answer we obtained using limits in the previous secƟon, just
with much less work.

NotaƟon: A special notaƟon is oŌen used in the process of evaluaƟng definite
integrals using the Fundamental Theorem of Calculus. Instead of explicitly writ-
ing F(b)− F(a), the notaƟon F(x)

∣∣∣b
a
is used. Thus the soluƟon to Example 5.4.2

would be wriƩen as:∫ 4

0
(4x− x2) dx =

(
2x2 − 1

3
x3
)∣∣∣∣4

0
=
(
2(4)2 − 1

3
43
)
−
(
0− 0

)
= 32/3.
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Chapter 5 IntegraƟon

The Constant C: Any anƟderivaƟve F(x) can be chosen when using the Funda-
mental Theorem of Calculus to evaluate a definite integral, meaning any value
of C can be picked. The constant always cancels out of the expression when
evaluaƟng F(b) − F(a), so it does not maƩer what value is picked. This being
the case, we might as well let C = 0.

Example 5.4.3 Using the Fundamental Theorem of Calculus, Part 2
Evaluate the following definite integrals.

1.
∫ 2

−2
x3 dx 2.

∫ π

0
sin x dx 3.

∫ 5

0
et dt 4.

∫ 9

4

√
u du 5.

∫ 5

1
2 dx

SÊ½çã®ÊÄ

1.
∫ 2

−2
x3 dx =

1
4
x4
∣∣∣∣2
−2

=

(
1
4
24
)
−
(
1
4
(−2)4

)
= 0.

2.
∫ π

0
sin x dx = − cos x

∣∣∣π
0
= − cos π −

(
− cos 0

)
= 1+ 1 = 2.

(This is interesƟng; it says that the area under one “hump” of a sine curve
is 2.)

3.
∫ 5

0
et dt = et

∣∣∣5
0
= e5 − e0 = e5 − 1 ≈ 147.41.

4.
∫ 9

4

√
u du =

∫ 9

4
u

1
2 du =

2
3
u

3
2

∣∣∣∣9
4
=

2
3

(
9

3
2 − 4

3
2

)
=

2
3
(
27− 8

)
=

38
3
.

5.
∫ 5

1
2 dx = 2x

∣∣∣5
1
= 2(5)− 2 = 2(5− 1) = 8.

This integral is interesƟng; the integrand is a constant funcƟon, hence we
are finding the area of a rectangle with width (5 − 1) = 4 and height 2.
NoƟce how the evaluaƟon of the definite integral led to 2(4) = 8.

In general, if c is a constant, then
∫ b
a c dx = c(b− a).

Understanding MoƟon with the Fundamental Theorem of
Calculus

We established, starƟng with Key Idea 2.2.1, that the derivaƟve of a posiƟon
funcƟon is a velocity funcƟon, and the derivaƟve of a velocity funcƟon is an ac-
celeraƟon funcƟon. Now consider definite integrals of velocity and acceleraƟon

funcƟons. Specifically, if v(t) is a velocity funcƟon, what does
∫ b

a
v(t) dtmean?
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5.4 The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus states that∫ b

a
v(t) dt = V(b)− V(a),

where V(t) is any anƟderivaƟve of v(t). Since v(t) is a velocity funcƟon, V(t)
must be a posiƟon funcƟon, and V(b)− V(a)measures a change in posiƟon, or
displacement.

Example 5.4.4 Finding displacement
A ball is thrown straight up with velocity given by v(t) = −32t + 20Ō/s, where

t is measured in seconds. Find, and interpret,
∫ 1

0
v(t) dt.

SÊ½çã®ÊÄ Using the Fundamental Theorem of Calculus, we have∫ 1

0
v(t) dt =

∫ 1

0
(−32t+ 20) dt

= −16t2 + 20t
∣∣∣1
0

= 4.

Thus if a ball is thrown straight up into the air with velocity v(t) = −32t + 20,
the height of the ball, 1 second later, will be 4 feet above the iniƟal height. (Note
that the ball has traveled much farther. It has gone up to its peak and is falling
down, but the difference between its height at t = 0 and t = 1 is 4Ō.)

IntegraƟng a rate of change funcƟon gives total change. Velocity is the rate
of posiƟon change; integraƟng velocity gives the total change of posiƟon, i.e.,
displacement.

IntegraƟng a speed funcƟon gives a similar, though different, result. Speed
is also the rate of posiƟon change, but does not account for direcƟon. So inte-
graƟng a speed funcƟon gives total change of posiƟon, without the possibility
of “negaƟve posiƟon change.” Hence the integral of a speed funcƟon gives dis-
tance traveled.

As acceleraƟon is the rate of velocity change, integraƟng an acceleraƟon
funcƟon gives total change in velocity. We do not have a simple term for this
analogous to displacement. If a(t) = 5miles/h2 and t is measured in hours,
then ∫ 3

0
a(t) dt = 15

means the velocity has increased by 15m/h from t = 0 to t = 3.

Notes:
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Chapter 5 IntegraƟon

The Fundamental Theorem of Calculus and the Chain Rule

Part 1 of the Fundamental Theoremof Calculus (FTC) states that given F(x) =∫ x

a
f(t) dt, F ′(x) = f(x). Using other notaƟon,

d
dx
(
F(x)

)
= f(x). While we have

just pracƟced evaluaƟng definite integrals, someƟmes finding anƟderivaƟves is
impossible and we need to rely on other techniques to approximate the value
of a definite integral. FuncƟons wriƩen as F(x) =

∫ x
a f(t) dt are useful in such

situaƟons.
It may be of further use to compose such a funcƟon with another. As an

example, we may compose F(x) with g(x) to get

F
(
g(x)

)
=

∫ g(x)

a
f(t) dt.

What is the derivaƟve of such a funcƟon? The Chain Rule can be employed to
state

d
dx

(
F
(
g(x)

))
= F ′

(
g(x)

)
g ′(x) = f

(
g(x)

)
g ′(x).

An example will help us understand this.

Example 5.4.5 The FTC, Part 1, and the Chain Rule

Find the derivaƟve of F(x) =
∫ x2

2
ln t dt.

SÊ½çã®ÊÄ We can view F(x) as being the funcƟon G(x) =

∫ x

2
ln t dt

composed with g(x) = x2; that is, F(x) = G
(
g(x)

)
. The Fundamental Theorem

of Calculus states that G ′(x) = ln x. The Chain Rule gives us

F ′(x) = G ′(g(x))g ′(x)
= ln(g(x))g ′(x)
= ln(x2)2x
= 2x ln x2

Normally, the steps defining G(x) and g(x) are skipped.

PracƟce this once more.

Example 5.4.6 The FTC, Part 1, and the Chain Rule

Find the derivaƟve of F(x) =
∫ 5

cos x
t3 dt.

Notes:
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Figure 5.4.2: Finding the area bounded by
two funcƟons on an interval; it is found
by subtracƟng the area under g from the
area under f.
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Figure 5.4.3: Sketching the region en-
closed by y = x2 + x− 5 and y = 3x− 2
in Example 5.4.7.

5.4 The Fundamental Theorem of Calculus

SÊ½çã®ÊÄ Note that F(x) = −
∫ cos x

5
t3 dt. Viewed this way, the deriva-

Ɵve of F is straighƞorward:

F ′(x) = sin x cos3 x.

Area Between Curves

Consider conƟnuous funcƟons f(x) and g(x) defined on [a, b], where f(x) ≥
g(x) for all x in [a, b], as demonstrated in Figure 5.4.2. What is the area of the
shaded region bounded by the two curves over [a, b]?

The area can be found by recognizing that this area is “the area under f −
the area under g.” Using mathemaƟcal notaƟon, the area is

∫ b

a
f(x) dx−

∫ b

a
g(x) dx.

ProperƟes of the definite integral allow us to simplify this expression to

∫ b

a

(
f(x)− g(x)

)
dx.

Theorem 5.4.3 Area Between Curves

Let f(x) and g(x) be conƟnuous funcƟons defined on [a, b]where f(x) ≥
g(x) for all x in [a, b]. The area of the region bounded by the curves
y = f(x), y = g(x) and the lines x = a and x = b is∫ b

a

(
f(x)− g(x)

)
dx.

Example 5.4.7 Finding area between curves
Find the area of the region enclosed by y = x2 + x− 5 and y = 3x− 2.

SÊ½çã®ÊÄ It will help to sketch these two funcƟons, as done in Figure
5.4.3. The region whose area we seek is completely bounded by these two
funcƟons; they seem to intersect at x = −1 and x = 3. To check, set x2+x−5 =

Notes:
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Figure 5.4.5: Differently sized rectan-
gles give upper and lower bounds on∫ 4
1 f(x) dx; the last rectangle matches the
area exactly.

Chapter 5 IntegraƟon

3x− 2 and solve for x:

x2 + x− 5 = 3x− 2
(x2 + x− 5)− (3x− 2) = 0

x2 − 2x− 3 = 0
(x− 3)(x+ 1) = 0

x = −1, 3.

Following Theorem 5.4.3, the area is

∫ 3

−1

(
3x− 2− (x2 + x− 5)

)
dx =

∫ 3

−1
(−x2 + 2x+ 3) dx

=

(
−1
3
x3 + x2 + 3x

)∣∣∣∣3
−1

= −1
3
(27) + 9+ 9−

(
1
3
+ 1− 3

)
= 10

2
3
= 10.6

The Mean Value Theorem and Average Value

Consider the graph of a funcƟon f in Figure 5.4.4 and the area defined by∫ 4
1 f(x) dx. Three rectangles are drawn in Figure 5.4.5; in (a), the height of the
rectangle is greater than f on [1, 4], hence the area of this rectangle is is greater
than

∫ 4
0 f(x) dx.

In (b), the height of the rectangle is smaller than f on [1, 4], hence the area
of this rectangle is less than

∫ 4
1 f(x) dx.

Finally, in (c) the height of the rectangle is such that the area of the rectangle
is exactly that of

∫ 4
0 f(x) dx. Since rectangles that are “too big”, as in (a), and

rectangles that are “too liƩle,” as in (b), give areas greater/lesser than
∫ 4
1 f(x) dx,

it makes sense that there is a rectangle, whose top intersects f(x) somewhere
on [1, 4], whose area is exactly that of the definite integral.

We state this idea formally in a theorem.

Notes:
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f(x) and the rectangle guaranteed by the
Mean Value Theorem. In (b), y = f(x) is
shiŌed down by f(c); the resulƟng “area
under the curve” is 0.

5.4 The Fundamental Theorem of Calculus

Theorem 5.4.4 The Mean Value Theorem of IntegraƟon

Let f be conƟnuous on [a, b]. There exists a value c in [a, b] such that∫ b

a
f(x) dx = f(c)(b− a).

This is an existenƟal statement; c exists, but we do not provide a method of
finding it. Theorem 5.4.4 is directly connected to the Mean Value Theorem of
DifferenƟaƟon, given as Theorem 3.2.1; we leave it to the reader to see how.

We demonstrate the principles involved in this version of the Mean Value
Theorem in the following example.

Example 5.4.8 Using the Mean Value Theorem
Consider

∫ π

0 sin x dx. Find a value c guaranteed by the Mean Value Theorem.

SÊ½çã®ÊÄ We first need to evaluate
∫ π

0 sin x dx. (This was previously
done in Example 5.4.3.) ∫ π

0
sin x dx = − cos x

∣∣∣π
0
= 2.

Thus we seek a value c in [0, π] such that π sin c = 2.

π sin c = 2 ⇒ sin c = 2/π ⇒ c = arcsin(2/π) ≈ 0.69.

In Figure 5.4.6 sin x is sketched along with a rectangle with height sin(0.69).
The area of the rectangle is the same as the area under sin x on [0, π].

Let f be a funcƟon on [a, b]with c such that f(c)(b−a) =
∫ b
a f(x) dx. Consider∫ b

a

(
f(x)− f(c)

)
dx:∫ b

a

(
f(x)− f(c)

)
dx =

∫ b

a
f(x)−

∫ b

a
f(c) dx

= f(c)(b− a)− f(c)(b− a)
= 0.

When f(x) is shiŌed by −f(c), the amount of area under f above the x–axis on
[a, b] is the same as the amount of area below the x–axis above f; see Figure
5.4.7 for an illustraƟon of this. In this sense, we can say that f(c) is the average
value of f on [a, b].

Notes:
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Chapter 5 IntegraƟon

The value f(c) is the average value in another sense. First, recognize that the
Mean Value Theorem can be rewriƩen as

f(c) =
1

b− a

∫ b

a
f(x) dx,

for some value of c in [a, b]. Next, parƟƟon the interval [a, b] into n equally
spaced subintervals, a = x1 < x2 < . . . < xn+1 = b and choose any ci in
[xi, xi+1]. The average of the numbers f(c1), f(c2), …, f(cn) is:

1
n

(
f(c1) + f(c2) + . . .+ f(cn)

)
=

1
n

n∑
i=1

f(ci).

MulƟply this last expression by 1 in the form of (b−a)
(b−a) :

1
n

n∑
i=1

f(ci) =
n∑

i=1
f(ci)

1
n

=

n∑
i=1

f(ci)
1
n
(b− a)
(b− a)

=
1

b− a

n∑
i=1

f(ci)
b− a
n

=
1

b− a

n∑
i=1

f(ci)∆x (where∆x = (b − a)/n)

Now take the limit as n → ∞:

lim
n→∞

1
b− a

n∑
i=1

f(ci)∆x =
1

b− a

∫ b

a
f(x) dx = f(c).

This tells us this: when we evaluate f at n (somewhat) equally spaced points in
[a, b], the average value of these samples is f(c) as n → ∞.

This leads us to a definiƟon.

DefiniƟon 5.4.1 The Average Value of f on [a, b]

Let f be conƟnuous on [a, b]. The average value of f on [a, b] is f(c),
where c is a value in [a, b] guaranteed by the Mean Value Theorem. I.e.,

Average Value of f on [a, b] =
1

b− a

∫ b

a
f(x) dx.
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5.4 The Fundamental Theorem of Calculus

An applicaƟon of this definiƟon is given in the following example.

Example 5.4.9 Finding the average value of a funcƟon
An object moves back and forth along a straight line with a velocity given by
v(t) = (t − 1)2 on [0, 3], where t is measured in seconds and v(t) is measured
in Ō/s.

What is the average velocity of the object?

SÊ½çã®ÊÄ By our definiƟon, the average velocity is:

1
3− 0

∫ 3

0
(t− 1)2 dt =

1
3

∫ 3

0

(
t2 − 2t+ 1

)
dt =

1
3

(
1
3
t3 − t2 + t

)∣∣∣∣3
0
= 1 Ō/s.

We can understand the above example through a simpler situaƟon. Suppose
you drove 100 miles in 2 hours. What was your average speed? The answer is
simple: displacement/Ɵme = 100 miles/2 hours = 50 mph.

What was the displacement of the object in Example 5.4.9? We calculate
this by integraƟng its velocity funcƟon:

∫ 3
0 (t − 1)2 dt = 3 Ō. Its final posiƟon

was 3 feet from its iniƟal posiƟon aŌer 3 seconds: its average velocity was 1 Ō/s.

This secƟon has laid the groundwork for a lot of great mathemaƟcs to fol-
low. The most important lesson is this: definite integrals can be evaluated using
anƟderivaƟves. Since the previous secƟon established that definite integrals are
the limit of Riemann sums, we can later create Riemann sums to approximate
values other than “area under the curve,” convert the sums to definite integrals,
then evaluate these using the Fundamental Theorem of Calculus. This will allow
us to compute the work done by a variable force, the volume of certain solids,
the arc length of curves, and more.

The downside is this: generally speaking, compuƟng anƟderivaƟves is much
more difficult than compuƟng derivaƟves. The next chapter is devoted to tech-
niques of finding anƟderivaƟves so that a wide variety of definite integrals can
be evaluated. Before that, the next secƟon explores techniques of approximat-
ing the value of definite integrals beyond using the LeŌ Hand, Right Hand and
Midpoint Rules. These techniques are invaluable when anƟderivaƟves cannot
be computed, or when the actual funcƟon f is unknown and all we know is the
value of f at certain x-values.

Notes:
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Exercises 5.4
Terms and Concepts
1. How are definite and indefinite integrals related?

2. What constant of integraƟon is most commonly used when
evaluaƟng definite integrals?

3. T/F: If f is a conƟnuous funcƟon, then F(x) =
∫ x

a
f(t) dt is

also a conƟnuous funcƟon.

4. The definite integral can be used to find “the area under a
curve.” Give two other uses for definite integrals.

Problems
In Exercises 5 – 28, evaluate the definite integral.

5.
∫ 3

1
(3x2 − 2x+ 1) dx

6.
∫ 4

0
(x− 1)2 dx

7.
∫ 1

−1
(x3 − x5) dx

8.
∫ π

π/2
cos x dx

9.
∫ π/4

0
sec2 x dx

10.
∫ e

1

1
x
dx

11.
∫ 1

−1
5x dx

12.
∫ −1

−2
(4− 2x3) dx

13.
∫ π

0
(2 cos x− 2 sin x) dx

14.
∫ 3

1
ex dx

15.
∫ 4

0

√
t dt

16.
∫ 25

9

1√
t
dt

17.
∫ 8

1

3√x dx

18.
∫ 2

1

1
x
dx

19.
∫ 2

1

1
x2

dx

20.
∫ 2

1

1
x3

dx

21.
∫ 1

0
x dx

22.
∫ 1

0
x2 dx

23.
∫ 1

0
x3 dx

24.
∫ 1

0
x100 dx

25.
∫ 4

−4
dx

26.
∫ −5

−10
3 dx

27.
∫ 2

−2
0 dx

28.
∫ π/3

π/6
csc x cot x dx

29. Explain why:

(a)
∫ 1

−1
xn dx = 0, when n is a posiƟve, odd integer, and

(b)
∫ 1

−1
xn dx = 2

∫ 1

0
xn dx when n is a posiƟve, even

integer.

30. Explain why
∫ a+2π

a
sin t dt = 0 for all values of a.
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In Exercises 31 – 34, find a value c guaranteed by the Mean
Value Theorem.

31.
∫ 2

0
x2 dx

32.
∫ 2

−2
x2 dx

33.
∫ 1

0
ex dx

34.
∫ 16

0

√
x dx

In Exercises 35 – 40, find the average value of the funcƟon on
the given interval.

35. f(x) = sin x on [0, π/2]

36. y = sin x on [0, π]

37. y = x on [0, 4]

38. y = x2 on [0, 4]

39. y = x3 on [0, 4]

40. g(t) = 1/t on [1, e]

In Exercises 41 – 46, a velocity funcƟon of an object moving
along a straight line is given. Find the displacement of the
object over the given Ɵme interval.

41. v(t) = −32t+ 20Ō/s on [0, 5]

42. v(t) = −32t+ 200Ō/s on [0, 10]

43. v(t) = 10Ō/s on [0, 3].

44. v(t) = 2tmph on [−1, 1]

45. v(t) = cos t Ō/s on [0, 3π/2]

46. v(t) = 4√t Ō/s on [0, 16]

In Exercises 47 – 50, an acceleraƟon funcƟon of an object
moving along a straight line is given. Find the change of the
object’s velocity over the given Ɵme interval.

47. a(t) = −32Ō/s2 on [0, 2]

48. a(t) = 10Ō/s2 on [0, 5]

49. a(t) = t Ō/s2 on [0, 2]

50. a(t) = cos t Ō/s2 on [0, π]

In Exercises 51 – 54, sketch the given funcƟons and find the
area of the enclosed region.

51. y = 2x, y = 5x, and x = 3.

52. y = −x+ 1, y = 3x+ 6, x = 2 and x = −1.

53. y = x2 − 2x+ 5, y = 5x− 5.

54. y = 2x2 + 2x− 5, y = x2 + 3x+ 7.

In Exercises 55 – 58, find F ′(x).

55. F(x) =
∫ x3+x

2

1
t
dt

56. F(x) =
∫ 0

x3
t3 dt

57. F(x) =
∫ x2

x
(t+ 2) dt

58. F(x) =
∫ ex

ln x
sin t dt
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Figure 5.5.1: Graphically represenƟng
three definite integrals that cannot be
evaluated using anƟderivaƟves.

Chapter 5 IntegraƟon

5.5 Numerical IntegraƟon
The Fundamental Theorem of Calculus gives a concrete technique for finding
the exact value of a definite integral. That technique is based on compuƟng an-
ƟderivaƟves. Despite the power of this theorem, there are sƟll situaƟons where
we must approximate the value of the definite integral instead of finding its ex-
act value. The first situaƟon we explore is where we cannot compute the an-
ƟderivaƟve of the integrand. The second case is when we actually do not know
the funcƟon in the integrand, but only its valuewhen evaluated at certain points.

An elementary funcƟon is any funcƟon that is a combinaƟon of polynomial,
nth root, raƟonal, exponenƟal, logarithmic and trigonometric funcƟons. We can
compute the derivaƟve of any elementary funcƟon, but there aremany elemen-
tary funcƟons of which we cannot compute an anƟderivaƟve. For example, the
following funcƟons do not have anƟderivaƟves that we can express with ele-
mentary funcƟons:

e−x2 , sin(x3) and
sin x
x

.

The simplest way to refer to the anƟderivaƟves of e−x2 is to simply write∫
e−x2 dx.
This secƟon outlines three common methods of approximaƟng the value of

definite integrals. We describe each as a systemaƟc method of approximaƟng
area under a curve. By approximaƟng this area accurately, we find an accurate
approximaƟon of the corresponding definite integral.

We will apply the methods we learn in this secƟon to the following definite
integrals: ∫ 1

0
e−x2 dx,

∫ π
2

− π
4

sin(x3) dx, and
∫ 4π

0.5

sin(x)
x

dx,

as pictured in Figure 5.5.1.

The LeŌ and Right Hand Rule Methods

In SecƟon 5.3 we addressed the problem of evaluaƟng definite integrals by
approximaƟng the area under the curve using rectangles. We revisit those ideas
here before introducing other methods of approximaƟng definite integrals.

We start with a review of notaƟon. Let f be a conƟnuous funcƟon on the

interval [a, b]. We wish to approximate
∫ b

a
f(x) dx. We parƟƟon [a, b] into n

equally spaced subintervals, each of length∆x =
b− a
n

. The endpoints of these
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Figure 5.5.2: ApproximaƟng
∫ 1
0 e−x2 dx in

Example 5.5.1.

5.5 Numerical IntegraƟon

subintervals are labeled as

x1 = a, x2 = a+∆x, x3 = a+ 2∆x, . . . , xi = a+ (i− 1)∆x, . . . , xn+1 = b.

Key Idea 5.3.1 states that to use the LeŌ Hand Rule we use the summaƟon
n∑

i=1
f(xi)∆x and to use the Right Hand Rule we use

n∑
i=1

f(xi+1)∆x. We review

the use of these rules in the context of examples.

Example 5.5.1 ApproximaƟng definite integrals with rectangles

Approximate
∫ 1

0
e−x2 dx using the LeŌ and Right Hand Rules with 5 equally

spaced subintervals.

SÊ½çã®ÊÄ We begin by parƟƟoning the interval [0, 1] into 5 equally
spaced intervals. We have∆x = 1−0

5 = 1/5 = 0.2, so

x1 = 0, x2 = 0.2, x3 = 0.4, x4 = 0.6, x5 = 0.8, and x6 = 1.

Using the LeŌ Hand Rule, we have:

n∑
i=1

f(xi)∆x =
(
f(x1) + f(x2) + f(x3) + f(x4) + f(x5)

)
∆x

=
(
f(0) + f(0.2) + f(0.4) + f(0.6) + f(0.8)

)
∆x

≈
(
1+ 0.961+ 0.852+ 0.698+ 0.527)(0.2)

≈ 0.808.

Using the Right Hand Rule, we have:

n∑
i=1

f(xi+1)∆x =
(
f(x2) + f(x3) + f(x4) + f(x5) + f(x6)

)
∆x

=
(
f(0.2) + f(0.4) + f(0.6) + f(0.8) + f(1)

)
∆x

≈
(
0.961+ 0.852+ 0.698+ 0.527+ 0.368)(0.2)

≈ 0.681.

Figure 5.5.2 shows the rectangles used in each method to approximate the
definite integral. These graphs show that in this parƟcular case, the LeŌ Hand
Rule is an over approximaƟon and the Right Hand Rule is an under approxima-
Ɵon. To get a beƩer approximaƟon, we could use more rectangles, as we did in
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xi Exact Approx. sin(x3i )
x1 −π/4 −0.785 −0.466
x2 −7π/40 −0.550 −0.165
x3 −π/10 −0.314 −0.031
x4 −π/40 −0.0785 0
x5 π/20 0.157 0.004
x6 π/8 0.393 0.061
x7 π/5 0.628 0.246
x8 11π/40 0.864 0.601
x9 7π/20 1.10 0.971
x10 17π/40 1.34 0.690
x11 π/2 1.57 −0.670

Figure 5.5.3: Table of values used to
approximate

∫ π
2

− π
4
sin(x3) dx in Example

5.5.2.
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Figure 5.5.4: ApproximaƟng∫ π
2

− π
4
sin(x3) dx in Example 5.5.2.
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SecƟon 5.3. We could also average the LeŌ and Right Hand Rule results together,
giving

0.808+ 0.681
2

= 0.7445.

The actual answer, accurate to 4 places aŌer the decimal, is 0.7468, showing
our average is a good approximaƟon.

Example 5.5.2 ApproximaƟng definite integrals with rectangles

Approximate
∫ π

2

− π
4

sin(x3) dx using the LeŌ and Right Hand Rules with 10 equally

spaced subintervals.

SÊ½çã®ÊÄ We begin by finding∆x:

b− a
n

=
π/2− (−π/4)

10
=

3π
40

≈ 0.236.

It is useful to write out the endpoints of the subintervals in a table; in Figure
5.5.3, we give the exact values of the endpoints, their decimal approximaƟons,
and decimal approximaƟons of sin(x3) evaluated at these points.

Once this table is created, it is straighƞorward to approximate the definite
integral using the LeŌ and Right Hand Rules. (Note: the table itself is easy to
create, especially with a standard spreadsheet program on a computer. The last
two columns are all that are needed.) The LeŌHand Rule sums the first 10 values
of sin(x3i ) and mulƟplies the sum by ∆x; the Right Hand Rule sums the last 10
values of sin(x3i ) and mulƟplies by∆x. Therefore we have:

LeŌ Hand Rule:
∫ π

2

− π
4

sin(x3) dx ≈ (1.91)(0.236) = 0.451.

Right Hand Rule:
∫ π

2

− π
4

sin(x3) dx ≈ (1.71)(0.236) = 0.404.

Average of the LeŌ and Right Hand Rules: 0.4275.
The actual answer, accurate to 3 places aŌer the decimal, is 0.460. Our ap-

proximaƟons were once again fairly good. The rectangles used in each approx-
imaƟon are shown in Figure 5.5.4. It is clear from the graphs that using more
rectangles (and hence, narrower rectangles) should result in a more accurate
approximaƟon.

The Trapezoidal Rule

In Example 5.5.1 we approximated the value of
∫ 1

0
e−x2 dxwith 5 rectangles

of equal width. Figure 5.5.2 shows the rectangles used in the LeŌ and Right
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Figure 5.5.5: ApproximaƟng
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Figure 5.5.6: The area of a trapezoid.

xi e−x2i

0 1
0.2 0.961
0.4 0.852
0.6 0.698
0.8 0.527
1 0.368

Figure 5.5.7: A table of values of e−x2 .

5.5 Numerical IntegraƟon

Hand Rules. These graphs clearly show that rectangles do not match the shape
of the graph all that well, and that accurate approximaƟons will only come by
using lots of rectangles.

Instead of using rectangles to approximate the area, we can instead use
trapezoids. In Figure 5.5.5, we show the region under f(x) = e−x2 on [0, 1]
approximated with 5 trapezoids of equal width; the top “corners” of each trape-
zoid lies on the graph of f(x). It is clear from this figure that these trapezoids
more accurately approximate the area under f and hence should give a beƩer
approximaƟon of

∫ 1
0 e−x2 dx. (In fact, these trapezoids seem to give a great ap-

proximaƟon of the area!)
The formula for the area of a trapezoid is given in Figure 5.5.6. We approxi-

mate
∫ 1
0 e−x2 dx with these trapezoids in the following example.

Example 5.5.3 ApproximaƟng definite integrals using trapezoids

Use 5 trapezoids of equal width to approximate
∫ 1

0
e−x2 dx.

SÊ½çã®ÊÄ To compute the areas of the 5 trapezoids in Figure 5.5.5, it
will again be useful to create a table of values as shown in Figure 5.5.7.

The leŌmost trapezoid has legs of length 1 and 0.961 and a height of 0.2.
Thus, by our formula, the area of the leŌmost trapezoid is:

1+ 0.961
2

(0.2) = 0.1961.

Moving right, the next trapezoid has legs of length 0.961 and 0.852 and a height
of 0.2. Thus its area is:

0.961+ 0.852
2

(0.2) = 0.1813.

The sum of the areas of all 5 trapezoids is:

1+ 0.961
2

(0.2) +
0.961+ 0.852

2
(0.2) +

0.852+ 0.698
2

(0.2)+

0.698+ 0.527
2

(0.2) +
0.527+ 0.368

2
(0.2) = 0.7445.

We approximate
∫ 1

0
e−x2 dx ≈ 0.7445.

There are many things to observe in this example. Note how each term in
the final summaƟonwasmulƟplied by both 1/2 and by∆x = 0.2. We can factor
these coefficients out, leaving a more concise summaƟon as:
1
2
(0.2)

[
(1+0.961)+(0.961+0.852)+(0.852+0.698)+(0.698+0.527)+(0.527+0.368)

]
.
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Now noƟce that all numbers except for the first and the last are added twice.
Therefore we can write the summaƟon even more concisely as

0.2
2

[
1+ 2(0.961+ 0.852+ 0.698+ 0.527) + 0.368

]
.

This is the heart of the Trapezoidal Rule, wherein a definite integral
∫ b

a
f(x)dx

is approximated by using trapezoids of equal widths to approximate the corre-
sponding area under f. Using n equally spaced subintervals with endpoints x1,
x2, . . ., xn+1, we again have∆x =

b− a
n

. Thus:

∫ b

a
f(x) dx ≈

n∑
i=1

f(xi) + f(xi+1)

2
∆x

=
∆x
2

n∑
i=1

(
f(xi) + f(xi+1)

)
=

∆x
2

[
f(x1) + 2

n∑
i=2

f(xi) + f(xn+1)
]
.

Example 5.5.4 Using the Trapezoidal Rule

Revisit Example 5.5.2 and approximate
∫ π

2

− π
4

sin(x3) dx using the Trapezoidal Rule

and 10 equally spaced subintervals.

SÊ½çã®ÊÄ Werefer back to Figure 5.5.3 for the table of values of sin(x3).
Recall that∆x = 3π/40 ≈ 0.236. Thus we have:∫ π

2

− π
4

sin(x3) dx ≈ 0.236
2

[
− 0.466+ 2

(
− 0.165+ (−0.031) + . . .+ 0.69

)
+ (−0.67)

]
= 0.4275.

NoƟce how “quickly” the Trapezoidal Rule can be implemented once the ta-
ble of values is created. This is true for all the methods explored in this secƟon;
the real work is creaƟng a table of xi and f(xi) values. Once this is completed, ap-
proximaƟng the definite integral is not difficult. Again, using technology is wise.
Spreadsheets can make quick work of these computaƟons and make using lots
of subintervals easy.

Also noƟce the approximaƟons the Trapezoidal Rule gives. It is the average
of the approximaƟons given by the LeŌ and Right Hand Rules! This effecƟvely

Notes:

252



.....
1

.
2

.
3

.

1

.

2

.

3

. x.

y

Figure 5.5.8: A graph of a funcƟon f and
a parabola that approximates it well on
[1, 3].

5.5 Numerical IntegraƟon

renders the LeŌ and Right Hand Rules obsolete. They are useful when first learn-
ing about definite integrals, but if a real approximaƟon is needed, one is gener-
ally beƩer off using the Trapezoidal Rule instead of either the LeŌ or Right Hand
Rule.

How can we improve on the Trapezoidal Rule, apart from using more and
more trapezoids? The answer is clear once we look back and consider what we
have really done so far. The LeŌ Hand Rule is not really about using rectangles to
approximate area. Instead, it approximates a funcƟon f with constant funcƟons
on small subintervals and then computes the definite integral of these constant
funcƟons. The Trapezoidal Rule is really approximaƟng a funcƟon fwith a linear
funcƟon on a small subinterval, then computes the definite integral of this linear
funcƟon. In both of these cases the definite integrals are easy to compute in
geometric terms.

So we have a progression: we start by approximaƟng fwith a constant func-
Ɵon and then with a linear funcƟon. What is next? A quadraƟc funcƟon. By
approximaƟng the curve of a funcƟon with lots of parabolas, we generally get
an even beƩer approximaƟon of the definite integral. We call this process Simp-
son’s Rule, named aŌer Thomas Simpson (1710-1761), even though others had
used this rule as much as 100 years prior.

Simpson’s Rule

Given one point, we can create a constant funcƟon that goes through that
point. Given two points, we can create a linear funcƟon that goes through those
points. Given three points, we can create a quadraƟc funcƟon that goes through
those three points (given that no two have the same x–value).

Consider three points (x1, y1), (x2, y2) and (x3, y3)whose x–values are equally
spaced and x1 < x2 < x3. Let fbe the quadraƟc funcƟon that goes through these
three points. It is not hard to show that∫ x3

x1
f(x) dx =

x3 − x1
6

(
y1 + 4y2 + y3

)
. (5.4)

Consider Figure 5.5.8. A funcƟon f goes through the 3 points shown and the
parabola g that also goes through those points is graphed with a dashed line.
Using our equaƟon from above, we know exactly that∫ 3

1
g(x) dx =

3− 1
6
(
3+ 4(1) + 2

)
= 3.

Since g is a good approximaƟon for f on [1, 3], we can state that∫ 3

1
f(x) dx ≈ 3.
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xi e−x2i

0 1
0.25 0.939
0.5 0.779
0.75 0.570
1 0.368
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Figure 5.5.9: A table of values to approxi-
mate

∫ 1
0 e−x2 dx, alongwith a graph of the

funcƟon.

xi sin(x3i )
−0.785 −0.466
−0.550 −0.165
−0.314 −0.031
−0.0785 0
0.157 0.004
0.393 0.061
0.628 0.246
0.864 0.601
1.10 0.971
1.34 0.690
1.57 −0.670

Figure 5.5.10: Table of values used to
approximate

∫ π
2

− π
4
sin(x3) dx in Example

5.5.6.

Chapter 5 IntegraƟon

NoƟce how the interval [1, 3]was split into two subintervals as we needed 3
points. Because of this, whenever we use Simpson’s Rule, we need to break the
interval into an even number of subintervals.

In general, to approximate
∫ b

a
f(x) dx using Simpson’s Rule, subdivide [a, b]

into n subintervals, where n is even and each subinterval has width∆x = (b−
a)/n. We approximate fwith n/2 parabolic curves, using EquaƟon (5.4) to com-
pute the area under these parabolas. Adding up these areas gives the formula:∫ b

a
f(x)dx ≈ ∆x

3

[
f(x1)+4f(x2)+2f(x3)+4f(x4)+. . .+2f(xn−1)+4f(xn)+f(xn+1)

]
.

Note how the coefficients of the terms in the summaƟon have the paƩern 1, 4,
2, 4, 2, 4, . . ., 2, 4, 1.

Let’s demonstrate Simpson’s Rule with a concrete example.

Example 5.5.5 Using Simpson’s Rule

Approximate
∫ 1

0
e−x2 dxusing Simpson’s Rule and 4 equally spaced subintervals.

SÊ½çã®ÊÄ We begin bymaking a table of values as we have in the past,
as shown in Figure 5.5.9(a). Simpson’s Rule states that∫ 1

0
e−x2 dx ≈ 0.25

3

[
1+ 4(0.939) + 2(0.779) + 4(0.570) + 0.368

]
= 0.74683.

Recall in Example 5.5.1 we stated that the correct answer, accurate to 4
places aŌer the decimal, was 0.7468. Our approximaƟon with Simpson’s Rule,
with 4 subintervals, is beƩer than our approximaƟon with the Trapezoidal Rule
using 5!

Figure 5.5.9(b) shows f(x) = e−x2 along with its approximaƟng parabolas,
demonstraƟng how good our approximaƟon is. The approximaƟng curves are
nearly indisƟnguishable from the actual funcƟon.

Example 5.5.6 Using Simpson’s Rule

Approximate
∫ π

2

− π
4

sin(x3) dx using Simpson’s Rule and 10 equally spaced inter-

vals.

SÊ½çã®ÊÄ Figure 5.5.10 shows the table of values that we used in the
past for this problem, shown here again for convenience. Again, ∆x = (π/2 +
π/4)/10 ≈ 0.236.
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Figure 5.5.11: ApproximaƟng∫ π
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− π
4
sin(x3) dx in Example 5.5.6 with

Simpson’s Rule and 10 equally spaced
intervals.
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Simpson’s Rule states that∫ π
2

− π
4

sin(x3) dx ≈ 0.236
3

[
(−0.466) + 4(−0.165) + 2(−0.031) + . . .

. . .+ 2(0.971) + 4(0.69) + (−0.67)
]

= 0.4701

Recall that the actual value, accurate to 3 decimal places, is 0.460. Our ap-
proximaƟon iswithin one 1/100th of the correct value. The graph in Figure 5.5.11
shows how closely the parabolas match the shape of the graph.

Summary and Error Analysis

We summarize the key concepts of this secƟon thus far in the following Key
Idea.

Key Idea 5.5.1 Numerical IntegraƟon

Let f be a conƟnuous funcƟon on [a, b], let n be a posiƟve integer, and let∆x =
b− a
n

.
Set x1 = a, x2 = a+∆x, . . ., xi = a+ (i− 1)∆x, xn+1 = b.

Consider
∫ b

a
f(x) dx.

LeŌ Hand Rule:
∫ b

a
f(x) dx ≈ ∆x

[
f(x1) + f(x2) + . . .+ f(xn)

]
.

Right Hand Rule:
∫ b

a
f(x) dx ≈ ∆x

[
f(x2) + f(x3) + . . .+ f(xn+1)

]
.

Trapezoidal Rule:
∫ b

a
f(x) dx ≈ ∆x

2

[
f(x1) + 2f(x2) + 2f(x3) + . . .+ 2f(xn) + f(xn+1)

]
.

Simpson’s Rule:
∫ b

a
f(x) dx ≈ ∆x

3

[
f(x1) + 4f(x2) + 2f(x3) + . . .+ 4f(xn) + f(xn+1)

]
(n even).

In our examples, we approximated the value of a definite integral using a
given method then compared it to the “right” answer. This should have raised
several quesƟons in the reader’s mind, such as:

1. How was the “right” answer computed?

2. If the right answer can be found, what is the point of approximaƟng?

3. If there is value to approximaƟng, how are we supposed to know if the
approximaƟon is any good?
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These are good quesƟons, and their answers are educaƟonal. In the exam-
ples, the right answer was never computed. Rather, an approximaƟon accurate
to a certain number of places aŌer the decimal was given. In Example 5.5.1, we
do not know the exact answer, but we know it starts with 0.7468. These more
accurate approximaƟons were computed using numerical integraƟon but with
more precision (i.e., more subintervals and the help of a computer).

Since the exact answer cannot be found, approximaƟon sƟll has its place.
How are we to tell if the approximaƟon is any good?

“Trial and error” provides one way. Using technology, make an approxima-
Ɵon with, say, 10, 100, and 200 subintervals. This likely will not take much Ɵme
at all, and a trend should emerge. If a trend does not emerge, try using yet more
subintervals. Keep in mind that trial and error is never foolproof; you might
stumble upon a problem in which a trend will not emerge.

A second method is to use Error Analysis. While the details are beyond the
scope of this text, there are some formulas that give bounds for how good your
approximaƟon will be. For instance, the formula might state that the approx-
imaƟon is within 0.1 of the correct answer. If the approximaƟon is 1.58, then
one knows that the correct answer is between 1.48 and 1.68. By using lots of
subintervals, one can get an approximaƟon as accurate as one likes. Theorem
5.5.1 states what these bounds are.

Theorem 5.5.1 Error Bounds in the Trapezoidal Rule and
Simpson’s Rule

1. Let ET be the error in approximaƟng
∫ b

a
f(x) dx using the Trape-

zoidal Rule with n subintervals.
If f has a conƟnuous 2nd derivaƟve on [a, b] and M is any upper
bound of

∣∣f ′′(x)∣∣ on [a, b], then

ET ≤
(b− a)3

12n2
M.

2. Let ES be the error in approximaƟng
∫ b

a
f(x) dx using Simpson’s

Rule with n subintervals.
If f has a conƟnuous 4th derivaƟve on [a, b] and M is any upper
bound of

∣∣f (4)∣∣ on [a, b], then

ES ≤
(b− a)5

180n4
M.
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Figure 5.5.12: Graphing f ′′(x) in Example
5.5.7 to help establish error bounds.
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There are some key things to note about this theorem.

1. The larger the interval, the larger the error. This should make sense intu-
iƟvely.

2. The error shrinks as more subintervals are used (i.e., as n gets larger).

3. The error in Simpson’s Rule has a term relaƟng to the 4th derivaƟve of f.
Consider a cubic polynomial: it’s 4th derivaƟve is 0. Therefore, the error in
approximaƟng the definite integral of a cubic polynomial with Simpson’s
Rule is 0 – Simpson’s Rule computes the exact answer!

We revisit Examples 5.5.3 and 5.5.5 and compute the error bounds using
Theorem 5.5.1 in the following example.

Example 5.5.7 CompuƟng error bounds

Find the error bounds when approximaƟng
∫ 1

0
e−x2 dx using the Trapezoidal

Rule and 5 subintervals, and using Simpson’s Rule with 4 subintervals.

SÊ½çã®ÊÄ
Trapezoidal Rule with n = 5:

We start by compuƟng the 2nd derivaƟve of f(x) = e−x2 :

f ′′(x) = e−x2(4x2 − 2).

Figure 5.5.12 shows a graph of f ′′(x) on [0, 1]. It is clear that the largest value of
f ′′, in absolute value, is 2. Thus we letM = 2 and apply the error formula from
Theorem 5.5.1.

ET =
(1− 0)3

12 · 52
· 2 = 0.006.

Our error esƟmaƟon formula states that our approximaƟon of 0.7445 found
in Example 5.5.3 is within 0.0067 of the correct answer, hence we know that

0.7445− 0.0067 = .7378 ≤
∫ 1

0
e−x2 dx ≤ 0.7512 = 0.7445+ 0.0067.

We had earlier computed the exact answer, correct to 4 decimal places, to be
0.7468, affirming the validity of Theorem 5.5.1.

Simpson’s Rule with n = 4:
We start by compuƟng the 4th derivaƟve of f(x) = e−x2 :

f (4)(x) = e−x2(16x4 − 48x2 + 12).

Notes:
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y = e−x2
(16x4 − 48x2 + 12)

.
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Figure 5.5.13: Graphing f (4)(x) in Exam-
ple 5.5.7 to help establish error bounds.

Time Speed
(mph)

0 0
1 25
2 22
3 19
4 39
5 0
6 43
7 59
8 54
9 51
10 43
11 35
12 40
13 43
14 30
15 0
16 0
17 28
18 40
19 42
20 40
21 39
22 40
23 23
24 0

Figure 5.5.14: Speed data collected at 30
second intervals for Example 5.5.8.

Chapter 5 IntegraƟon

Figure 5.5.13 shows a graph of f (4)(x) on [0, 1]. It is clear that the largest value
of f (4), in absolute value, is 12. Thus we letM = 12 and apply the error formula
from Theorem 5.5.1.

Es =
(1− 0)5

180 · 44
· 12 = 0.00026.

Our error esƟmaƟon formula states that our approximaƟonof 0.74683 found
in Example 5.5.5 is within 0.00026 of the correct answer, hence we know that

0.74683− 0.00026 = .74657 ≤
∫ 1

0
e−x2 dx ≤ 0.74709 = 0.74683+ 0.00026.

Once again we affirm the validity of Theorem 5.5.1.

At the beginning of this secƟon we menƟoned two main situaƟons where
numerical integraƟon was desirable. We have considered the case where an
anƟderivaƟve of the integrand cannot be computed. We now invesƟgate the
situaƟon where the integrand is not known. This is, in fact, the most widely
used applicaƟon of Numerical IntegraƟon methods. “Most of the Ɵme” we ob-
serve behavior but do not know “the” funcƟon that describes it. We instead
collect data about the behavior and make approximaƟons based on this data.
We demonstrate this in an example.

Example 5.5.8 ApproximaƟng distance traveled
One of the authors drove his daughter home from school while she recorded
their speed every 30 seconds. The data is given in Figure 5.5.14. Approximate
the distance they traveled.

SÊ½çã®ÊÄ Recall that by integraƟng a speed funcƟon we get distance
traveled. We have informaƟon about v(t); we will use Simpson’s Rule to approx-

imate
∫ b

a
v(t) dt.

Themost difficult aspect of this problem is converƟng the given data into the
form we need it to be in. The speed is measured in miles per hour, whereas the
Ɵme is measured in 30 second increments.

We need to compute∆x = (b − a)/n. Clearly, n = 24. What are a and b?
Since we start at Ɵme t = 0, we have that a = 0. The final recorded Ɵme came
aŌer 24 periods of 30 seconds, which is 12 minutes or 1/5 of an hour. Thus we
have

∆x =
b− a
n

=
1/5− 0

24
=

1
120

;
∆x
3

=
1

360
.
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Thus the distance traveled is approximately:∫ 0.2

0
v(t) dt ≈ 1

360

[
f(x1) + 4f(x2) + 2f(x3) + · · ·+ 4f(xn) + f(xn+1)

]
=

1
360

[
0+ 4 · 25+ 2 · 22+ · · ·+ 2 · 40+ 4 · 23+ 0

]
≈ 6.2167 miles.

We approximate the author drove 6.2 miles. (Because we are sure the reader
wants to know, the author’s odometer recorded the distance as about 6.05
miles.)

We started this chapter learning about anƟderivaƟves and indefinite inte-
grals. We then seemed to change focus by looking at areas between the graph
of a funcƟon and the x-axis. We defined these areas as the definite integral of
the funcƟon, using a notaƟon very similar to the notaƟon of the indefinite inte-
gral. The Fundamental Theorem of Calculus Ɵed these two seemingly separate
concepts together: we can find areas under a curve, i.e., we can evaluate a def-
inite integral, using anƟderivaƟves.

We ended the chapter by noƟng that anƟderivaƟves are someƟmes more
than difficult to find: they are impossible. Therefore we developed numerical
techniques that gave us good approximaƟons of definite integrals.

We used the definite integral to compute areas, and also to compute dis-
placements and distances traveled. There is far more we can do than that. In
Chapter 7 we’ll see more applicaƟons of the definite integral. Before that, in
Chapter 6 we’ll learn advanced techniques of integraƟon, analogous to learning
rules like the Product, QuoƟent and Chain Rules of differenƟaƟon.
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Exercises 5.5
Terms and Concepts

1. T/F: Simpson’s Rule is a method of approximaƟng an-
ƟderivaƟves.

2. What are the two basic situaƟons where approximaƟng the
value of a definite integral is necessary?

3. Why are the LeŌ and Right Hand Rules rarely used?

4. Simpson’s Rule is based on approximaƟng porƟons of a
funcƟon with what type of funcƟon?

Problems
In Exercises 5 – 12, a definite integral is given.

(a) Approximate the definite integral with the Trapezoidal
Rule and n = 4.

(b) Approximate the definite integral with Simpson’s Rule
and n = 4.

(c) Find the exact value of the integral.

5.
∫ 1

−1
x2 dx

6.
∫ 10

0
5x dx

7.
∫ π

0
sin x dx

8.
∫ 4

0

√
x dx

9.
∫ 3

0
(x3 + 2x2 − 5x+ 7) dx

10.
∫ 1

0
x4 dx

11.
∫ 2π

0
cos x dx

12.
∫ 3

−3

√
9− x2 dx

In Exercises 13 – 20, approximate the definite integral with
the Trapezoidal Rule and Simpson’s Rule, with n = 6.

13.
∫ 1

0
cos
(
x2
)
dx

14.
∫ 1

−1
ex

2
dx

15.
∫ 5

0

√
x2 + 1 dx

16.
∫ π

0
x sin x dx

17.
∫ π/2

0

√
cos x dx

18.
∫ 4

1
ln x dx

19.
∫ 1

−1

1
sin x+ 2

dx

20.
∫ 6

0

1
sin x+ 2

dx

In Exercises 21 – 24, find n such that the error in approximat-
ing the given definite integral is less than 0.0001when using:

(a) the Trapezoidal Rule

(b) Simpson’s Rule

21.
∫ π

0
sin x dx

22.
∫ 4

1

1√
x
dx

23.
∫ π

0
cos
(
x2
)
dx

24.
∫ 5

0
x4 dx

In Exercises 25 – 26, a region is given. Find the area of the
region using Simpson’s Rule:

(a) where the measurements are in cenƟmeters, taken in
1 cm increments, and

(b) where the measurements are in hundreds of yards,
taken in 100 yd increments.

25. ..

4.
7

.

6.
3

. 6.
9

. 6.
6.

5.
1
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3.
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6
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5. 6.

6

.
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The previous chapter introduced the anƟderivaƟve and connected it to signed
areas under a curve through the Fundamental Theorem of Calculus. The next
chapter explores more applicaƟons of definite integrals than just area. As eval-
uaƟng definite integrals will become important, we will want to find anƟderiva-
Ɵves of a variety of funcƟons.

This chapter is devoted to exploring techniques of anƟdifferenƟaƟon. While
not every funcƟon has an anƟderivaƟve in terms of elementary funcƟons (a
concept introduced in the secƟon on Numerical IntegraƟon), we can sƟll find
anƟderivaƟves of a wide variety of funcƟons.

6.1 SubsƟtuƟon
We moƟvate this secƟon with an example. Let f(x) = (x2 + 3x − 5)10. We can
compute f ′(x) using the Chain Rule. It is:

f ′(x) = 10(x2 + 3x− 5)9 · (2x+ 3) = (20x+ 30)(x2 + 3x− 5)9.

Now consider this: What is
∫
(20x+ 30)(x2 + 3x− 5)9 dx? We have the answer

in front of us;∫
(20x+ 30)(x2 + 3x− 5)9 dx = (x2 + 3x− 5)10 + C.

How would we have evaluated this indefinite integral without starƟng with f(x)
as we did?

This secƟon explores integraƟon by subsƟtuƟon. It allows us to “undo the
Chain Rule.” SubsƟtuƟon allows us to evaluate the above integral without know-
ing the original funcƟon first.

The underlying principle is to rewrite a “complicated” integral of the form∫
f(x) dx as a not–so–complicated integral

∫
h(u) du. We’ll formally establish

later how this is done. First, consider again our introductory indefinite integral,∫
(20x + 30)(x2 + 3x − 5)9 dx. Arguably the most “complicated” part of the

integrand is (x2 + 3x − 5)9. We wish to make this simpler; we do so through a
subsƟtuƟon. Let u = x2 + 3x− 5. Thus

(x2 + 3x− 5)9 = u9.



Chapter 6 Techniques of AnƟdifferenƟaƟon

We have established u as a funcƟon of x, so now consider the differenƟal of u:

du = (2x+ 3)dx.

Keep inmind that (2x+3) and dx aremulƟplied; the dx is not “just siƫng there.”
Return to the original integral and do some subsƟtuƟons through algebra:∫

(20x+ 30)(x2 + 3x− 5)9 dx =
∫

10(2x+ 3)(x2 + 3x− 5)9 dx

=

∫
10(x2 + 3x− 5︸ ︷︷ ︸

u

)9 (2x+ 3) dx︸ ︷︷ ︸
du

=

∫
10u9 du

= u10 + C (replace u with x2 + 3x − 5)

= (x2 + 3x− 5)10 + C

One might well look at this and think “I (sort of) followed how that worked,
but I could never come up with that on my own,” but the process is learnable.
This secƟon contains numerous examples through which the reader will gain
understanding and mathemaƟcal maturity enabling them to regard subsƟtuƟon
as a natural tool when evaluaƟng integrals.

We stated before that integraƟon by subsƟtuƟon “undoes” the Chain Rule.
Specifically, let F(x) and g(x) be differenƟable funcƟons and consider the deriva-
Ɵve of their composiƟon:

d
dx

(
F
(
g(x)

))
= F ′(g(x))g ′(x).

Thus ∫
F ′(g(x))g ′(x) dx = F(g(x)) + C.

IntegraƟon by subsƟtuƟon works by recognizing the “inside” funcƟon g(x) and
replacing it with a variable. By seƫng u = g(x), we can rewrite the derivaƟve
as

d
dx

(
F
(
u
))

= F ′(u)u ′.

Since du = g ′(x)dx, we can rewrite the above integral as∫
F ′(g(x))g ′(x) dx =

∫
F ′(u)du = F(u) + C = F(g(x)) + C.

This concept is important so we restate it in the context of a theorem.

Notes:

264



6.1 SubsƟtuƟon

Theorem 6.1.1 IntegraƟon by SubsƟtuƟon

Let F and g be differenƟable funcƟons, where the range of g is an interval
I contained in the domain of F. Then∫

F ′(g(x))g ′(x) dx = F(g(x)) + C.

If u = g(x), then du = g ′(x)dx and∫
F ′(g(x))g ′(x) dx =

∫
F ′(u) du = F(u) + C = F(g(x)) + C.

The point of subsƟtuƟon is to make the integraƟon step easy. Indeed, the
step

∫
F ′(u) du = F(u)+C looks easy, as the anƟderivaƟve of the derivaƟve of F

is just F, plus a constant. The “work” involved is making the proper subsƟtuƟon.
There is not a step–by–step process that one can memorize; rather, experience
will be one’s guide. To gain experience, we now embark on many examples.

Example 6.1.1 IntegraƟng by subsƟtuƟon
Evaluate

∫
x sin(x2 + 5) dx.

SÊ½çã®ÊÄ Knowing that subsƟtuƟon is related to the Chain Rule, we
choose to let u be the “inside” funcƟon of sin(x2+5). (This is not always a good
choice, but it is oŌen the best place to start.)

Let u = x2 + 5, hence du = 2x dx. The integrand has an x dx term, but
not a 2x dx term. (Recall that mulƟplicaƟon is commutaƟve, so the x does not
physically have to be next to dx for there to be an x dx term.) We can divide both
sides of the du expression by 2:

du = 2x dx ⇒ 1
2
du = x dx.

We can now subsƟtute.∫
x sin(x2 + 5) dx =

∫
sin(x2 + 5︸ ︷︷ ︸

u

) x dx︸︷︷︸
1
2 du

=

∫
1
2
sin u du

Notes:
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= −1
2
cos u+ C (now replace u with x2 + 5)

= −1
2
cos(x2 + 5) + C.

Thus
∫
x sin(x2 + 5) dx = − 1

2 cos(x
2 + 5) + C. We can check our work by eval-

uaƟng the derivaƟve of the right hand side.

Example 6.1.2 IntegraƟng by subsƟtuƟon
Evaluate

∫
cos(5x) dx.

SÊ½çã®ÊÄ Again let u replace the “inside” funcƟon. Leƫng u = 5x, we
have du = 5dx. Since our integrand does not have a 5dx term, we can divide
the previous equaƟon by 5 to obtain 1

5du = dx. We can now subsƟtute.∫
cos(5x) dx =

∫
cos( 5x︸︷︷︸

u

) dx︸︷︷︸
1
5 du

=

∫
1
5
cos u du

=
1
5
sin u+ C

=
1
5
sin(5x) + C.

We can again check our work through differenƟaƟon.

The previous example exhibited a common, and simple, type of subsƟtuƟon.
The “inside” funcƟon was a linear funcƟon (in this case, y = 5x). When the
inside funcƟon is linear, the resulƟng integraƟon is very predictable, outlined
here.

Key Idea 6.1.1 SubsƟtuƟon With A Linear FuncƟon

Consider
∫
F ′(ax + b) dx, where a ̸= 0 and b are constants. Leƫng

u = ax+ b gives du = a · dx, leading to the result∫
F ′(ax+ b) dx =

1
a
F(ax+ b) + C.

Thus
∫
sin(7x− 4) dx = − 1

7 cos(7x− 4) + C. Our next example can use Key
Idea 6.1.1, but we will only employ it aŌer going through all of the steps.

Notes:
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Example 6.1.3 IntegraƟng by subsƟtuƟng a linear funcƟon
Evaluate

∫
7

−3x+ 1
dx.

SÊ½çã®ÊÄ View the integrand as the composiƟon of funcƟons f(g(x)),
where f(x) = 7/x and g(x) = −3x+ 1. Employing our understanding of subsƟ-
tuƟon, we let u = −3x+1, the inside funcƟon. Thus du = −3dx. The integrand
lacks a −3; hence divide the previous equaƟon by −3 to obtain −du/3 = dx.
We can now evaluate the integral through subsƟtuƟon.∫

7
−3x+ 1

dx =
∫

7
u
du
−3

=
−7
3

∫
du
u

=
−7
3

ln |u|+ C

= −7
3
ln | − 3x+ 1|+ C.

Using Key Idea 6.1.1 is faster, recognizing that u is linear and a = −3. One may
want to conƟnue wriƟng out all the steps unƟl they are comfortable with this
parƟcular shortcut.

Not all integrals that benefit from subsƟtuƟon have a clear “inside” funcƟon.
Several of the following examples will demonstrate ways in which this occurs.

Example 6.1.4 IntegraƟng by subsƟtuƟon
Evaluate

∫
sin x cos x dx.

SÊ½çã®ÊÄ There is not a composiƟonof funcƟonhere to exploit; rather,
just a product of funcƟons. Do not be afraid to experiment; when given an inte-
gral to evaluate, it is oŌen beneficial to think “If I let u be this, then dumust be
that …” and see if this helps simplify the integral at all.

In this example, let’s set u = sin x. Then du = cos x dx, which we have as
part of the integrand! The subsƟtuƟon becomes very straighƞorward:∫

sin x cos x dx =
∫

u du

=
1
2
u2 + C

=
1
2
sin2 x+ C.

Notes:
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One would do well to ask “What would happen if we let u = cos x?” The result
is just as easy to find, yet looks very different. The challenge to the reader is to
evaluate the integral leƫng u = cos x and discover why the answer is the same,
yet looks different.

Our examples so far have required “basic subsƟtuƟon.” The next example
demonstrates how subsƟtuƟons can be made that oŌen strike the new learner
as being “nonstandard.”

Example 6.1.5 IntegraƟng by subsƟtuƟon
Evaluate

∫
x
√
x+ 3 dx.

SÊ½çã®ÊÄ Recognizing the composiƟon of funcƟons, set u = x + 3.
Then du = dx, giving what seems iniƟally to be a simple subsƟtuƟon. But at this
stage, we have: ∫

x
√
x+ 3 dx =

∫
x
√
u du.

We cannot evaluate an integral that has both an x and an u in it. We need to
convert the x to an expression involving just u.

Since we set u = x+3, we can also state that u−3 = x. Thus we can replace
x in the integrand with u− 3. It will also be helpful to rewrite

√
u as u 1

2 .∫
x
√
x+ 3 dx =

∫
(u− 3)u

1
2 du

=

∫ (
u

3
2 − 3u

1
2
)
du

=
2
5
u

5
2 − 2u

3
2 + C

=
2
5
(x+ 3)

5
2 − 2(x+ 3)

3
2 + C.

Checking your work is always a good idea. In this parƟcular case, some algebra
will be needed to make one’s answer match the integrand in the original prob-
lem.

Example 6.1.6 IntegraƟng by subsƟtuƟon
Evaluate

∫
1

x ln x
dx.

SÊ½çã®ÊÄ This is another example where there does not seem to be
an obvious composiƟon of funcƟons. The line of thinking used in Example 6.1.5
is useful here: choose something for u and consider what this implies du must
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be. If u can be chosen such that du also appears in the integrand, then we have
chosen well.

Choosing u = 1/xmakes du = −1/x2 dx; that does not seem helpful. How-
ever, seƫng u = ln xmakes du = 1/x dx, which is part of the integrand. Thus:

∫
1

x ln x
dx =

∫
1
ln x︸︷︷︸
u

1
x
dx︸︷︷︸

du

=

∫
1
u
du

= ln |u|+ C
= ln | ln x|+ C.

The final answer is interesƟng; the natural log of the natural log. Take the deriva-
Ɵve to confirm this answer is indeed correct.

Integrals Involving Trigonometric FuncƟons

SecƟon 6.3 delves deeper into integrals of a variety of trigonometric func-
Ɵons; here we use subsƟtuƟon to establish a foundaƟon that wewill build upon.

Thenext three exampleswill help fill in somemissing pieces of our anƟderiva-
Ɵve knowledge. We know the anƟderivaƟves of the sine and cosine funcƟons;
what about the other standard funcƟons tangent, cotangent, secant and cose-
cant? We discover these next.

Example 6.1.7 IntegraƟon by subsƟtuƟon: anƟderivaƟves of tan x
Evaluate

∫
tan x dx.

SÊ½çã®ÊÄ The previous paragraph established that we did not know
the anƟderivaƟves of tangent, hence we must assume that we have learned
something in this secƟon that can help us evaluate this indefinite integral.

Rewrite tan x as sin x/ cos x. While the presence of a composiƟon of func-
Ɵons may not be immediately obvious, recognize that cos x is “inside” the 1/x
funcƟon. Therefore, we see if seƫng u = cos x returns usable results. We have
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that du = − sin x dx, hence−du = sin x dx. We can integrate:

∫
tan x dx =

∫
sin x
cos x

dx

=

∫
1

cos x︸︷︷︸
u

sin x dx︸ ︷︷ ︸
−du

=

∫
−1
u

du

= − ln |u|+ C
= − ln | cos x|+ C.

Some texts prefer to bring the−1 inside the logarithm as a power of cos x, as in:

− ln | cos x|+ C = ln |(cos x)−1|+ C

= ln
∣∣∣∣ 1
cos x

∣∣∣∣+ C

= ln | sec x|+ C.

Thus the result they give is
∫
tan x dx = ln | sec x| + C. These two answers are

equivalent.

Example 6.1.8 IntegraƟng by subsƟtuƟon: anƟderivaƟves of sec x
Evaluate

∫
sec x dx.

SÊ½çã®ÊÄ This example employs a wonderful trick: mulƟply the inte-
grand by “1” so that we see how to integrate more clearly. In this case, we write
“1” as

1 =
sec x+ tan x
sec x+ tan x

.

This may seem like it came out of leŌ field, but it works beauƟfully. Consider:

∫
sec x dx =

∫
sec x · sec x+ tan x

sec x+ tan x
dx

=

∫
sec2 x+ sec x tan x

sec x+ tan x
dx.
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Now let u = sec x + tan x; this means du = (sec x tan x + sec2 x) dx, which is
our numerator. Thus:

=

∫
du
u

= ln |u|+ C
= ln | sec x+ tan x|+ C.

We can use similar techniques to those used in Examples 6.1.7 and 6.1.8
to find anƟderivaƟves of cot x and csc x (which the reader can explore in the
exercises.) We summarize our results here.

Theorem 6.1.2 AnƟderivaƟves of Trigonometric FuncƟons

1.
∫

sin x dx = − cos x+ C

2.
∫

cos x dx = sin x+ C

3.
∫

tan x dx = − ln | cos x|+C

4.
∫

csc x dx = − ln | csc x+ cot x|+ C

5.
∫

sec x dx = ln | sec x+ tan x|+ C

6.
∫

cot x dx = ln | sin x|+ C

We explore one more common trigonometric integral.

Example 6.1.9 IntegraƟon by subsƟtuƟon: powers of cos x and sin x
Evaluate

∫
cos2 x dx.

SÊ½çã®ÊÄ We have a composiƟon of funcƟons as cos2 x =
(
cos x

)2.
However, seƫng u = cos xmeans du = − sin x dx, which we do not have in the
integral. Another technique is needed.

The process we’ll employ is to use a Power Reducing formula for cos2 x (per-
haps consult the back of this text for this formula), which states

cos2 x =
1+ cos(2x)

2
.

The right hand side of this equaƟon is not difficult to integrate. We have:∫
cos2 x dx =

∫
1+ cos(2x)

2
dx

=

∫ (
1
2
+

1
2
cos(2x)

)
dx.
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Now use Key Idea 6.1.1:

=
1
2
x+

1
2
sin(2x)

2
+ C

=
1
2
x+

sin(2x)
4

+ C.

We’ll make significant use of this power–reducing technique in future secƟons.

Simplifying the Integrand

It is common to be reluctant to manipulate the integrand of an integral; at
first, our grasp of integraƟon is tenuous and one may think that working with
the integrand will improperly change the results. IntegraƟon by subsƟtuƟon
works using a different logic: as long as equality is maintained, the integrand can
be manipulated so that its form is easier to deal with. The next two examples
demonstrate common ways in which using algebra first makes the integraƟon
easier to perform.

Example 6.1.10 IntegraƟon by subsƟtuƟon: simplifying first

Evaluate
∫

x3 + 4x2 + 8x+ 5
x2 + 2x+ 1

dx.

SÊ½çã®ÊÄ One may try to start by seƫng u equal to either the numer-
ator or denominator; in each instance, the result is not workable.

When dealing with raƟonal funcƟons (i.e., quoƟents made up of polynomial
funcƟons), it is an almost universal rule that everything works beƩer when the
degree of the numerator is less than the degree of the denominator. Hence we
use polynomial division.

We skip the specifics of the steps, but note that when x2 + 2x+ 1 is divided
into x3 + 4x2 + 8x+ 5, it goes in x+ 2 Ɵmes with a remainder of 3x+ 3. Thus

x3 + 4x2 + 8x+ 5
x2 + 2x+ 1

= x+ 2+
3x+ 3

x2 + 2x+ 1
.

IntegraƟng x + 2 is simple. The fracƟon can be integrated by seƫng u = x2 +
2x+ 1, giving du = (2x+ 2) dx. This is very similar to the numerator. Note that
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du/2 = (x+ 1) dx and then consider the following:∫
x3 + 4x2 + 8x+ 5

x2 + 2x+ 1
dx =

∫ (
x+ 2+

3x+ 3
x2 + 2x+ 1

)
dx

=

∫
(x+ 2) dx+

∫
3(x+ 1)

x2 + 2x+ 1
dx

=
1
2
x2 + 2x+ C1 +

∫
3
u
du
2

=
1
2
x2 + 2x+ C1 +

3
2
ln |u|+ C2

=
1
2
x2 + 2x+

3
2
ln |x2 + 2x+ 1|+ C.

In some ways, we “lucked out” in that aŌer dividing, subsƟtuƟon was able to be
done. In later secƟons we’ll develop techniques for handling raƟonal funcƟons
where subsƟtuƟon is not directly feasible.

Example 6.1.11 IntegraƟon by alternate methods

Evaluate
∫

x2 + 2x+ 3√
x

dx with, and without, subsƟtuƟon.

SÊ½çã®ÊÄ We already know how to integrate this parƟcular example.
Rewrite

√
x as x 1

2 and simplify the fracƟon:

x2 + 2x+ 3
x1/2

= x
3
2 + 2x

1
2 + 3x−

1
2 .

We can now integrate using the Power Rule:∫
x2 + 2x+ 3

x1/2
dx =

∫ (
x

3
2 + 2x

1
2 + 3x−

1
2

)
dx

=
2
5
x

5
2 +

4
3
x

3
2 + 6x

1
2 + C

This is a perfectly fine approach. We demonstrate how this can also be solved
using subsƟtuƟon as its implementaƟon is rather clever.

Let u =
√
x = x 1

2 ; therefore

du =
1
2
x−

1
2 dx =

1
2
√
x
dx ⇒ 2du =

1√
x
dx.

This gives us
∫

x2 + 2x+ 3√
x

dx =
∫
(x2 + 2x+ 3) · 2 du. What are we to do

with the other x terms? Since u = x 1
2 , u2 = x, etc. We can then replace x2 and
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x with appropriate powers of u. We thus have∫
x2 + 2x+ 3√

x
dx =

∫
(x2 + 2x+ 3) · 2 du

=

∫
2(u4 + 2u2 + 3) du

=
2
5
u5 +

4
3
u3 + 6u+ C

=
2
5
x

5
2 +

4
3
x

3
2 + 6x

1
2 + C,

which is obviously the same answer we obtained before. In this situaƟon, sub-
sƟtuƟon is arguably more work than our other method. The fantasƟc thing is
that it works. It demonstrates how flexible integraƟon is.

SubsƟtuƟon and Inverse Trigonometric FuncƟons

When studying derivaƟves of inverse funcƟons, we learned that

d
dx
(
tan−1 x

)
=

1
1+ x2

.

Applying the Chain Rule to this is not difficult; for instance,

d
dx
(
tan−1 5x

)
=

5
1+ 25x2

.

Wenow explore how SubsƟtuƟon can be used to “undo” certain derivaƟves that
are the result of the Chain Rule applied to Inverse Trigonometric funcƟons. We
begin with an example.

Example 6.1.12 IntegraƟngby subsƟtuƟon: inverse trigonometric funcƟons
Evaluate

∫
1

25+ x2
dx.

SÊ½çã®ÊÄ The integrand looks similar to the derivaƟve of the arctan-
gent funcƟon. Note:

1
25+ x2

=
1

25(1+ x2
25 )

=
1

25(1+
( x
5
)2
)

=
1
25

1
1+

( x
5
)2 .
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Thus ∫
1

25+ x2
dx =

1
25

∫
1

1+
( x
5
)2 dx.

This can be integrated using SubsƟtuƟon. Set u = x/5, hence du = dx/5 or
dx = 5du. Thus ∫

1
25+ x2

dx =
1
25

∫
1

1+
( x
5
)2 dx

=
1
5

∫
1

1+ u2
du

=
1
5
tan−1 u+ C

=
1
5
tan−1

( x
5

)
+ C

Example 6.1.12 demonstrates a general technique that can be applied to
other integrands that result in inverse trigonometric funcƟons. The results are
summarized here.

Theorem 6.1.3 Integrals Involving Inverse Trigonometric FuncƟons

Let a > 0.

1.
∫

1
a2 + x2

dx =
1
a
tan−1

( x
a

)
+ C

2.
∫

1√
a2 − x2

dx = sin−1
( x
a

)
+ C

3.
∫

1
x
√
x2 − a2

dx =
1
a
sec−1

(
|x|
a

)
+ C

Let’s pracƟce using Theorem 6.1.3.

Example 6.1.13 IntegraƟngby subsƟtuƟon: inverse trigonometric funcƟons
Evaluate the given indefinite integrals.

1.
∫

1
9+ x2

dx, 2.
∫

1

x
√

x2 − 1
100

dx 3.
∫

1√
5− x2

dx.
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SÊ½çã®ÊÄ Each can be answered using a straighƞorward applicaƟon of
Theorem 6.1.3.

1.
∫

1
9+ x2

dx =
1
3
tan−1 x

3
+ C, as a = 3.

2.
∫

1

x
√

x2 − 1
100

dx = 10 sec−1 10x+ C, as a = 1
10 .

3.
∫

1√
5− x2

= sin−1 x√
5
+ C, as a =

√
5.

Most applicaƟons of Theorem 6.1.3 are not as straighƞorward. The next
examples show some common integrals that can sƟll be approached with this
theorem.

Example 6.1.14 IntegraƟng by subsƟtuƟon: compleƟng the square
Evaluate

∫
1

x2 − 4x+ 13
dx.

SÊ½çã®ÊÄ IniƟally, this integral seems to have nothing in commonwith
the integrals in Theorem 6.1.3. As it lacks a square root, it almost certainly is not
related to arcsine or arcsecant. It is, however, related to the arctangent funcƟon.

We see this by compleƟng the square in the denominator. We give a brief
reminder of the process here.

Start with a quadraƟc with a leading coefficient of 1. It will have the form of
x2+bx+c. Take 1/2 of b, square it, and add/subtract it back into the expression.
I.e.,

x2 + bx+ c = x2 + bx+
b2

4︸ ︷︷ ︸
(x+b/2)2

−b2

4
+ c

=

(
x+

b
2

)2

+ c− b2

4

In our example, we take half of −4 and square it, geƫng 4. We add/subtract it
into the denominator as follows:

1
x2 − 4x+ 13

=
1

x2 − 4x+ 4︸ ︷︷ ︸
(x−2)2

−4+ 13

=
1

(x− 2)2 + 9
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We can now integrate this using the arctangent rule. Technically, we need to
subsƟtute first with u = x− 2, but we can employ Key Idea 6.1.1 instead. Thus
we have∫

1
x2 − 4x+ 13

dx =
∫

1
(x− 2)2 + 9

dx =
1
3
tan−1 x− 2

3
+ C.

Example 6.1.15 Integrals requiring mulƟple methods
Evaluate

∫
4− x√
16− x2

dx.

SÊ½çã®ÊÄ This integral requires two different methods to evaluate it.
We get to those methods by spliƫng up the integral:∫

4− x√
16− x2

dx =
∫

4√
16− x2

dx−
∫

x√
16− x2

dx.

The first integral is handled using a straighƞorward applicaƟon of Theorem6.1.3;
the second integral is handled by subsƟtuƟon, with u = 16−x2. We handle each
separately.∫

4√
16− x2

dx = 4 sin−1 x
4
+ C.

∫
x√

16− x2
dx: Set u = 16 − x2, so du = −2xdx and xdx = −du/2. We

have ∫
x√

16− x2
dx =

∫
−du/2√

u

= −1
2

∫
1√
u
du

= −
√
u+ C

= −
√

16− x2 + C.

Combining these together, we have∫
4− x√
16− x2

dx = 4 sin−1 x
4
+
√

16− x2 + C.

SubsƟtuƟon and Definite IntegraƟon

This secƟon has focused on evaluaƟng indefinite integrals as we are learning
a new technique for finding anƟderivaƟves. However, much of the Ɵme integra-
Ɵon is used in the context of a definite integral. Definite integrals that require
subsƟtuƟon can be calculated using the following workflow:
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1. Start with a definite integral
∫ b

a
f(x) dx that requires subsƟtuƟon.

2. Ignore the bounds; use subsƟtuƟon to evaluate
∫

f(x) dx and find an an-

ƟderivaƟve F(x).

3. Evaluate F(x) at the bounds; that is, evaluate F(x)
∣∣∣b
a
= F(b)− F(a).

This workflow works fine, but subsƟtuƟon offers an alternaƟve that is powerful
and amazing (and a liƩle Ɵme saving).

At its heart, (using the notaƟon of Theorem 6.1.1) subsƟtuƟon converts inte-
grals of the form

∫
F ′(g(x))g ′(x) dx into an integral of the form

∫
F ′(u) du with

the subsƟtuƟon of u = g(x). The following theorem states how the bounds of
a definite integral can be changed as the subsƟtuƟon is performed.

Theorem 6.1.4 SubsƟtuƟon with Definite Integrals

Let F and g be differenƟable funcƟons, where the range of g is an interval
I that is contained in the domain of F. Then∫ b

a
F ′
(
g(x)

)
g ′(x) dx =

∫ g(b)

g(a)
F ′(u) du.

In effect, Theorem 6.1.4 states that once you convert to integraƟng with re-
spect to u, you do not need to switch back to evaluaƟng with respect to x. A few
examples will help one understand.

Example 6.1.16 Definite integrals and subsƟtuƟon: changing the bounds

Evaluate
∫ 2

0
cos(3x− 1) dx using Theorem 6.1.4.

SÊ½çã®ÊÄ Observing the composiƟon of funcƟons, let u = 3x − 1,
hence du = 3dx. As 3dx does not appear in the integrand, divide the laƩer
equaƟon by 3 to get du/3 = dx.

By seƫng u = 3x− 1, we are implicitly staƟng that g(x) = 3x− 1. Theorem
6.1.4 states that the new lower bound is g(0) = −1; the new upper bound is
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Figure 6.1.1: Graphing the areas de-
fined by the definite integrals of Example
6.1.16.
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y = sin x cos x
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Figure 6.1.2: Graphing the areas de-
fined by the definite integrals of Example
6.1.17.

6.1 SubsƟtuƟon

g(2) = 5. We now evaluate the definite integral:∫ 2

0
cos(3x− 1) dx =

∫ 5

−1
cos u

du
3

=
1
3
sin u

∣∣∣5
−1

=
1
3
(
sin 5− sin(−1)

)
≈ −0.039.

NoƟce how once we converted the integral to be in terms of u, we never went
back to using x.

The graphs in Figure 6.1.1 tell more of the story. In (a) the area defined by
the original integrand is shaded, whereas in (b) the area defined by the new in-
tegrand is shaded. In this parƟcular situaƟon, the areas look very similar; the
new region is “shorter” but “wider,” giving the same area.

Example 6.1.17 Definite integrals and subsƟtuƟon: changing the bounds

Evaluate
∫ π/2

0
sin x cos x dx using Theorem 6.1.4.

SÊ½çã®ÊÄ Wesaw the corresponding indefinite integral in Example 6.1.4.
In that example we set u = sin x but stated that we could have let u = cos x.
For variety, we do the laƩer here.

Let u = g(x) = cos x, giving du = − sin x dx and hence sin x dx = −du. The
new upper bound is g(π/2) = 0; the new lower bound is g(0) = 1. Note how
the lower bound is actually larger than the upper bound now. We have∫ π/2

0
sin x cos x dx =

∫ 0

1
−u du (switch bounds & change sign)

=

∫ 1

0
u du

=
1
2
u2
∣∣∣1
0
= 1/2.

In Figure 6.1.2 we have again graphed the two regions defined by our definite
integrals. Unlike the previous example, they bear no resemblance to each other.
However, Theorem 6.1.4 guarantees that they have the same area.

IntegraƟon by subsƟtuƟon is a powerful and useful integraƟon technique.
The next secƟon introduces another technique, called IntegraƟon by Parts. As
subsƟtuƟon “undoes” the Chain Rule, integraƟon by parts “undoes” the Product
Rule. Together, these two techniques provide a strong foundaƟononwhichmost
other integraƟon techniques are based.
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Exercises 6.1
Terms and Concepts

1. SubsƟtuƟon “undoes” what derivaƟve rule?

2. T/F: One can use algebra to rewrite the integrand of an in-
tegral to make it easier to evaluate.

Problems
In Exercises 3 – 14, evaluate the indefinite integral to develop
an understanding of SubsƟtuƟon.

3.
∫

3x2
(
x3 − 5

)7 dx
4.
∫

(2x− 5)
(
x2 − 5x+ 7

)3 dx
5.
∫

x
(
x2 + 1

)8 dx
6.
∫

(12x+ 14)
(
3x2 + 7x− 1

)5 dx
7.
∫

1
2x+ 7

dx

8.
∫

1√
2x+ 3

dx

9.
∫

x√
x+ 3

dx

10.
∫

x3 − x√
x

dx

11.
∫

e
√

x
√
x
dx

12.
∫

x4√
x5 + 1

dx

13.
∫ 1

x + 1
x2

dx

14.
∫

ln(x)
x

dx

In Exercises 15 – 24, use SubsƟtuƟon to evaluate the indefi-
nite integral involving trigonometric funcƟons.

15.
∫

sin2(x) cos(x)dx

16.
∫

cos3(x) sin(x)dx

17.
∫

cos(3− 6x)dx

18.
∫

sec2(4− x)dx

19.
∫

sec(2x)dx

20.
∫

tan2(x) sec2(x)dx

21.
∫

x cos
(
x2
)
dx

22.
∫

tan2(x)dx

23.
∫

cot x dx. Do not just refer to Theorem 6.1.2 for the an-
swer; jusƟfy it through SubsƟtuƟon.

24.
∫

csc x dx. Do not just refer to Theorem 6.1.2 for the an-
swer; jusƟfy it through SubsƟtuƟon.

In Exercises 25 – 32, use SubsƟtuƟon to evaluate the indefi-
nite integral involving exponenƟal funcƟons.

25.
∫

e3x−1dx

26.
∫

ex
3
x2dx

27.
∫

ex
2−2x+1(x− 1)dx

28.
∫

ex + 1
ex

dx

29.
∫

ex

ex + 1
dx

30.
∫

ex − e−x

e2x
dx

31.
∫

33xdx

32.
∫

42xdx

In Exercises 33 – 36, use SubsƟtuƟon to evaluate the indefi-
nite integral involving logarithmic funcƟons.

33.
∫

ln x
x

dx

34.
∫ (

ln x
)2

x
dx
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35.
∫ ln

(
x3
)

x
dx

36.
∫

1
x ln (x2)

dx

In Exercises 37 – 42, use SubsƟtuƟon to evaluate the indefi-
nite integral involving raƟonal funcƟons.

37.
∫

x2 + 3x+ 1
x

dx

38.
∫

x3 + x2 + x+ 1
x

dx

39.
∫

x3 − 1
x+ 1

dx

40.
∫

x2 + 2x− 5
x− 3

dx

41.
∫

3x2 − 5x+ 7
x+ 1

dx

42.
∫

x2 + 2x+ 1
x3 + 3x2 + 3x

dx

In Exercises 43 – 52, use SubsƟtuƟon to evaluate the indefi-
nite integral involving inverse trigonometric funcƟons.

43.
∫

7
x2 + 7

dx

44.
∫

3√
9− x2

dx

45.
∫

14√
5− x2

dx

46.
∫

2
x
√
x2 − 9

dx

47.
∫

5√
x4 − 16x2

dx

48.
∫

x√
1− x4

dx

49.
∫

1
x2 − 2x+ 8

dx

50.
∫

2√
−x2 + 6x+ 7

dx

51.
∫

3√
−x2 + 8x+ 9

dx

52.
∫

5
x2 + 6x+ 34

dx

In Exercises 53 – 78, evaluate the indefinite integral.

53.
∫

x2

(x3 + 3)2
dx

54.
∫ (

3x2 + 2x
) (

5x3 + 5x2 + 2
)8 dx

55.
∫

x√
1− x2

dx

56.
∫

x2 csc2
(
x3 + 1

)
dx

57.
∫

sin(x)
√

cos(x)dx

58.
∫

sin
(
5x+ 1

)
dx

59.
∫

1
x− 5

dx

60.
∫

7
3x+ 2

dx

61.
∫

3x3 + 4x2 + 2x− 22
x2 + 3x+ 5

dx

62.
∫

2x+ 7
x2 + 7x+ 3

dx

63.
∫

9(2x+ 3)
3x2 + 9x+ 7

dx

64.
∫

−x3 + 14x2 − 46x− 7
x2 − 7x+ 1

dx

65.
∫

x
x4 + 81

dx

66.
∫

2
4x2 + 1

dx

67.
∫

1
x
√
4x2 − 1

dx

68.
∫

1√
16− 9x2

dx

69.
∫

3x− 2
x2 − 2x+ 10

dx

70.
∫

7− 2x
x2 + 12x+ 61

dx

71.
∫

x2 + 5x− 2
x2 − 10x+ 32

dx

72.
∫

x3

x2 + 9
dx
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73.
∫

x3 − x
x2 + 4x+ 9

dx

74.
∫

sin(x)
cos2(x) + 1

dx

75.
∫

cos(x)
sin2(x) + 1

dx

76.
∫

cos(x)
1− sin2(x)

dx

77.
∫

3x− 3√
x2 − 2x− 6

dx

78.
∫

x− 3√
x2 − 6x+ 8

dx

In Exercises 79 – 86, evaluate the definite integral.

79.
∫ 3

1

1
x− 5

dx

80.
∫ 6

2
x
√
x− 2dx

81.
∫ π/2

−π/2
sin2 x cos x dx

82.
∫ 1

0
2x(1− x2)4 dx

83.
∫ −1

−2
(x+ 1)ex

2+2x+1 dx

84.
∫ 1

−1

1
1+ x2

dx

85.
∫ 4

2

1
x2 − 6x+ 10

dx

86.
∫ √

3

1

1√
4− x2

dx
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6.2 IntegraƟon by Parts
Here’s a simple integral that we can’t yet evaluate:∫

x cos x dx.

It’s a simple maƩer to take the derivaƟve of the integrand using the Product
Rule, but there is no Product Rule for integrals. However, this secƟon introduces
IntegraƟon by Parts, a method of integraƟon that is based on the Product Rule
for derivaƟves. It will enable us to evaluate this integral.

The Product Rule says that ifu and v are funcƟons of x, then (uv)′ = u ′v+uv ′.
For simplicity, we’ve wriƩen u for u(x) and v for v(x). Suppose we integrate both
sides with respect to x. This gives∫

(uv)′ dx =
∫
(u ′v+ uv ′) dx.

By the Fundamental Theoremof Calculus, the leŌ side integrates to uv. The right
side can be broken up into two integrals, and we have

uv =
∫

u ′v dx+
∫

uv ′ dx.

Solving for the second integral we have∫
uv ′ dx = uv−

∫
u ′v dx.

Using differenƟal notaƟon, we can write du = u ′(x)dx and dv = v ′(x)dx and
the expression above can be wriƩen as follows:∫

u dv = uv−
∫

v du.

This is the IntegraƟon by Parts formula. For reference purposes, we state this in
a theorem.

Theorem 6.2.1 IntegraƟon by Parts

Let u and v be differenƟable funcƟons of x on an interval I containing a
and b. Then ∫

u dv = uv−
∫

v du,

and ∫ x=b

x=a
u dv = uv

∣∣∣b
a
−
∫ x=b

x=a
v du.
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Let’s try an example to understand our new technique.

Example 6.2.1 IntegraƟng using IntegraƟon by Parts
Evaluate

∫
x cos x dx.

SÊ½çã®ÊÄ The key to IntegraƟon by Parts is to idenƟfy part of the in-
tegrand as “u” and part as “dv.” Regular pracƟce will help one make good iden-
ƟficaƟons, and later we will introduce some principles that help. For now, let
u = x and dv = cos x dx.

It is generally useful to make a small table of these values as done below.
Right now we only know u and dv as shown on the leŌ of Figure 6.2.1; on the
right we fill in the rest of what we need. If u = x, then du = dx. Since
dv = cos x dx, v is an anƟderivaƟve of cos x. We choose v = sin x.

u = x v = ?
du = ? dv = cos x dx

⇒ u = x v = sin x
du = dx dv = cos x dx

Figure 6.2.1: Seƫng up IntegraƟon by Parts.

Now subsƟtute all of this into the IntegraƟon by Parts formula, giving∫
x cos x dx = x sin x−

∫
sin x dx.

We can then integrate sin x to get− cos x+ C and overall our answer is∫
x cos x dx = x sin x+ cos x+ C.

Note how the anƟderivaƟve contains a product, x sin x. This product is what
makes IntegraƟon by Parts necessary.

The example above demonstrates how IntegraƟon by Parts works in general.
We try to idenƟfy u and dv in the integral we are given, and the key is that we
usually want to choose u and dv so that du is simpler than u and v is hopefully
not too much more complicated than dv. This will mean that the integral on the
right side of the IntegraƟon by Parts formula,

∫
v du will be simpler to integrate

than the original integral
∫
u dv.

In the example above, we chose u = x and dv = cos x dx. Then du = dxwas
simpler than u and v = sin x is no more complicated than dv. Therefore, instead
of integraƟng x cos x dx, we could integrate sin x dx, which we knew how to do.

A useful mnemonic for helping to determine u is “LIATE,” where

L = Logarithmic, I = Inverse Trig., A = Algebraic (polynomials),
T = Trigonometric, and E = ExponenƟal.
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6.2 IntegraƟon by Parts

If the integrand contains both a logarithmic and an algebraic term, in general
leƫng u be the logarithmic term works best, as indicated by L coming before A
in LIATE.

We now consider another example.

Example 6.2.2 IntegraƟng using IntegraƟon by Parts
Evaluate

∫
xex dx.

SÊ½çã®ÊÄ The integrand contains anAlgebraic term (x) and an ExponenƟal
term (ex). Our mnemonic suggests leƫng u be the algebraic term, so we choose
u = x and dv = ex dx. Then du = dx and v = ex as indicated by the tables below.

u = x v = ?
du = ? dv = ex dx

⇒ u = x v = ex

du = dx dv = ex dx

Figure 6.2.2: Seƫng up IntegraƟon by Parts.

We see du is simpler than u, while there is no change in going from dv to v.
This is good. The IntegraƟon by Parts formula gives∫

xex dx = xex −
∫

ex dx.

The integral on the right is simple; our final answer is∫
xex dx = xex − ex + C.

Note again how the anƟderivaƟves contain a product term.

Example 6.2.3 IntegraƟng using IntegraƟon by Parts
Evaluate

∫
x2 cos x dx.

SÊ½çã®ÊÄ Themnemonic suggests leƫngu = x2 insteadof the trigono-
metric funcƟon, hence dv = cos x dx. Then du = 2x dx and v = sin x as shown
below.

u = x2 v = ?
du = ? dv = cos x dx

⇒ u = x2 v = sin x
du = 2x dx dv = cos x dx

Figure 6.2.3: Seƫng up IntegraƟon by Parts.
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The IntegraƟon by Parts formula gives∫
x2 cos x dx = x2 sin x−

∫
2x sin x dx.

At this point, the integral on the right is indeed simpler than the one we started
with, but to evaluate it, we need to do IntegraƟon by Parts again. Here we
choose u = 2x and dv = sin x and fill in the rest below.

u = 2x v = ?
du = ? dv = sin x dx

⇒ u = 2x v = − cos x
du = 2 dx dv = sin x dx

Figure 6.2.4: Seƫng up IntegraƟon by Parts (again).∫
x2 cos x dx = x2 sin x−

(
−2x cos x−

∫
−2 cos x dx

)
.

The integral all the way on the right is now something we can evaluate. It eval-
uates to −2 sin x. Then going through and simplifying, being careful to keep all
the signs straight, our answer is∫

x2 cos x dx = x2 sin x+ 2x cos x− 2 sin x+ C.

Example 6.2.4 IntegraƟng using IntegraƟon by Parts
Evaluate

∫
ex cos x dx.

SÊ½çã®ÊÄ This is a classic problem. Our mnemonic suggests leƫng u
be the trigonometric funcƟon instead of the exponenƟal. In this parƟcular ex-
ample, one can let u be either cos x or ex; to demonstrate that we do not have
to follow LIATE, we choose u = ex and hence dv = cos x dx. Then du = ex dx
and v = sin x as shown below.

u = ex v = ?
du = ? dv = cos x dx

⇒ u = ex v = sin x
du = ex dx dv = cos x dx

Figure 6.2.5: Seƫng up IntegraƟon by Parts.

NoƟce that du is no simpler than u, going against our general rule (but bear
with us). The IntegraƟon by Parts formula yields∫

ex cos x dx = ex sin x−
∫

ex sin x dx.
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6.2 IntegraƟon by Parts

The integral on the right is not much different than the one we started with, so
it seems like we have goƩen nowhere. Let’s keep working and apply IntegraƟon
by Parts to the new integral, using u = ex and dv = sin x dx. This leads us to the
following:

u = ex v = ?
du = ? dv = sin x dx

⇒ u = ex v = − cos x
du = ex dx dv = sin x dx

Figure 6.2.6: Seƫng up IntegraƟon by Parts (again).

The IntegraƟon by Parts formula then gives:∫
ex cos x dx = ex sin x−

(
−ex cos x−

∫
−ex cos x dx

)
= ex sin x+ ex cos x−

∫
ex cos x dx.

It seems we are back right where we started, as the right hand side contains∫
ex cos x dx. But this is actually a good thing.

Add
∫

ex cos x dx to both sides. This gives

2
∫

ex cos x dx = ex sin x+ ex cos x

Now divide both sides by 2:∫
ex cos x dx =

1
2
(
ex sin x+ ex cos x

)
.

Simplifying a liƩle and adding the constant of integraƟon, our answer is thus∫
ex cos x dx =

1
2
ex (sin x+ cos x) + C.

Example 6.2.5 IntegraƟng using IntegraƟon by Parts: anƟderivaƟve of ln x
Evaluate

∫
ln x dx.

SÊ½çã®ÊÄ Onemay have noƟced that we have rules for integraƟng the
familiar trigonometric funcƟons and ex, but we have not yet given a rule for
integraƟng ln x. That is because ln x can’t easily be integrated with any of the
rules we have learned up to this point. But we can find its anƟderivaƟve by a
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clever applicaƟon of IntegraƟon by Parts. Set u = ln x and dv = dx. This is a
good, sneaky trick to learn as it can help in other situaƟons. This determines
du = (1/x) dx and v = x as shown below.

u = ln x v = ?
du = ? dv = dx

⇒ u = ln x v = x
du = 1/x dx dv = dx

Figure 6.2.7: Seƫng up IntegraƟon by Parts.

Puƫng this all together in the IntegraƟon by Parts formula, things work out
very nicely: ∫

ln x dx = x ln x−
∫

x
1
x
dx.

The new integral simplifies to
∫
1 dx, which is about as simple as things get. Its

integral is x+ C and our answer is∫
ln x dx = x ln x− x+ C.

Example 6.2.6 IntegraƟng using Int. by Parts: anƟderivaƟve of arctan x
Evaluate

∫
arctan x dx.

SÊ½çã®ÊÄ The same sneaky trick we used above works here. Let u =
arctan x and dv = dx. Then du = 1/(1 + x2) dx and v = x. The IntegraƟon by
Parts formula gives∫

arctan x dx = x arctan x−
∫

x
1+ x2

dx.

The integral on the right can be solved by subsƟtuƟon. Taking u = 1 + x2, we
get du = 2x dx. The integral then becomes∫

arctan x dx = x arctan x− 1
2

∫
1
u
du.

The integral on the right evaluates to ln |u| + C, which becomes ln(1 + x2) + C
(we can drop the absolute values as 1 + x2 is always posƟve). Therefore, the
answer is ∫

arctan x dx = x arctan x− 1
2
ln(1+ x2) + C.
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6.2 IntegraƟon by Parts

SubsƟtuƟon Before IntegraƟon

When taking derivaƟves, it was common to employ mulƟple rules (such as
using both theQuoƟent and the Chain Rules). It should then come as no surprise
that some integrals are best evaluated by combining integraƟon techniques. In
parƟcular, here we illustrate making an “unusual” subsƟtuƟon first before using
IntegraƟon by Parts.

Example 6.2.7 IntegraƟon by Parts aŌer subsƟtuƟon
Evaluate

∫
cos(ln x) dx.

SÊ½çã®ÊÄ The integrand contains a composiƟon of funcƟons, leading
us to think SubsƟtuƟon would be beneficial. Leƫng u = ln x, we have du =
1/x dx. This seems problemaƟc, as we do not have a 1/x in the integrand. But
consider:

du =
1
x
dx ⇒ x · du = dx.

Since u = ln x, we can use inverse funcƟons and conclude that x = eu. Therefore
we have that

dx = x · du
= eu du.

We can thus replace ln x with u and dx with eu du. Thus we rewrite our integral
as ∫

cos(ln x) dx =
∫

eu cos u du.

We evaluated this integral in Example 6.2.4. Using the result there, we have:∫
cos(ln x) dx =

∫
eu cos u du

=
1
2
eu
(
sin u+ cos u

)
+ C

=
1
2
eln x
(
sin(ln x) + cos(ln x)

)
+ C

=
1
2
x
(
sin(ln x) + cos(ln x)

)
+ C.

Definite Integrals and IntegraƟon By Parts

So far we have focused only on evaluaƟng indefinite integrals. Of course, we
can use IntegraƟon by Parts to evaluate definite integrals as well, as Theorem
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6.2.1 states. We do so in the next example.

Example 6.2.8 Definite integraƟon using IntegraƟon by Parts

Evaluate
∫ 2

1
x2 ln x dx.

SÊ½çã®ÊÄ Our mnemonic suggests leƫng u = ln x, hence dv = x2 dx.
We then get du = (1/x) dx and v = x3/3 as shown below.

u = ln x v = ?
du = ? dv = x2 dx

⇒ u = ln x v = x3/3
du = 1/x dx dv = x2 dx

Figure 6.2.8: Seƫng up IntegraƟon by Parts.

The IntegraƟon by Parts formula then gives∫ 2

1
x2 ln x dx =

x3

3
ln x
∣∣∣∣2
1
−
∫ 2

1

x3

3
1
x
dx

=
x3

3
ln x
∣∣∣∣2
1
−
∫ 2

1

x2

3
dx

=
x3

3
ln x
∣∣∣∣2
1
− x3

9

∣∣∣∣2
1

=

(
x3

3
ln x− x3

9

) ∣∣∣∣2
1

=

(
8
3
ln 2− 8

9

)
−
(
1
3
ln 1− 1

9

)
=

8
3
ln 2− 7

9
≈ 1.07.

In general, IntegraƟon by Parts is useful for integraƟng certain products of
funcƟons, like

∫
xex dx or

∫
x3 sin x dx. It is also useful for integrals involving

logarithms and inverse trigonometric funcƟons.
As stated before, integraƟon is generally more difficult than derivaƟon. We

are developing tools for handling a large array of integrals, and experience will
tell us when one tool is preferable/necessary over another. For instance, con-
sider the three similar–looking integrals∫

xex dx,
∫

xex
2
dx and

∫
xex

3
dx.
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6.2 IntegraƟon by Parts

While the first is calculated easilywith IntegraƟonby Parts, the second is best
approached with SubsƟtuƟon. Taking things one step further, the third integral
has no answer in terms of elementary funcƟons, so none of the methods we
learn in calculus will get us the exact answer.

IntegraƟon by Parts is a very useful method, second only to SubsƟtuƟon. In
the following secƟons of this chapter, we conƟnue to learn other integraƟon
techniques. The next secƟon focuses on handling integrals containing trigono-
metric funcƟons.
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Exercises 6.2
Terms and Concepts

1. T/F: IntegraƟon by Parts is useful in evaluaƟng integrands
that contain products of funcƟons.

2. T/F: IntegraƟon by Parts can be thought of as the “opposite
of the Chain Rule.”

3. For what is “LIATE” useful?

4. T/F: If the integral that results from IntegraƟon by Parts ap-
pears to also need IntegraƟon by Parts, then a mistake was
made in the orginal choice of “u”.

Problems
In Exercises 5 – 34, evaluate the given indefinite integral.

5.
∫

x sin x dx

6.
∫

xe−x dx

7.
∫

x2 sin x dx

8.
∫

x3 sin x dx

9.
∫

xex
2
dx

10.
∫

x3ex dx

11.
∫

xe−2x dx

12.
∫

ex sin x dx

13.
∫

e2x cos x dx

14.
∫

e2x sin(3x) dx

15.
∫

e5x cos(5x) dx

16.
∫

sin x cos x dx

17.
∫

sin−1 x dx

18.
∫

tan−1(2x) dx

19.
∫

x tan−1 x dx

20.
∫

sin−1 x dx

21.
∫

x ln x dx

22.
∫

(x− 2) ln x dx

23.
∫

x ln(x− 1) dx

24.
∫

x ln(x2) dx

25.
∫

x2 ln x dx

26.
∫

(ln x)2 dx

27.
∫

(ln(x+ 1))2 dx

28.
∫

x sec2 x dx

29.
∫

x csc2 x dx

30.
∫

x
√
x− 2 dx

31.
∫

x
√
x2 − 2 dx

32.
∫

sec x tan x dx

33.
∫

x sec x tan x dx

34.
∫

x csc x cot x dx

In Exercises 35 – 40, evaluate the indefinite integral aŌer first
making a subsƟtuƟon.

35.
∫

sin(ln x) dx

36.
∫

e2x cos
(
ex
)
dx
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37.
∫

sin(
√
x) dx

38.
∫

ln(
√
x) dx

39.
∫

e
√

x dx

40.
∫

eln x dx

In Exercises 41 – 49, evaluate the definite integral. Note: the
corresponding indefinite integrals appear in Exercises 5 – 13.

41.
∫ π

0
x sin x dx

42.
∫ 1

−1
xe−x dx

43.
∫ π/4

−π/4
x2 sin x dx

44.
∫ π/2

−π/2
x3 sin x dx

45.
∫ √

ln 2

0
xex

2
dx

46.
∫ 1

0
x3ex dx

47.
∫ 2

1
xe−2x dx

48.
∫ π

0
ex sin x dx

49.
∫ π/2

−π/2
e2x cos x dx
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6.3 Trigonometric Integrals
FuncƟons involving trigonometric funcƟons are useful as they are good at de-
scribing periodic behavior. This secƟon describes several techniques for finding
anƟderivaƟves of certain combinaƟons of trigonometric funcƟons.

Integrals of the form
∫

sinm x cosn x dx
In learning the technique of SubsƟtuƟon, we saw the integral

∫
sin x cos x dx

in Example 6.1.4. The integraƟonwas not difficult, and one could easily evaluate
the indefinite integral by leƫng u = sin x or by leƫng u = cos x. This integral is
easy since the power of both sine and cosine is 1.

Wegeneralize this integral and consider integrals of the form
∫
sinm x cosn x dx,

where m, n are nonnegaƟve integers. Our strategy for evaluaƟng these inte-
grals is to use the idenƟty cos2 x + sin2 x = 1 to convert high powers of one
trigonometric funcƟon into the other, leaving a single sine or cosine term in the
integrand. We summarize the general technique in the following Key Idea.

Key Idea 6.3.1 Integrals Involving Powers of Sine and Cosine

Consider
∫

sinm x cosn x dx, wherem, n are nonnegaƟve integers.

1. Ifm is odd, thenm = 2k+ 1 for some integer k. Rewrite

sinm x = sin2k+1 x = sin2k x sin x = (sin2 x)k sin x = (1− cos2 x)k sin x.

Then ∫
sinm x cosn x dx =

∫
(1− cos2 x)k sin x cosn x dx = −

∫
(1− u2)kun du,

where u = cos x and du = − sin x dx.

2. If n is odd, then using subsƟtuƟons similar to that outlined above we have∫
sinm x cosn x dx =

∫
um(1− u2)k du,

where u = sin x and du = cos x dx.

3. If bothm and n are even, use the power–reducing idenƟƟes

cos2 x = 1+ cos(2x)
2

and sin2 x = 1− cos(2x)
2

to reduce the degree of the integrand. Expand the result and apply the principles
of this Key Idea again.
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We pracƟce applying Key Idea 6.3.1 in the next examples.

Example 6.3.1 IntegraƟng powers of sine and cosine
Evaluate

∫
sin5 x cos8 x dx.

SÊ½çã®ÊÄ The power of the sine term is odd, so we rewrite sin5 x as

sin5 x = sin4 x sin x = (sin2 x)2 sin x = (1− cos2 x)2 sin x.

Our integral is now
∫
(1− cos2 x)2 cos8 x sin x dx. Let u = cos x, hence du =

− sin x dx. Making the subsƟtuƟon and expanding the integrand gives∫
(1−cos2)2 cos8 x sin x dx = −

∫
(1−u2)2u8 du = −

∫ (
1−2u2+u4

)
u8 du = −

∫ (
u8−2u10+u12

)
du.

This final integral is not difficult to evaluate, giving

−
∫ (

u8 − 2u10 + u12
)
du = −1

9
u9 +

2
11

u11 − 1
13

u13 + C

= −1
9
cos9 x+

2
11

cos11 x− 1
13

cos13 x+ C.

Example 6.3.2 IntegraƟng powers of sine and cosine
Evaluate

∫
sin5 x cos9 x dx.

SÊ½çã®ÊÄ Thepowers of both the sine and cosine terms are odd, there-
fore we can apply the techniques of Key Idea 6.3.1 to either power. We choose
to work with the power of the cosine term since the previous example used the
sine term’s power.

We rewrite cos9 x as

cos9 x = cos8 x cos x
= (cos2 x)4 cos x
= (1− sin2 x)4 cos x
= (1− 4 sin2 x+ 6 sin4 x− 4 sin6 x+ sin8 x) cos x.

We rewrite the integral as∫
sin5 x cos9 x dx =

∫
sin5 x

(
1− 4 sin2 x+ 6 sin4 x− 4 sin6 x+ sin8 x

)
cos x dx.
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Figure 6.3.1: A plot of f(x) and g(x) from
Example 6.3.2 and the Technology Note.
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Now subsƟtute and integrate, using u = sin x and du = cos x dx.∫
sin5 x

(
1− 4 sin2 x+ 6 sin4 x− 4 sin6 x+ sin8 x

)
cos x dx =∫

u5(1− 4u2 + 6u4 − 4u6 + u8) du =

∫ (
u5 − 4u7 + 6u9 − 4u11 + u13

)
du

=
1
6
u6 − 1

2
u8 + 3

5
u10 − 1

3
u12 + 1

14
u14 + C

=
1
6
sin6 x− 1

2
sin8 x+ 3

5
sin10 x+ . . .

− 1
3
sin12 x+ 1

14
sin14 x+ C.

Technology Note: The work we are doing here can be a bit tedious, but the
skills developed (problem solving, algebraic manipulaƟon, etc.) are important.
Nowadays problems of this sort are oŌen solved using a computer algebra sys-
tem. The powerful programMathemaƟca® integrates

∫
sin5 x cos9 x dx as

f(x) = −45 cos(2x)
16384

−5 cos(4x)
8192

+
19 cos(6x)
49152

+
cos(8x)
4096

− cos(10x)
81920

− cos(12x)
24576

− cos(14x)
114688

,

which clearly has a different form than our answer in Example 6.3.2, which is

g(x) =
1
6
sin6 x− 1

2
sin8 x+

3
5
sin10 x− 1

3
sin12 x+

1
14

sin14 x.

Figure 6.3.1 shows a graph of f and g; they are clearly not equal, but they differ
only by a constant. That is g(x) = f(x) + C for some constant C. So we have
two different anƟderivaƟves of the same funcƟon, meaning both answers are
correct.

Example 6.3.3 IntegraƟng powers of sine and cosine
Evaluate

∫
cos4 x sin2 x dx.

SÊ½çã®ÊÄ The powers of sine and cosine are both even, so we employ
the power–reducing formulas and algebra as follows.∫

cos4 x sin2 x dx =
∫ (

1+ cos(2x)
2

)2(1− cos(2x)
2

)
dx

=

∫
1+ 2 cos(2x) + cos2(2x)

4
· 1− cos(2x)

2
dx

=

∫
1
8
(
1+ cos(2x)− cos2(2x)− cos3(2x)

)
dx

The cos(2x) term is easy to integrate, especiallywith Key Idea 6.1.1. The cos2(2x)
term is another trigonometric integral with an even power, requiring the power–
reducing formula again. The cos3(2x) term is a cosine funcƟon with an odd
power, requiring a subsƟtuƟon as done before. We integrate each in turn below.
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∫
cos(2x) dx =

1
2
sin(2x) + C.

∫
cos2(2x) dx =

∫
1+ cos(4x)

2
dx =

1
2
(
x+

1
4
sin(4x)

)
+ C.

Finally, we rewrite cos3(2x) as

cos3(2x) = cos2(2x) cos(2x) =
(
1− sin2(2x)

)
cos(2x).

Leƫng u = sin(2x), we have du = 2 cos(2x) dx, hence∫
cos3(2x) dx =

∫ (
1− sin2(2x)

)
cos(2x) dx

=

∫
1
2
(1− u2) du

=
1
2

(
u− 1

3
u3
)
+ C

=
1
2

(
sin(2x)− 1

3
sin3(2x)

)
+ C

Puƫng all the pieces together, we have∫
cos4 x sin2 x dx =

∫
1
8
(
1+ cos(2x)− cos2(2x)− cos3(2x)

)
dx

=
1
8

[
x+

1
2
sin(2x)− 1

2
(
x+

1
4
sin(4x)

)
− 1

2

(
sin(2x)− 1

3
sin3(2x)

)]
+ C

=
1
8

[1
2
x− 1

8
sin(4x) +

1
6
sin3(2x)

]
+ C

The process above was a bit long and tedious, but being able to work a prob-
lem such as this from start to finish is important.

Integrals of the form
∫

sin(mx) sin(nx) dx,
∫

cos(mx) cos(nx) dx,

and
∫

sin(mx) cos(nx) dx.

FuncƟons that contain products of sines and cosines of differing periods are
important in many applicaƟons including the analysis of sound waves. Integrals
of the form∫

sin(mx) sin(nx) dx,
∫

cos(mx) cos(nx) dx and
∫

sin(mx) cos(nx) dx
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are best approached by first applying the Product to Sum Formulas found in the
back cover of this text, namely

sin(mx) sin(nx) =
1
2

[
cos
(
(m− n)x

)
− cos

(
(m+ n)x

)]
cos(mx) cos(nx) =

1
2

[
cos
(
(m− n)x

)
+ cos

(
(m+ n)x

)]
sin(mx) cos(nx) =

1
2

[
sin
(
(m− n)x

)
+ sin

(
(m+ n)x

)]
Example 6.3.4 IntegraƟng products of sin(mx) and cos(nx)

Evaluate
∫

sin(5x) cos(2x) dx.

SÊ½çã®ÊÄ The applicaƟon of the formula and subsequent integraƟon
are straighƞorward:∫

sin(5x) cos(2x) dx =
∫

1
2

[
sin(3x) + sin(7x)

]
dx

= −1
6
cos(3x)− 1

14
cos(7x) + C

Integrals of the form
∫

tanm x secn x dx.

When evaluaƟng integrals of the form
∫
sinm x cosn x dx, the Pythagorean

Theorem allowed us to convert even powers of sine into even powers of cosine,
and vise–versa. If, for instance, the power of sine was odd, we pulled out one
sin x and converted the remaining even power of sin x into a funcƟon using pow-
ers of cos x, leading to an easy subsƟtuƟon.

The same basic strategy applies to integrals of the form
∫
tanm x secn x dx,

albeit a bit more nuanced. The following three facts will prove useful:

• d
dx (tan x) = sec2 x,

• d
dx (sec x) = sec x tan x , and

• 1+ tan2 x = sec2 x (the Pythagorean Theorem).

If the integrand can be manipulated to separate a sec2 x term with the re-
maining secant power even, or if a sec x tan x term can be separated with the
remaining tan x power even, the Pythagorean Theorem can be employed, lead-
ing to a simple subsƟtuƟon. This strategy is outlined in the following Key Idea.
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Key Idea 6.3.2 Integrals Involving Powers of Tangent and Secant

Consider
∫

tanm x secn x dx, wherem, n are nonnegaƟve integers.

1. If n is even, then n = 2k for some integer k. Rewrite secn x as

secn x = sec2k x = sec2k−2 x sec2 x = (1+ tan2 x)k−1 sec2 x.

Then ∫
tanm x secn x dx =

∫
tanm x(1+ tan2 x)k−1 sec2 x dx =

∫
um(1+ u2)k−1 du,

where u = tan x and du = sec2 x dx.

2. Ifm is odd, thenm = 2k+ 1 for some integer k. Rewrite tanm x secn x as

tanm x secn x = tan2k+1 x secn x = tan2k x secn−1 x sec x tan x = (sec2 x− 1)k secn−1 x sec x tan x.

Then ∫
tanm x secn x dx =

∫
(sec2 x− 1)k secn−1 x sec x tan x dx =

∫
(u2 − 1)kun−1 du,

where u = sec x and du = sec x tan x dx.

3. If n is odd andm is even, thenm = 2k for some integer k. Convert tanm x to (sec2 x− 1)k. Expand
the new integrand and use IntegraƟon By Parts, with dv = sec2 x dx.

4. Ifm is even and n = 0, rewrite tanm x as

tanm x = tanm−2 x tan2 x = tanm−2 x(sec2 x− 1) = tanm−2 sec2 x− tanm−2 x.

So ∫
tanm x dx =

∫
tanm−2 sec2 x dx︸ ︷︷ ︸
apply rule #1

−
∫

tanm−2 x dx︸ ︷︷ ︸
apply rule #4 again

.

The techniques described in items 1 and 2 of Key Idea 6.3.2 are relaƟvely
straighƞorward, but the techniques in items 3 and 4 can be rather tedious. A
few examples will help with these methods.
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Example 6.3.5 IntegraƟng powers of tangent and secant
Evaluate

∫
tan2 x sec6 x dx.

SÊ½çã®ÊÄ Since the power of secant is even, we use rule #1 from Key
Idea 6.3.2 and pull out a sec2 x in the integrand. We convert the remaining pow-
ers of secant into powers of tangent.∫

tan2 x sec6 x dx =
∫

tan2 x sec4 x sec2 x dx

=

∫
tan2 x

(
1+ tan2 x

)2 sec2 x dx
Now subsƟtute, with u = tan x, with du = sec2 x dx.

=

∫
u2
(
1+ u2

)2 du
We leave the integraƟon and subsequent subsƟtuƟon to the reader. The final
answer is

=
1
3
tan3 x+

2
5
tan5 x+

1
7
tan7 x+ C.

Example 6.3.6 IntegraƟng powers of tangent and secant
Evaluate

∫
sec3 x dx.

SÊ½çã®ÊÄ We apply rule #3 from Key Idea 6.3.2 as the power of secant
is odd and the power of tangent is even (0 is an even number). We use Integra-
Ɵon by Parts; the rule suggests leƫng dv = sec2 x dx, meaning that u = sec x.

u = sec x v = ?
du = ? dv = sec2 x dx

⇒ u = sec x v = tan x
du = sec x tan x dx dv = sec2 x dx

Figure 6.3.2: Seƫng up IntegraƟon by Parts.

Employing IntegraƟon by Parts, we have∫
sec3 x dx =

∫
sec x︸︷︷︸

u

· sec2 x dx︸ ︷︷ ︸
dv

= sec x tan x−
∫

sec x tan2 x dx.
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This new integral also requires applying rule #3 of Key Idea 6.3.2:

= sec x tan x−
∫

sec x
(
sec2 x− 1

)
dx

= sec x tan x−
∫

sec3 x dx+
∫

sec x dx

= sec x tan x−
∫

sec3 x dx+ ln | sec x+ tan x|

In previous applicaƟons of IntegraƟon by Parts, we have seen where the original
integral has reappeared in our work. We resolve this by adding

∫
sec3 x dx to

both sides, giving:

2
∫

sec3 x dx = sec x tan x+ ln | sec x+ tan x|∫
sec3 x dx =

1
2

(
sec x tan x+ ln | sec x+ tan x|

)
+ C

We give one more example.

Example 6.3.7 IntegraƟng powers of tangent and secant
Evaluate

∫
tan6 x dx.

SÊ½çã®ÊÄ We employ rule #4 of Key Idea 6.3.2.∫
tan6 x dx =

∫
tan4 x tan2 x dx

=

∫
tan4 x

(
sec2 x− 1

)
dx

=

∫
tan4 x sec2 x dx−

∫
tan4 x dx

Integrate the first integral with subsƟtuƟon, u = tan x; integrate the second by
employing rule #4 again.

=
1
5
tan5 x−

∫
tan2 x tan2 x dx

=
1
5
tan5 x−

∫
tan2 x

(
sec2 x− 1

)
dx

=
1
5
tan5 x−

∫
tan2 x sec2 x dx+

∫
tan2 x dx
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Again, use subsƟtuƟon for the first integral and rule #4 for the second.

=
1
5
tan5 x− 1

3
tan3 x+

∫ (
sec2 x− 1

)
dx

=
1
5
tan5 x− 1

3
tan3 x+ tan x− x+ C.

These laƩer examples were admiƩedly long, with repeated applicaƟons of
the same rule. Try to not be overwhelmed by the length of the problem, but
rather admire how robust this soluƟon method is. A trigonometric funcƟon of
a high power can be systemaƟcally reduced to trigonometric funcƟons of lower
powers unƟl all anƟderivaƟves can be computed.

The next secƟon introduces an integraƟon technique known as Trigonomet-
ric SubsƟtuƟon, a clever combinaƟon of SubsƟtuƟon and the Pythagorean The-
orem.
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Exercises 6.3
Terms and Concepts

1. T/F:
∫

sin2 x cos2 x dx cannot be evaluated using the tech-
niques described in this secƟon since both powers of sin x
and cos x are even.

2. T/F:
∫

sin3 x cos3 x dx cannot be evaluated using the tech-
niques described in this secƟon since both powers of sin x
and cos x are odd.

3. T/F: This secƟon addresses how to evaluate indefinite inte-
grals such as

∫
sin5 x tan3 x dx.

4. T/F: SomeƟmes computer programs evaluate integrals in-
volving trigonometric funcƟons differently than one would
using the techniques of this secƟon. When this is the case,
the techniques of this secƟon have failed and one should
only trust the answer given by the computer.

Problems
In Exercises 5 – 28, evaluate the indefinite integral.

5.
∫

sin x cos4 x dx

6.
∫

sin3 x cos x dx

7.
∫

sin3 x cos2 x dx

8.
∫

sin3 x cos3 x dx

9.
∫

sin6 x cos5 x dx

10.
∫

sin2 x cos7 x dx

11.
∫

sin2 x cos2 x dx

12.
∫

sin x cos x dx

13.
∫

sin(5x) cos(3x) dx

14.
∫

sin(x) cos(2x) dx

15.
∫

sin(3x) sin(7x) dx

16.
∫

sin(πx) sin(2πx) dx

17.
∫

cos(x) cos(2x) dx

18.
∫

cos
(π
2
x
)
cos(πx) dx

19.
∫

tan4 x sec2 x dx

20.
∫

tan2 x sec4 x dx

21.
∫

tan3 x sec4 x dx

22.
∫

tan3 x sec2 x dx

23.
∫

tan3 x sec3 x dx

24.
∫

tan5 x sec5 x dx

25.
∫

tan4 x dx

26.
∫

sec5 x dx

27.
∫

tan2 x sec x dx

28.
∫

tan2 x sec3 x dx

In Exercises 29 – 35, evaluate the definite integral. Note: the
corresponding indefinite integrals appear in the previous set.

29.
∫ π

0
sin x cos4 x dx

30.
∫ π

−π

sin3 x cos x dx

31.
∫ π/2

−π/2
sin2 x cos7 x dx

32.
∫ π/2

0
sin(5x) cos(3x) dx

33.
∫ π/2

−π/2
cos(x) cos(2x) dx

34.
∫ π/4

0
tan4 x sec2 x dx

35.
∫ π/4

−π/4
tan2 x sec4 x dx 303
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6.4 Trigonometric SubsƟtuƟon
In SecƟon 5.2 we defined the definite integral as the “signed area under the
curve.” In that secƟon we had not yet learned the Fundamental Theorem of
Calculus, so we only evaluated special definite integrals which described nice,
geometric shapes. For instance, we were able to evaluate∫ 3

−3

√
9− x2 dx =

9π
2

(6.1)

as we recognized that f(x) =
√
9− x2 described the upper half of a circle with

radius 3.
We have since learned a number of integraƟon techniques, including Sub-

sƟtuƟon and IntegraƟon by Parts, yet we are sƟll unable to evaluate the above
integral without resorƟng to a geometric interpretaƟon. This secƟon introduces
Trigonometric SubsƟtuƟon, amethod of integraƟon that fills this gap in our inte-
graƟon skill. This techniqueworks on the sameprinciple as SubsƟtuƟon as found
in SecƟon 6.1, though it can feel “backward.” In SecƟon 6.1, we set u = f(x), for
some funcƟon f, and replaced f(x) with u. In this secƟon, we will set x = f(θ),
where f is a trigonometric funcƟon, then replace x with f(θ).

We start by demonstraƟng this method in evaluaƟng the integral in EquaƟon
(6.1). AŌer the example, wewill generalize themethod and givemore examples.

Example 6.4.1 Using Trigonometric SubsƟtuƟon

Evaluate
∫ 3

−3

√
9− x2 dx.

SÊ½çã®ÊÄ We begin by noƟng that 9 sin2 θ + 9 cos2 θ = 9, and hence
9 cos2 θ = 9−9 sin2 θ. If we let x = 3 sin θ, then 9−x2 = 9−9 sin2 θ = 9 cos2 θ.

Seƫng x = 3 sin θ gives dx = 3 cos θ dθ. We are almost ready to subsƟtute.
We also wish to change our bounds of integraƟon. The bound x = −3 corre-
sponds to θ = −π/2 (for when θ = −π/2, x = 3 sin θ = −3). Likewise, the
bound of x = 3 is replaced by the bound θ = π/2. Thus∫ 3

−3

√
9− x2 dx =

∫ π/2

−π/2

√
9− 9 sin2 θ(3 cos θ) dθ

=

∫ π/2

−π/2
3
√
9 cos2 θ cos θ dθ

=

∫ π/2

−π/2
3|3 cos θ| cos θ dθ.

On [−π/2, π/2], cos θ is always posiƟve, so we can drop the absolute value bars,
then employ a power–reducing formula:
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=

∫ π/2

−π/2
9 cos2 θ dθ

=

∫ π/2

−π/2

9
2
(
1+ cos(2θ)

)
dθ

=
9
2
(
θ +

1
2
sin(2θ)

)∣∣∣∣∣
π/2

−π/2

=
9
2
π.

This matches our answer from before.

We now describe in detail Trigonometric SubsƟtuƟon. This method excels
when dealing with integrands that contain

√
a2 − x2,

√
x2 − a2 and

√
x2 + a2.

The following Key Idea outlines the procedure for each case, followed by more
examples. Each right triangle acts as a reference to help us understand the re-
laƟonships between x and θ.

Key Idea 6.4.1 Trigonometric SubsƟtuƟon

(a) For integrands containing
√
a2 − x2:

Let x = a sin θ, dx = a cos θ dθ

Thus θ = sin−1(x/a), for−π/2 ≤ θ ≤ π/2.

On this interval, cos θ ≥ 0, so
√
a2 − x2 = a cos θ

.. √
a2 − x2

.

x

.

a

. θ

(b) For integrands containing
√
x2 + a2:

Let x = a tan θ, dx = a sec2 θ dθ

Thus θ = tan−1(x/a), for−π/2 < θ < π/2.

On this interval, sec θ > 0, so
√
x2 + a2 = a sec θ

..
a

.

x

.

√ x2 +
a2

. θ

(c) For integrands containing
√
x2 − a2:

Let x = a sec θ, dx = a sec θ tan θ dθ

Thus θ = sec−1(x/a). If x/a ≥ 1, then 0 ≤ θ < π/2;
if x/a ≤ −1, then π/2 < θ ≤ π.

We restrict our work to where x ≥ a, so x/a ≥ 1, and
0 ≤ θ < π/2. On this interval, tan θ ≥ 0, so
√
x2 − a2 = a tan θ

..
a

.

√
x2 − a2

.

x

. θ
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Example 6.4.2 Using Trigonometric SubsƟtuƟon
Evaluate

∫
1√

5+ x2
dx.

SÊ½çã®ÊÄ Using Key Idea 6.4.1(b), we recognize a =
√
5 and set x =√

5 tan θ. This makes dx =
√
5 sec2 θ dθ. We will use the fact that

√
5+ x2 =√

5+ 5 tan2 θ =
√
5 sec2 θ =

√
5 sec θ. SubsƟtuƟng, we have:∫

1√
5+ x2

dx =
∫

1√
5+ 5 tan2 θ

√
5 sec2 θ dθ

=

∫ √
5 sec2 θ√
5 sec θ

dθ

=

∫
sec θ dθ

= ln
∣∣ sec θ + tan θ

∣∣+ C.

While the integraƟon steps are over, we are not yet done. The original problem
was stated in terms of x, whereas our answer is given in terms of θ. We must
convert back to x.

The reference triangle given in Key Idea 6.4.1(b) helps. With x =
√
5 tan θ,

we have

tan θ =
x√
5

and sec θ =

√
x2 + 5√

5
.

This gives ∫
1√

5+ x2
dx = ln

∣∣ sec θ + tan θ
∣∣+ C

= ln

∣∣∣∣∣
√
x2 + 5√

5
+

x√
5

∣∣∣∣∣+ C.

We can leave this answer as is, or we can use a logarithmic idenƟty to simplify
it. Note:

ln

∣∣∣∣∣
√
x2 + 5√

5
+

x√
5

∣∣∣∣∣+ C = ln
∣∣∣∣ 1√

5
(√

x2 + 5+ x
)∣∣∣∣+ C

= ln
∣∣∣∣ 1√

5

∣∣∣∣+ ln
∣∣√x2 + 5+ x

∣∣+ C

= ln
∣∣√x2 + 5+ x

∣∣+ C,

where the ln
(
1/

√
5
)
term is absorbed into the constant C. (In SecƟon 6.6 we

will learn another way of approaching this problem.)
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Example 6.4.3 Using Trigonometric SubsƟtuƟon
Evaluate

∫ √
4x2 − 1 dx.

SÊ½çã®ÊÄ Westart by rewriƟng the integrand so that it looks like
√
x2 − a2

for some value of a: √
4x2 − 1 =

√
4
(
x2 − 1

4

)

= 2

√
x2 −

(
1
2

)2

.

So we have a = 1/2, and following Key Idea 6.4.1(c), we set x = 1
2 sec θ, and

hence dx = 1
2 sec θ tan θ dθ. We now rewrite the integral with these subsƟtu-

Ɵons: ∫ √
4x2 − 1 dx =

∫
2

√
x2 −

(
1
2

)2

dx

=

∫
2
√

1
4
sec2 θ − 1

4

(
1
2
sec θ tan θ

)
dθ

=

∫ √
1
4
(sec2 θ − 1)

(
sec θ tan θ

)
dθ

=

∫ √
1
4
tan2 θ

(
sec θ tan θ

)
dθ

=

∫
1
2
tan2 θ sec θ dθ

=
1
2

∫ (
sec2 θ − 1

)
sec θ dθ

=
1
2

∫ (
sec3 θ − sec θ

)
dθ.

We integrated sec3 θ in Example 6.3.6, finding its anƟderivaƟves to be∫
sec3 θ dθ =

1
2

(
sec θ tan θ + ln | sec θ + tan θ|

)
+ C.

Thus∫ √
4x2 − 1 dx =

1
2

∫ (
sec3 θ − sec θ

)
dθ

=
1
2

(
1
2

(
sec θ tan θ + ln | sec θ + tan θ|

)
− ln | sec θ + tan θ|

)
+ C

=
1
4
(sec θ tan θ − ln | sec θ + tan θ|) + C.
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We are not yet done. Our original integral is given in terms of x, whereas our
final answer, as given, is in terms of θ. We need to rewrite our answer in terms
of x. With a = 1/2, and x = 1

2 sec θ, the reference triangle in Key Idea 6.4.1(c)
shows that

tan θ =
√

x2 − 1/4
/
(1/2) = 2

√
x2 − 1/4 and sec θ = 2x.

Thus
1
4

(
sec θ tan θ − ln

∣∣ sec θ + tan θ
∣∣)+ C =

1
4

(
2x · 2

√
x2 − 1/4− ln

∣∣2x+ 2
√

x2 − 1/4
∣∣)+ C

=
1
4

(
4x
√

x2 − 1/4− ln
∣∣2x+ 2

√
x2 − 1/4

∣∣)+ C.

The final answer is given in the last line above, repeated here:∫ √
4x2 − 1 dx =

1
4

(
4x
√

x2 − 1/4− ln
∣∣2x+ 2

√
x2 − 1/4

∣∣)+ C.

Example 6.4.4 Using Trigonometric SubsƟtuƟon

Evaluate
∫ √

4− x2

x2
dx.

SÊ½çã®ÊÄ We use Key Idea 6.4.1(a) with a = 2, x = 2 sin θ, dx =
2 cos θ and hence

√
4− x2 = 2 cos θ. This gives∫ √

4− x2

x2
dx =

∫
2 cos θ
4 sin2 θ

(2 cos θ) dθ

=

∫
cot2 θ dθ

=

∫
(csc2 θ − 1) dθ

= − cot θ − θ + C.

We need to rewrite our answer in terms of x. Using the reference triangle found
in Key Idea 6.4.1(a), we have cot θ =

√
4− x2/x and θ = sin−1(x/2). Thus∫ √

4− x2

x2
dx = −

√
4− x2

x
− sin−1

( x
2

)
+ C.

Trigonometric SubsƟtuƟon can be applied inmany situaƟons, even those not
of the form

√
a2 − x2,

√
x2 − a2 or

√
x2 + a2. In the following example, we ap-

ply it to an integral we already know how to handle.
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Example 6.4.5 Using Trigonometric SubsƟtuƟon
Evaluate

∫
1

x2 + 1
dx.

SÊ½çã®ÊÄ Weknow the answer already as tan−1 x+C. Weapply Trigono-
metric SubsƟtuƟon here to show that we get the same answer without inher-
ently relying on knowledge of the derivaƟve of the arctangent funcƟon.

Using Key Idea 6.4.1(b), let x = tan θ, dx = sec2 θ dθ and note that x2 + 1 =
tan2 θ + 1 = sec2 θ. Thus∫

1
x2 + 1

dx =
∫

1
sec2 θ

sec2 θ dθ

=

∫
1 dθ

= θ + C.

Since x = tan θ, θ = tan−1 x, and we conclude that
∫

1
x2 + 1

dx = tan−1 x+C.

The next example is similar to the previous one in that it does not involve a
square–root. It shows how several techniques and idenƟƟes can be combined
to obtain a soluƟon.

Example 6.4.6 Using Trigonometric SubsƟtuƟon
Evaluate

∫
1

(x2 + 6x+ 10)2
dx.

SÊ½çã®ÊÄ We start by compleƟng the square, then make the subsƟtu-
Ɵon u = x+ 3, followed by the trigonometric subsƟtuƟon of u = tan θ:∫

1
(x2 + 6x+ 10)2

dx =
∫

1(
(x+ 3)2 + 1

)2 dx =
∫

1
(u2 + 1)2

du.

Now make the subsƟtuƟon u = tan θ, du = sec2 θ dθ:

=

∫
1

(tan2 θ + 1)2
sec2 θ dθ

=

∫
1

(sec2 θ)2
sec2 θ dθ

=

∫
cos2 θ dθ.
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Applying a power reducing formula, we have

=

∫ (
1
2
+

1
2
cos(2θ)

)
dθ

=
1
2
θ +

1
4
sin(2θ) + C. (6.2)

We need to return to the variable x. As u = tan θ, θ = tan−1 u. Using the
idenƟty sin(2θ) = 2 sin θ cos θ and using the reference triangle found in Key
Idea 6.4.1(b), we have

1
4
sin(2θ) =

1
2

u√
u2 + 1

· 1√
u2 + 1

=
1
2

u
u2 + 1

.

Finally, we return to xwith the subsƟtuƟon u = x+3. We start with the expres-
sion in EquaƟon (6.2):

1
2
θ +

1
4
sin(2θ) + C =

1
2
tan−1 u+

1
2

u
u2 + 1

+ C

=
1
2
tan−1(x+ 3) +

x+ 3
2(x2 + 6x+ 10)

+ C.

StaƟng our final result in one line,∫
1

(x2 + 6x+ 10)2
dx =

1
2
tan−1(x+ 3) +

x+ 3
2(x2 + 6x+ 10)

+ C.

Our last example returns us to definite integrals, as seen in our first example.
Given a definite integral that can be evaluated using Trigonometric SubsƟtuƟon,
we could first evaluate the corresponding indefinite integral (by changing from
an integral in terms of x to one in terms of θ, then converƟng back to x) and then
evaluate using the original bounds. It is much more straighƞorward, though, to
change the bounds as we subsƟtute.

Example 6.4.7 Definite integraƟon and Trigonometric SubsƟtuƟon

Evaluate
∫ 5

0

x2√
x2 + 25

dx.

SÊ½çã®ÊÄ Using Key Idea 6.4.1(b), we set x = 5 tan θ, dx = 5 sec2 θ dθ,
and note that

√
x2 + 25 = 5 sec θ. As we subsƟtute, we can also change the

bounds of integraƟon.
The lower bound of the original integral is x = 0. As x = 5 tan θ, we solve for

θ and find θ = tan−1(x/5). Thus the new lower bound is θ = tan−1(0) = 0. The
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6.4 Trigonometric SubsƟtuƟon

original upper bound is x = 5, thus the new upper bound is θ = tan−1(5/5) =
π/4.

Thus we have∫ 5

0

x2√
x2 + 25

dx =
∫ π/4

0

25 tan2 θ
5 sec θ

5 sec2 θ dθ

= 25
∫ π/4

0
tan2 θ sec θ dθ.

We encountered this indefinite integral in Example 6.4.3 where we found∫
tan2 θ sec θ dθ =

1
2
(
sec θ tan θ − ln | sec θ + tan θ|

)
.

So

25
∫ π/4

0
tan2 θ sec θ dθ =

25
2
(
sec θ tan θ − ln | sec θ + tan θ|

)∣∣∣∣∣
π/4

0

=
25
2
(√

2− ln(
√
2+ 1)

)
≈ 6.661.

The following equaliƟes are very usefulwhenevaluaƟng integrals using Trigono-
metric SubsƟtuƟon.

Key Idea 6.4.2 Useful EqualiƟes with Trigonometric SubsƟtuƟon

1. sin(2θ) = 2 sin θ cos θ

2. cos(2θ) = cos2 θ − sin2 θ = 2 cos2 θ − 1 = 1− 2 sin2 θ

3.
∫

sec3 θ dθ =
1
2

(
sec θ tan θ + ln

∣∣ sec θ + tan θ
∣∣)+ C

4.
∫

cos2 θ dθ =

∫
1
2
(
1+ cos(2θ)

)
dθ =

1
2
(
θ + sin θ cos θ

)
+ C.

The next secƟon introduces ParƟal FracƟonDecomposiƟon, which is an alge-
braic technique that turns “complicated” fracƟons into sums of “simpler” frac-
Ɵons, making integraƟon easier.
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Exercises 6.4
Terms and Concepts
1. Trigonometric SubsƟtuƟon works on the same principles as

IntegraƟon by SubsƟtuƟon, though it can feel “ ”.

2. If one uses Trigonometric SubsƟtuƟon on an integrand con-
taining

√
25− x2, then one should set x = .

3. Consider the Pythagorean IdenƟty sin2 θ + cos2 θ = 1.

(a) What idenƟty is obtained when both sides are di-
vided by cos2 θ?

(b) Use the new idenƟty to simplify 9 tan2 θ + 9.

4. Why does Key Idea 6.4.1(a) state that
√
a2 − x2 = a cos θ,

and not |a cos θ|?

Problems
In Exercises 5 – 16, apply Trigonometric SubsƟtuƟon to eval-
uate the indefinite integrals.

5.
∫ √

x2 + 1 dx

6.
∫ √

x2 + 4 dx

7.
∫ √

1− x2 dx

8.
∫ √

9− x2 dx

9.
∫ √

x2 − 1 dx

10.
∫ √

x2 − 16 dx

11.
∫ √

4x2 + 1 dx

12.
∫ √

1− 9x2 dx

13.
∫ √

16x2 − 1 dx

14.
∫

8√
x2 + 2

dx

15.
∫

3√
7− x2

dx

16.
∫

5√
x2 − 8

dx

In Exercises 17 – 26, evaluate the indefinite integrals. Some
may be evaluated without Trigonometric SubsƟtuƟon.

17.
∫ √

x2 − 11
x

dx

18.
∫

1
(x2 + 1)2

dx

19.
∫

x√
x2 − 3

dx

20.
∫

x2
√
1− x2 dx

21.
∫

x
(x2 + 9)3/2

dx

22.
∫

5x2√
x2 − 10

dx

23.
∫

1
(x2 + 4x+ 13)2

dx

24.
∫

x2(1− x2)−3/2 dx

25.
∫ √

5− x2
7x2

dx

26.
∫

x2√
x2 + 3

dx

In Exercises 27 – 32, evaluate the definite integrals by mak-
ing the proper trigonometric subsƟtuƟon and changing the
bounds of integraƟon. (Note: each of the corresponding
indefinite integrals has appeared previously in this Exercise
set.)

27.
∫ 1

−1

√
1− x2 dx

28.
∫ 8

4

√
x2 − 16 dx

29.
∫ 2

0

√
x2 + 4 dx

30.
∫ 1

−1

1
(x2 + 1)2

dx

31.
∫ 1

−1

√
9− x2 dx

32.
∫ 1

−1
x2
√
1− x2 dx
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6.5 ParƟal FracƟon DecomposiƟon

6.5 ParƟal FracƟon DecomposiƟon

In this secƟonwe invesƟgate the anƟderivaƟves of raƟonal funcƟons. Recall that
raƟonal funcƟons are funcƟons of the form f(x) = p(x)

q(x) , where p(x) and q(x) are
polynomials and q(x) ̸= 0. Such funcƟons arise in many contexts, one of which
is the solving of certain fundamental differenƟal equaƟons.

We begin with an example that demonstrates the moƟvaƟon behind this
secƟon. Consider the integral

∫
1

x2 − 1
dx. We do not have a simple formula

for this (if the denominator were x2 + 1, we would recognize the anƟderivaƟve
as being the arctangent funcƟon). It can be solved using Trigonometric SubsƟ-
tuƟon, but note how the integral is easy to evaluate once we realize:

1
x2 − 1

=
1/2
x− 1

− 1/2
x+ 1

.

Thus

∫
1

x2 − 1
dx =

∫
1/2
x− 1

dx−
∫

1/2
x+ 1

dx

=
1
2
ln |x− 1| − 1

2
ln |x+ 1|+ C.

This secƟon teaches how to decompose

1
x2 − 1

into
1/2
x− 1

− 1/2
x+ 1

.

We start with a raƟonal funcƟon f(x) = p(x)
q(x) , where p and q do not have any

common factors and the degree of p is less than the degree of q. It can be shown
that any polynomial, and hence q, can be factored into a product of linear and
irreducible quadraƟc terms. The following Key Idea states how to decompose a
raƟonal funcƟon into a sum of raƟonal funcƟons whose denominators are all of
lower degree than q.
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Chapter 6 Techniques of AnƟdifferenƟaƟon

Key Idea 6.5.1 ParƟal FracƟon DecomposiƟon

Let
p(x)
q(x)

be a raƟonal funcƟon, where the degree of p is less than the

degree of q.

1. Linear Terms: Let (x−a) divide q(x), where (x−a)n is the highest
power of (x−a) that divides q(x). Then the decomposiƟon of p(x)

q(x)
will contain the sum

A1

(x− a)
+

A2

(x− a)2
+ · · ·+ An

(x− a)n
.

2. QuadraƟc Terms: Let x2+bx+ c divide q(x), where (x2+bx+ c)n
is the highest power of x2 + bx + c that divides q(x). Then the
decomposiƟon of p(x)

q(x) will contain the sum

B1x+ C1
x2 + bx+ c

+
B2x+ C2

(x2 + bx+ c)2
+ · · ·+ Bnx+ Cn

(x2 + bx+ c)n
.

To find the coefficients Ai, Bi and Ci:

1. MulƟply all fracƟons by q(x), clearing the denominators. Collect
like terms.

2. Equate the resulƟng coefficients of the powers of x and solve the
resulƟng system of linear equaƟons.

The following examples will demonstrate how to put this Key Idea into prac-
Ɵce. Example 6.5.1 stresses the decomposiƟon aspect of the Key Idea.

Example 6.5.1 Decomposing into parƟal fracƟons
Decompose f(x) =

1
(x+ 5)(x− 2)3(x2 + x+ 2)(x2 + x+ 7)2

without solving

for the resulƟng coefficients.

SÊ½çã®ÊÄ The denominator is already factored, as both x2+ x+ 2 and
x2 + x + 7 cannot be factored further. We need to decompose f(x) properly.
Since (x+ 5) is a linear term that divides the denominator, there will be a

A
x+ 5

Notes:
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6.5 ParƟal FracƟon DecomposiƟon

term in the decomposiƟon.
As (x− 2)3 divides the denominator, we will have the following terms in the

decomposiƟon:
B

x− 2
,

C
(x− 2)2

and
D

(x− 2)3
.

The x2 + x+ 2 term in the denominator results in a
Ex+ F

x2 + x+ 2
term.

Finally, the (x2 + x+ 7)2 term results in the terms

Gx+ H
x2 + x+ 7

and
Ix+ J

(x2 + x+ 7)2
.

All together, we have

1
(x+ 5)(x− 2)3(x2 + x+ 2)(x2 + x+ 7)2

=
A

x+ 5
+

B
x− 2

+
C

(x− 2)2
+

D
(x− 2)3

+

Ex+ F
x2 + x+ 2

+
Gx+ H

x2 + x+ 7
+

Ix+ J
(x2 + x+ 7)2

Solving for the coefficients A, B . . . J would be a bit tedious but not “hard.”

Example 6.5.2 Decomposing into parƟal fracƟons
Perform the parƟal fracƟon decomposiƟon of

1
x2 − 1

.

SÊ½çã®ÊÄ The denominator factors into two linear terms: x2 − 1 =
(x− 1)(x+ 1). Thus

1
x2 − 1

=
A

x− 1
+

B
x+ 1

.

To solve for A and B, first mulƟply through by x2 − 1 = (x− 1)(x+ 1):

1 =
A(x− 1)(x+ 1)

x− 1
+

B(x− 1)(x+ 1)
x+ 1

= A(x+ 1) + B(x− 1)
= Ax+ A+ Bx− B

Now collect like terms.

= (A+ B)x+ (A− B).

The next step is key. Note the equality we have:

1 = (A+ B)x+ (A− B).

Notes:
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Note: EquaƟon 6.3 offers a direct route to
finding the values of A, B and C. Since the
equaƟon holds for all values of x, it holds
in parƟcular when x = 1. However, when
x = 1, the right hand side simplifies to
A(1 + 2)2 = 9A. Since the leŌ hand side
is sƟll 1, we have 1 = 9A. HenceA = 1/9.
Likewise, the equality holds when x =
−2; this leads to the equaƟon 1 = −3C.
Thus C = −1/3.
Knowing A and C, we can find the value of
B by choosing yet another value of x, such
as x = 0, and solving for B.

Chapter 6 Techniques of AnƟdifferenƟaƟon

For clarity’s sake, rewrite the leŌ hand side as

0x+ 1 = (A+ B)x+ (A− B).

On the leŌ, the coefficient of the x term is 0; on the right, it is (A + B). Since
both sides are equal, we must have that 0 = A+ B.

Likewise, on the leŌ, we have a constant term of 1; on the right, the constant
term is (A− B). Therefore we have 1 = A− B.

We have two linear equaƟons with two unknowns. This one is easy to solve
by hand, leading to

A+ B = 0
A− B = 1 ⇒ A = 1/2

B = −1/2 .

Thus
1

x2 − 1
=

1/2
x− 1

− 1/2
x+ 1

.

Example 6.5.3 IntegraƟng using parƟal fracƟons
Use parƟal fracƟon decomposiƟon to integrate

∫
1

(x− 1)(x+ 2)2
dx.

SÊ½çã®ÊÄ Wedecompose the integrand as follows, as described by Key
Idea 6.5.1:

1
(x− 1)(x+ 2)2

=
A

x− 1
+

B
x+ 2

+
C

(x+ 2)2
.

To solve for A, B and C, we mulƟply both sides by (x− 1)(x+ 2)2 and collect like
terms:

1 = A(x+ 2)2 + B(x− 1)(x+ 2) + C(x− 1) (6.3)
= Ax2 + 4Ax+ 4A+ Bx2 + Bx− 2B+ Cx− C
= (A+ B)x2 + (4A+ B+ C)x+ (4A− 2B− C)

We have

0x2 + 0x+ 1 = (A+ B)x2 + (4A+ B+ C)x+ (4A− 2B− C)

leading to the equaƟons

A+ B = 0, 4A+ B+ C = 0 and 4A− 2B− C = 1.

These three equaƟons of three unknowns lead to a unique soluƟon:

A = 1/9, B = −1/9 and C = −1/3.
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Note: The values ofA andB can be quickly
found using the technique described in
the margin of Example 6.5.3.

6.5 ParƟal FracƟon DecomposiƟon

Thus∫
1

(x− 1)(x+ 2)2
dx =

∫
1/9
x− 1

dx+
∫

−1/9
x+ 2

dx+
∫

−1/3
(x+ 2)2

dx.

Each can be integrated with a simple subsƟtuƟonwith u = x−1 or u = x+2
(or by directly applying Key Idea 6.1.1 as the denominators are linear funcƟons).
The end result is∫

1
(x− 1)(x+ 2)2

dx =
1
9
ln |x− 1| − 1

9
ln |x+ 2|+ 1

3(x+ 2)
+ C.

Example 6.5.4 IntegraƟng using parƟal fracƟons

Use parƟal fracƟon decomposiƟon to integrate
∫

x3

(x− 5)(x+ 3)
dx.

SÊ½çã®ÊÄ Key Idea 6.5.1 presumes that the degree of the numerator
is less than the degree of the denominator. Since this is not the case here, we
begin by using polynomial division to reduce the degree of the numerator. We
omit the steps, but encourage the reader to verify that

x3

(x− 5)(x+ 3)
= x+ 2+

19x+ 30
(x− 5)(x+ 3)

.

Using Key Idea 6.5.1, we can rewrite the new raƟonal funcƟon as:

19x+ 30
(x− 5)(x+ 3)

=
A

x− 5
+

B
x+ 3

for appropriate values of A and B. Clearing denominators, we have

19x+ 30 = A(x+ 3) + B(x− 5)
= (A+ B)x+ (3A− 5B).

This implies that:

19 = A+ B
30 = 3A− 5B.

Solving this system of linear equaƟons gives

125/8 = A
27/8 = B.

Notes:
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We can now integrate.∫
x3

(x− 5)(x+ 3)
dx =

∫ (
x+ 2+

125/8
x− 5

+
27/8
x+ 3

)
dx

=
x2

2
+ 2x+

125
8

ln |x− 5|+ 27
8

ln |x+ 3|+ C.

Example 6.5.5 IntegraƟng using parƟal fracƟons

Use parƟal fracƟon decomposiƟon to evaluate
∫

7x2 + 31x+ 54
(x+ 1)(x2 + 6x+ 11)

dx.

SÊ½çã®ÊÄ The degree of the numerator is less than the degree of the
denominator so we begin by applying Key Idea 6.5.1. We have:

7x2 + 31x+ 54
(x+ 1)(x2 + 6x+ 11)

=
A

x+ 1
+

Bx+ C
x2 + 6x+ 11

.

Now clear the denominators.

7x2 + 31x+ 54 = A(x2 + 6x+ 11) + (Bx+ C)(x+ 1)
= (A+ B)x2 + (6A+ B+ C)x+ (11A+ C).

This implies that:

7 = A+ B
31 = 6A+ B+ C
54 = 11A+ C.

Solving this system of linear equaƟons gives the nice result of A = 5, B = 2 and
C = −1. Thus∫

7x2 + 31x+ 54
(x+ 1)(x2 + 6x+ 11)

dx =
∫ (

5
x+ 1

+
2x− 1

x2 + 6x+ 11

)
dx.

The first termof this new integrand is easy to evaluate; it leads to a 5 ln |x+1|
term. The second term is not hard, but takes several steps and uses subsƟtuƟon
techniques.

The integrand
2x− 1

x2 + 6x+ 11
has a quadraƟc in the denominator and a linear

term in the numerator. This leads us to try subsƟtuƟon. Let u = x2+6x+11, so
du = (2x+ 6) dx. The numerator is 2x− 1, not 2x+ 6, but we can get a 2x+ 6

Notes:
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term in the numerator by adding 0 in the form of “7− 7.”

2x− 1
x2 + 6x+ 11

=
2x− 1+ 7− 7
x2 + 6x+ 11

=
2x+ 6

x2 + 6x+ 11
− 7

x2 + 6x+ 11
.

Wecannow integrate the first termwith subsƟtuƟon, leading to a ln |x2+6x+11|
term. The final term can be integrated using arctangent. First, complete the
square in the denominator:

7
x2 + 6x+ 11

=
7

(x+ 3)2 + 2
.

An anƟderivaƟve of the laƩer term can be found using Theorem 6.1.3 and sub-
sƟtuƟon: ∫

7
x2 + 6x+ 11

dx =
7√
2
tan−1

(
x+ 3√

2

)
+ C.

Let’s start at the beginning and put all of the steps together.∫
7x2 + 31x+ 54

(x+ 1)(x2 + 6x+ 11)
dx =

∫ (
5

x+ 1
+

2x− 1
x2 + 6x+ 11

)
dx

=

∫
5

x+ 1
dx+

∫
2x+ 6

x2 + 6x+ 11
dx−

∫
7

x2 + 6x+ 11
dx

= 5 ln |x+ 1|+ ln |x2 + 6x+ 11| − 7√
2
tan−1

(
x+ 3√

2

)
+ C.

As with many other problems in calculus, it is important to remember that one
is not expected to “see” the final answer immediately aŌer seeing the problem.
Rather, given the iniƟal problem, we break it down into smaller problems that
are easier to solve. The final answer is a combinaƟon of the answers of the
smaller problems.

ParƟal FracƟon DecomposiƟon is an important tool when dealing with raƟo-
nal funcƟons. Note that at its heart, it is a technique of algebra, not calculus,
as we are rewriƟng a fracƟon in a new form. Regardless, it is very useful in the
realm of calculus as it lets us evaluate a certain set of “complicated” integrals.

The next secƟon introduces new funcƟons, called the Hyperbolic FuncƟons.
They will allow us to make subsƟtuƟons similar to those found when studying
Trigonometric SubsƟtuƟon, allowing us to approach evenmore integraƟonprob-
lems.
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Exercises 6.5
Terms and Concepts
1. Fill in the blank: ParƟal FracƟonDecomposiƟon is amethod

of rewriƟng funcƟons.

2. T/F: It is someƟmes necessary to use polynomial division
before using ParƟal FracƟon DecomposiƟon.

3. Decompose 1
x2 − 3x

without solving for the coefficients, as
done in Example 6.5.1.

4. Decompose 7− x
x2 − 9

without solving for the coefficients, as
done in Example 6.5.1.

5. Decompose x− 3
x2 − 7

without solving for the coefficients, as
done in Example 6.5.1.

6. Decompose 2x+ 5
x3 + 7x

without solving for the coefficients, as
done in Example 6.5.1.

Problems
In Exercises 7 – 26, evaluate the indefinite integral.

7.
∫

7x+ 7
x2 + 3x− 10

dx

8.
∫

7x− 2
x2 + x

dx

9.
∫

−4
3x2 − 12

dx

10.
∫

6x+ 4
3x2 + 4x+ 1

dx

11.
∫

x+ 7
(x+ 5)2

dx

12.
∫

−3x− 20
(x+ 8)2

dx

13.
∫

9x2 + 11x+ 7
x(x+ 1)2

dx

14.
∫

−12x2 − x+ 33
(x− 1)(x+ 3)(3− 2x)

dx

15.
∫

94x2 − 10x
(7x+ 3)(5x− 1)(3x− 1)

dx

16.
∫

x2 + x+ 1
x2 + x− 2

dx

17.
∫

x3

x2 − x− 20
dx

18.
∫

2x2 − 4x+ 6
x2 − 2x+ 3

dx

19.
∫

1
x3 + 2x2 + 3x

dx

20.
∫

x2 + x+ 5
x2 + 4x+ 10

dx

21.
∫

12x2 + 21x+ 3
(x+ 1)(3x2 + 5x− 1)

dx

22.
∫

6x2 + 8x− 4
(x− 3)(x2 + 6x+ 10)

dx

23.
∫

2x2 + x+ 1
(x+ 1)(x2 + 9)

dx

24.
∫

x2 − 20x− 69
(x− 7)(x2 + 2x+ 17)

dx

25.
∫

9x2 − 60x+ 33
(x− 9)(x2 − 2x+ 11)

dx

26.
∫

6x2 + 45x+ 121
(x+ 2)(x2 + 10x+ 27)

dx

In Exercises 27 – 30, evaluate the definite integral.

27.
∫ 2

1

8x+ 21
(x+ 2)(x+ 3)

dx

28.
∫ 5

0

14x+ 6
(3x+ 2)(x+ 4)

dx

29.
∫ 1

−1

x2 + 5x− 5
(x− 10)(x2 + 4x+ 5)

dx

30.
∫ 1

0

x
(x+ 1)(x2 + 2x+ 1)

dx
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Figure 6.6.1: Using trigonometric func-
Ɵons to define points on a circle and hy-
perbolic funcƟons to define points on a
hyperbola. The area of the shaded re-
gions are included in them.

PronunciaƟon Note:
“cosh” rhymes with “gosh,”
“sinh” rhymes with “pinch,” and
“tanh” rhymes with “ranch.”

6.6 Hyperbolic FuncƟons

6.6 Hyperbolic FuncƟons
The hyperbolic funcƟons are a set of funcƟons that have many applicaƟons to
mathemaƟcs, physics, and engineering. Among many other applicaƟons, they
are used to describe the formaƟon of satellite rings around planets, to describe
the shape of a rope hanging from two points, and have applicaƟon to the theory
of special relaƟvity. This secƟon defines the hyperbolic funcƟons and describes
many of their properƟes, especially their usefulness to calculus.

These funcƟons are someƟmes referred to as the “hyperbolic trigonometric
funcƟons” as there are many, many connecƟons between them and the stan-
dard trigonometric funcƟons. Figure 6.6.1 demonstrates one such connecƟon.
Just as cosine and sine are used to define points on the circle defined by x2+y2 =
1, the funcƟons hyperbolic cosine and hyperbolic sine are used to define points
on the hyperbola x2 − y2 = 1.

We begin with their definiƟon.

DefiniƟon 6.6.1 Hyperbolic FuncƟons

1. cosh x =
ex + e−x

2

2. sinh x =
ex − e−x

2

3. tanh x =
sinh x
cosh x

4. sech x =
1

cosh x

5. csch x =
1

sinh x

6. coth x =
cosh x
sinh x

These hyperbolic funcƟons are graphed in Figure 6.6.2. In the graphs of
cosh x and sinh x, graphs of ex/2 and e−x/2 are included with dashed lines. As
x gets “large,” cosh x and sinh x each act like ex/2; when x is a large negaƟve
number, cosh x acts like e−x/2 whereas sinh x acts like−e−x/2.

NoƟce the domains of tanh x and sech x are (−∞,∞), whereas both coth x
and csch x have verƟcal asymptotes at x = 0. Also note the ranges of these
funcƟons, especially tanh x: as x → ∞, both sinh x and cosh x approach ex/2,
hence tanh x approaches 1.

The following example explores some of the properƟes of these funcƟons
that bear remarkable resemblance to the properƟes of their trigonometric coun-
terparts.

Notes:
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Figure 6.6.2: Graphs of the hyperbolic funcƟons.

Example 6.6.1 Exploring properƟes of hyperbolic funcƟons
Use DefiniƟon 6.6.1 to rewrite the following expressions.

1. cosh2 x− sinh2 x

2. tanh2 x+ sech2 x

3. 2 cosh x sinh x

4. d
dx

(
cosh x

)
5. d

dx

(
sinh x

)
6. d

dx

(
tanh x

)
SÊ½çã®ÊÄ

1. cosh2 x− sinh2 x =
(
ex + e−x

2

)2

−
(
ex − e−x

2

)2

=
e2x + 2exe−x + e−2x

4
− e2x − 2exe−x + e−2x

4

=
4
4
= 1.

So cosh2 x− sinh2 x = 1.

Notes:
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6.6 Hyperbolic FuncƟons

2. tanh2 x+ sech2 x =
sinh2 x
cosh2 x

+
1

cosh2 x

=
sinh2 x+ 1
cosh2 x

Now use idenƟty from #1.

=
cosh2 x
cosh2 x

= 1.

So tanh2 x+ sech2 x = 1.

3. 2 cosh x sinh x = 2
(
ex + e−x

2

)(
ex − e−x

2

)
= 2 · e

2x − e−2x

4

=
e2x − e−2x

2
= sinh(2x).

Thus 2 cosh x sinh x = sinh(2x).

4.
d
dx
(
cosh x

)
=

d
dx

(
ex + e−x

2

)
=

ex − e−x

2
= sinh x.

So d
dx

(
cosh x

)
= sinh x.

5.
d
dx
(
sinh x

)
=

d
dx

(
ex − e−x

2

)
=

ex + e−x

2
= cosh x.

So d
dx

(
sinh x

)
= cosh x.

6.
d
dx
(
tanh x

)
=

d
dx

(
sinh x
cosh x

)
=

cosh x cosh x− sinh x sinh x
cosh2 x

=
1

cosh2 x
= sech2 x.

So d
dx

(
tanh x

)
= sech2 x.

Notes:
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The following Key Idea summarizes many of the important idenƟƟes relat-
ing to hyperbolic funcƟons. Each can be verified by referring back to DefiniƟon
6.6.1.

Key Idea 6.6.1 Useful Hyperbolic FuncƟon ProperƟes

Basic IdenƟƟes

1. cosh2 x− sinh2 x = 1

2. tanh2 x+ sech2 x = 1

3. coth2 x− csch2 x = 1

4. cosh 2x = cosh2 x+ sinh2 x

5. sinh 2x = 2 sinh x cosh x

6. cosh2 x =
cosh 2x+ 1

2

7. sinh2 x =
cosh 2x− 1

2

DerivaƟves

1. d
dx

(
cosh x

)
= sinh x

2. d
dx

(
sinh x

)
= cosh x

3. d
dx

(
tanh x

)
= sech2 x

4. d
dx

(
sech x

)
= − sech x tanh x

5. d
dx

(
csch x

)
= − csch x coth x

6. d
dx

(
coth x

)
= − csch2 x

Integrals

1.
∫

cosh x dx = sinh x+ C

2.
∫

sinh x dx = cosh x+ C

3.
∫

tanh x dx = ln(cosh x) + C

4.
∫

coth x dx = ln | sinh x |+ C

We pracƟce using Key Idea 6.6.1.

Example 6.6.2 DerivaƟves and integrals of hyperbolic funcƟons
Evaluate the following derivaƟves and integrals.

1.
d
dx
(
cosh 2x

)
2.
∫

sech2(7t− 3) dt

3.
∫ ln 2

0
cosh x dx

SÊ½çã®ÊÄ

1. Using the Chain Rule directly, we have d
dx

(
cosh 2x

)
= 2 sinh 2x.

Just to demonstrate that it works, let’s also use the Basic IdenƟty found in
Key Idea 6.6.1: cosh 2x = cosh2 x+ sinh2 x.

d
dx
(
cosh 2x

)
=

d
dx
(
cosh2 x+ sinh2 x

)
= 2 cosh x sinh x+ 2 sinh x cosh x

= 4 cosh x sinh x.

Notes:

324



6.6 Hyperbolic FuncƟons

Using another Basic IdenƟty, we can see that 4 cosh x sinh x = 2 sinh 2x.
We get the same answer either way.

2. We employ subsƟtuƟon, with u = 7t − 3 and du = 7dt. Applying Key
Ideas 6.1.1 and 6.6.1 we have:∫

sech2(7t− 3) dt =
1
7
tanh(7t− 3) + C.

3. ∫ ln 2

0
cosh x dx = sinh x

∣∣∣ln 2
0

= sinh(ln 2)− sinh 0 = sinh(ln 2).

We can simplify this last expression as sinh x is based on exponenƟals:

sinh(ln 2) =
eln 2 − e− ln 2

2
=

2− 1/2
2

=
3
4
.

Inverse Hyperbolic FuncƟons

Just as the inverse trigonometric funcƟons are useful in certain integraƟons,
the inverse hyperbolic funcƟons are useful with others. Figure 6.6.3 shows the
restricƟons on the domains to make each funcƟon one-to-one and the resulƟng
domains and ranges of their inverse funcƟons. Their graphs are shown in Figure
6.6.4.

Because the hyperbolic funcƟons are defined in terms of exponenƟal func-
Ɵons, their inverses can be expressed in terms of logarithms as shown in Key Idea
6.6.2. It is oŌen more convenient to refer to sinh−1 x than to ln

(
x+

√
x2 + 1

)
,

especially when one is working on theory and does not need to compute actual
values. On the other hand, when computaƟons are needed, technology is oŌen
helpful but many hand-held calculators lack a convenient sinh−1 x buƩon. (Of-
ten it can be accessed under a menu system, but not conveniently.) In such a
situaƟon, the logarithmic representaƟon is useful. The reader is not encouraged
tomemorize these, but rather know they exist and know how to use themwhen
needed.

Notes:
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FuncƟon Domain Range
cosh x [0,∞) [1,∞)
sinh x (−∞,∞) (−∞,∞)
tanh x (−∞,∞) (−1, 1)
sech x [0,∞) (0, 1]
csch x (−∞, 0) ∪ (0,∞) (−∞, 0) ∪ (0,∞)
coth x (−∞, 0) ∪ (0,∞) (−∞,−1) ∪ (1,∞)

FuncƟon Domain Range
cosh−1 x [1,∞) [0,∞)
sinh−1 x (−∞,∞) (−∞,∞)
tanh−1 x (−1, 1) (−∞,∞)
sech−1 x (0, 1] [0,∞)
csch−1 x (−∞, 0) ∪ (0,∞) (−∞, 0) ∪ (0,∞)
coth−1 x (−∞,−1) ∪ (1,∞) (−∞, 0) ∪ (0,∞)

Figure 6.6.3: Domains and ranges of the hyperbolic and inverse hyperbolic funcƟons.
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Figure 6.6.4: Graphs of the hyperbolic funcƟons and their inverses.

Key Idea 6.6.2 Logarithmic definiƟons of Inverse Hyperbolic FuncƟons

1. cosh−1 x = ln
(
x+

√
x2 − 1

)
; x ≥ 1

2. tanh−1 x =
1
2
ln
(
1+ x
1− x

)
; |x| < 1

3. sech−1 x = ln

(
1+

√
1− x2

x

)
; 0 < x ≤ 1

4. sinh−1 x = ln
(
x+

√
x2 + 1

)
5. coth−1 x =

1
2
ln
(
x+ 1
x− 1

)
; |x| > 1

6. csch−1 x = ln

(
1
x
+

√
1+ x2

|x|

)
; x ̸= 0

Notes:
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The following Key Ideas give the derivaƟves and integrals relaƟng to the in-
verse hyperbolic funcƟons. In Key Idea 6.6.4, both the inverse hyperbolic and
logarithmic funcƟon representaƟons of the anƟderivaƟve are given, based on
Key Idea 6.6.2. Again, these laƩer funcƟons are oŌen more useful than the for-
mer. Note how inverse hyperbolic funcƟons can be used to solve integrals we
used Trigonometric SubsƟtuƟon to solve in SecƟon 6.4.

Key Idea 6.6.3 DerivaƟves Involving Inverse Hyperbolic FuncƟons

1.
d
dx
(
cosh−1 x

)
=

1√
x2 − 1

; x > 1

2.
d
dx
(
sinh−1 x

)
=

1√
x2 + 1

3.
d
dx
(
tanh−1 x

)
=

1
1− x2

; |x| < 1

4.
d
dx
(
sech−1 x

)
=

−1
x
√
1− x2

; 0 < x < 1

5.
d
dx
(
csch−1 x

)
=

−1
|x|
√
1+ x2

; x ̸= 0

6.
d
dx
(
coth−1 x

)
=

1
1− x2

; |x| > 1

Key Idea 6.6.4 Integrals Involving Inverse Hyperbolic FuncƟons

1.
∫

1√
x2 − a2

dx = cosh−1
( x
a

)
+ C; 0 < a < x = ln

∣∣∣x+√x2 − a2
∣∣∣+ C

2.
∫

1√
x2 + a2

dx = sinh−1
( x
a

)
+ C; a > 0 = ln

∣∣∣x+√x2 + a2
∣∣∣+ C

3.
∫

1
a2 − x2

dx =


1
a tanh

−1 ( x
a

)
+ C x2 < a2

1
a coth

−1 ( x
a

)
+ C a2 < x2

=
1
2a

ln
∣∣∣∣a+ x
a− x

∣∣∣∣+ C

4.
∫

1
x
√
a2 − x2

dx = −1
a
sech−1

( x
a

)
+ C; 0 < x < a =

1
a
ln
(

x
a+

√
a2 − x2

)
+ C

5.
∫

1
x
√
x2 + a2

dx = −1
a
csch−1

∣∣∣ xa ∣∣∣+ C; x ̸= 0, a > 0 =
1
a
ln
∣∣∣∣ x
a+

√
a2 + x2

∣∣∣∣+ C

We pracƟce using the derivaƟve and integral formulas in the following ex-
ample.

Notes:
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Example 6.6.3 DerivaƟves and integrals involving inverse hyperbolic
funcƟons

Evaluate the following.

1.
d
dx

[
cosh−1

(
3x− 2

5

)]
2.
∫

1
x2 − 1

dx

3.
∫

1√
9x2 + 10

dx

SÊ½çã®ÊÄ

1. Applying Key Idea 6.6.3 with the Chain Rule gives:

d
dx

[
cosh−1

(
3x− 2

5

)]
=

1√( 3x−2
5
)2 − 1

· 3
5
.

2. MulƟplying the numerator anddenominator by (−1) gives:
∫

1
x2 − 1

dx =∫
−1

1− x2
dx. The second integral can be solved with a direct applicaƟon

of item #3 from Key Idea 6.6.4, with a = 1. Thus∫
1

x2 − 1
dx = −

∫
1

1− x2
dx

=

 − tanh−1 (x) + C x2 < 1

− coth−1 (x) + C 1 < x2

= −1
2
ln
∣∣∣∣x+ 1
x− 1

∣∣∣∣+ C

=
1
2
ln
∣∣∣∣x− 1
x+ 1

∣∣∣∣+ C. (6.4)

We should note that this exact problem was solved at the beginning of
SecƟon 6.5. In that example the answer was given as 1

2 ln |x−1|− 1
2 ln |x+

1|+ C. Note that this is equivalent to the answer given in EquaƟon 6.4, as
ln(a/b) = ln a− ln b.

3. This requires a subsƟtuƟon, then item #2 of Key Idea 6.6.4 can be applied.
Let u = 3x, hence du = 3dx. We have∫

1√
9x2 + 10

dx =
1
3

∫
1√

u2 + 10
du.

Notes:
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Note a2 = 10, hence a =
√
10. Now apply the integral rule.

=
1
3
sinh−1

(
3x√
10

)
+ C

=
1
3
ln
∣∣∣3x+√9x2 + 10

∣∣∣+ C.

This secƟon covers a lot of ground. New funcƟons were introduced, along
with some of their fundamental idenƟƟes, their derivaƟves and anƟderivaƟves,
their inverses, and the derivaƟves and anƟderivaƟves of these inverses. Four
Key Ideas were presented, each including quite a bit of informaƟon.

Do not view this secƟon as containing a source of informaƟon to be memo-
rized, but rather as a reference for future problem solving. Key Idea 6.6.4 con-
tains perhaps the most useful informaƟon. Know the integraƟon forms it helps
evaluate and understand how to use the inverse hyperbolic answer and the log-
arithmic answer.

The next secƟon takes a brief break from demonstraƟng new integraƟon
techniques. It instead demonstrates a technique of evaluaƟng limits that re-
turn indeterminate forms. This technique will be useful in SecƟon 6.8, where
limits will arise in the evaluaƟon of certain definite integrals.

Notes:
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Exercises 6.6
Terms and Concepts

1. In Key Idea 6.6.1, the equaƟon
∫

tanh x dx = ln(cosh x)+C

is given. Why is “ln | cosh x|” not used – i.e., why are abso-
lute values not necessary?

2. The hyperbolic funcƟons are used to define points on the
right hand porƟon of the hyperbola x2 − y2 = 1, as shown
in Figure 6.6.1. How can we use the hyperbolic funcƟons to
define points on the leŌ hand porƟon of the hyperbola?

Problems
In Exercises 3 – 10, verify the given idenƟty using DefiniƟon
6.6.1, as done in Example 6.6.1.

3. coth2 x− csch2 x = 1

4. cosh 2x = cosh2 x+ sinh2 x

5. cosh2 x = cosh 2x+ 1
2

6. sinh2 x = cosh 2x− 1
2

7. d
dx

[sech x] = − sech x tanh x

8. d
dx

[coth x] = − csch2 x

9.
∫

tanh x dx = ln(cosh x) + C

10.
∫

coth x dx = ln | sinh x|+ C

In Exercises 11 – 22, find the derivaƟve of the given funcƟon.

11. f(x) = sinh 2x

12. f(x) = cosh2 x

13. f(x) = tanh(x2)

14. f(x) = ln(sinh x)

15. f(x) = sinh x cosh x

16. f(x) = x sinh x− cosh x

17. f(x) = sech−1(x2)

18. f(x) = sinh−1(3x)

19. f(x) = cosh−1(2x2)

20. f(x) = tanh−1(x+ 5)

21. f(x) = tanh−1(cos x)

22. f(x) = cosh−1(sec x)

In Exercises 23 – 28, find the equaƟon of the line tangent to
the funcƟon at the given x-value.

23. f(x) = sinh x at x = 0

24. f(x) = cosh x at x = ln 2

25. f(x) = tanh x at x = − ln 3

26. f(x) = sech2 x at x = ln 3

27. f(x) = sinh−1 x at x = 0

28. f(x) = cosh−1 x at x =
√
2

In Exercises 29 – 44, evaluate the given indefinite integral.

29.
∫

tanh(2x) dx

30.
∫

cosh(3x− 7) dx

31.
∫

sinh x cosh x dx

32.
∫

x cosh x dx

33.
∫

x sinh x dx

34.
∫

1√
x2 + 1

dx

35.
∫

1√
x2 − 9

dx

36.
∫

1
9− x2

dx

37.
∫

2x√
x4 − 4

dx

38.
∫ √

x√
1+ x3

dx

39.
∫

1
x4 − 16

dx

40.
∫

1
x2 + x

dx
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41.
∫

ex

e2x + 1
dx

42.
∫

sinh−1 x dx

43.
∫

tanh−1 x dx

44.
∫

sech x dx (Hint: mulƟply by cosh x
cosh x ; set u = sinh x.)

In Exercises 45 – 48, evaluate the given definite integral.

45.
∫ 1

−1
sinh x dx

46.
∫ ln 2

− ln 2
cosh x dx

47.
∫ 1

0
tanh−1 x dx

48.
∫ 2

0

1√
x2 + 1

dx
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6.7 L’Hôpital’s Rule
While this chapter is devoted to learning techniques of integraƟon, this secƟon
is not about integraƟon. Rather, it is concerned with a technique of evaluaƟng
certain limits that will be useful in the following secƟon, where integraƟon is
once more discussed.

Our treatment of limits exposed us to the noƟon of “0/0”, an indeterminate
form. If lim

x→c
f(x) = 0 and lim

x→c
g(x) = 0, we do not conclude that lim

x→c
f(x)/g(x) is

0/0; rather, we use 0/0 as notaƟon to describe the fact that both the numerator
and denominator approach 0. The expression 0/0 has no numeric value; other
work must be done to evaluate the limit.

Other indeterminate forms exist; they are: ∞/∞, 0 ·∞,∞−∞, 00, 1∞ and
∞0. Just as “0/0” does not mean “divide 0 by 0,” the expression “∞/∞” does
not mean “divide infinity by infinity.” Instead, it means “a quanƟty is growing
without bound and is being divided by another quanƟty that is growing without
bound.” We cannot determine from such a statement what value, if any, results
in the limit. Likewise, “0 ·∞” does not mean “mulƟply zero by infinity.” Instead,
it means “one quanƟty is shrinking to zero, and is being mulƟplied by a quanƟty
that is growing without bound.” We cannot determine from such a descripƟon
what the result of such a limit will be.

This secƟon introduces l’Hôpital’s Rule, amethod of resolving limits that pro-
duce the indeterminate forms 0/0 and ∞/∞. We’ll also show how algebraic
manipulaƟon can be used to convert other indeterminate expressions into one
of these two forms so that our new rule can be applied.

Theorem 6.7.1 L’Hôpital’s Rule, Part 1

Let lim
x→c

f(x) = 0 and lim
x→c

g(x) = 0, where f and g are differenƟable func-
Ɵons on an open interval I containing c, and g ′(x) ̸= 0 on I except possi-
bly at c. Then

lim
x→c

f(x)
g(x)

= lim
x→c

f ′(x)
g ′(x)

.

We demonstrate the use of l’Hôpital’s Rule in the following examples; we
will oŌen use “LHR” as an abbreviaƟon of “l’Hôpital’s Rule.”

Notes:
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6.7 L’Hôpital’s Rule

Example 6.7.1 Using l’Hôpital’s Rule
Evaluate the following limits, using l’Hôpital’s Rule as needed.

1. lim
x→0

sin x
x

2. lim
x→1

√
x+ 3− 2
1− x

3. lim
x→0

x2

1− cos x

4. lim
x→2

x2 + x− 6
x2 − 3x+ 2

SÊ½çã®ÊÄ

1. We proved this limit is 1 in Example 1.3.4 using the Squeeze Theorem.
Here we use l’Hôpital’s Rule to show its power.

lim
x→0

sin x
x

by LHR
= lim

x→0

cos x
1

= 1.

2. lim
x→1

√
x+ 3− 2
1− x

by LHR
= lim

x→1

1
2 (x+ 3)−1/2

−1
= −1

4
.

3. lim
x→0

x2

1− cos x
by LHR
= lim

x→0

2x
sin x

.

This laƩer limit also evaluates to the 0/0 indeterminate form. To evaluate
it, we apply l’Hôpital’s Rule again.

lim
x→0

2x
sin x

by LHR
=

2
cos x

= 2.

Thus lim
x→0

x2

1− cos x
= 2.

4. We already know how to evaluate this limit; first factor the numerator and
denominator. We then have:

lim
x→2

x2 + x− 6
x2 − 3x+ 2

= lim
x→2

(x− 2)(x+ 3)
(x− 2)(x− 1)

= lim
x→2

x+ 3
x− 1

= 5.

We now show how to solve this using l’Hôpital’s Rule.

lim
x→2

x2 + x− 6
x2 − 3x+ 2

by LHR
= lim

x→2

2x+ 1
2x− 3

= 5.

Note that at each stepwhere l’Hôpital’s Rule was applied, it was needed: the
iniƟal limit returned the indeterminate form of “0/0.” If the iniƟal limit returns,
for example, 1/2, then l’Hôpital’s Rule does not apply.

Notes:
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The following theorem extends our iniƟal version of l’Hôpital’s Rule in two
ways. It allows the technique to be applied to the indeterminate form ∞/∞
and to limits where x approaches±∞.

Theorem 6.7.2 L’Hôpital’s Rule, Part 2

1. Let lim
x→a

f(x) = ±∞ and lim
x→a

g(x) = ±∞, where f and g are differ-
enƟable on an open interval I containing a. Then

lim
x→a

f(x)
g(x)

= lim
x→a

f ′(x)
g ′(x)

.

2. Let f and g be differenƟable funcƟons on the open interval (a,∞)
for some value a, where g ′(x) ̸= 0 on (a,∞) and lim

x→∞
f(x)/g(x)

returns either “0/0” or “∞/∞”. Then

lim
x→∞

f(x)
g(x)

= lim
x→∞

f ′(x)
g ′(x)

.

A similar statement can be made for limits where x approaches
−∞.

Example 6.7.2 Using l’Hôpital’s Rule with limits involving∞
Evaluate the following limits.

1. lim
x→∞

3x2 − 100x+ 2
4x2 + 5x− 1000

2. lim
x→∞

ex

x3
.

SÊ½çã®ÊÄ

1. We can evaluate this limit already using Theorem 1.6.1; the answer is 3/4.
We apply l’Hôpital’s Rule to demonstrate its applicability.

lim
x→∞

3x2 − 100x+ 2
4x2 + 5x− 1000

by LHR
= lim

x→∞

6x− 100
8x+ 5

by LHR
= lim

x→∞

6
8
=

3
4
.

2. lim
x→∞

ex

x3
by LHR
= lim

x→∞

ex

3x2
by LHR
= lim

x→∞

ex

6x
by LHR
= lim

x→∞

ex

6
= ∞.

Recall that this means that the limit does not exist; as x approaches ∞,
the expression ex/x3 grows without bound. We can infer from this that
ex grows “faster” than x3; as x gets large, ex is far larger than x3. (This

Notes:
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6.7 L’Hôpital’s Rule

has important implicaƟons in compuƟng when considering efficiency of
algorithms.)

Indeterminate Forms 0 · ∞ and∞−∞

L’Hôpital’s Rule can only be applied to raƟos of funcƟons. When faced with
an indeterminate form such as 0 ·∞ or∞−∞, we can someƟmes apply algebra
to rewrite the limit so that l’Hôpital’s Rule can be applied. We demonstrate the
general idea in the next example.

Example 6.7.3 Applying l’Hôpital’s Rule to other indeterminate forms
Evaluate the following limits.

1. lim
x→0+

x · e1/x

2. lim
x→0−

x · e1/x

3. lim
x→∞

ln(x+ 1)− ln x

4. lim
x→∞

x2 − ex

SÊ½çã®ÊÄ

1. As x → 0+, x → 0 and e1/x → ∞. Thus we have the indeterminate form

0 · ∞. We rewrite the expression x · e1/x as e
1/x

1/x
; now, as x → 0+, we get

the indeterminate form∞/∞ to which l’Hôpital’s Rule can be applied.

lim
x→0+

x · e1/x = lim
x→0+

e1/x

1/x
by LHR
= lim

x→0+

(−1/x2)e1/x

−1/x2
= lim

x→0+
e1/x = ∞.

InterpretaƟon: e1/x grows “faster” than x shrinks to zero, meaning their
product grows without bound.

2. As x → 0−, x → 0 and e1/x → e−∞ → 0. The the limit evaluates to 0 · 0
which is not an indeterminate form. We conclude then that

lim
x→0−

x · e1/x = 0.

3. This limit iniƟally evaluates to the indeterminate form∞−∞. By applying
a logarithmic rule, we can rewrite the limit as

lim
x→∞

ln(x+ 1)− ln x = lim
x→∞

ln
(
x+ 1
x

)
.

As x → ∞, the argument of the ln term approaches ∞/∞, to which we
can apply l’Hôpital’s Rule.

lim
x→∞

x+ 1
x

by LHR
=

1
1
= 1.

Notes:
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Since x → ∞ implies
x+ 1
x

→ 1, it follows that

x → ∞ implies ln
(
x+ 1
x

)
→ ln 1 = 0.

Thus
lim
x→∞

ln(x+ 1)− ln x = lim
x→∞

ln
(
x+ 1
x

)
= 0.

InterpretaƟon: since this limit evaluates to 0, it means that for large x,
there is essenƟally no difference between ln(x + 1) and ln x; their differ-
ence is essenƟally 0.

4. The limit lim
x→∞

x2−ex iniƟally returns the indeterminate form∞−∞. We

can rewrite the expression by factoring out x2; x2 − ex = x2
(
1− ex

x2

)
.

We need to evaluate how ex/x2 behaves as x → ∞:

lim
x→∞

ex

x2
by LHR
= lim

x→∞

ex

2x
by LHR
= lim

x→∞

ex

2
= ∞.

Thus limx→∞ x2(1− ex/x2) evaluates to∞ · (−∞), which is not an inde-
terminate form; rather, ∞ · (−∞) evaluates to −∞. We conclude that
lim
x→∞

x2 − ex = −∞.

InterpretaƟon: as x gets large, the difference between x2 and ex grows
very large.

Indeterminate Forms 00, 1∞ and∞0

When faced with an indeterminate form that involves a power, it oŌen helps
to employ the natural logarithmic funcƟon. The following Key Idea expresses the
concept, which is followed by an example that demonstrates its use.

Key Idea 6.7.1 EvaluaƟng Limits Involving Indeterminate Forms
00, 1∞ and∞0

If lim
x→c

ln
(
f(x)
)
= L, then lim

x→c
f(x) = lim

x→c
eln(f(x)) = e L.

Notes:
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6.7 L’Hôpital’s Rule

Example 6.7.4 Using l’Hôpital’s Rule with indeterminate forms involving
exponents

Evaluate the following limits.

1. lim
x→∞

(
1+

1
x

)x

2. lim
x→0+

xx.

SÊ½çã®ÊÄ

1. This is equivalent to a special limit given in Theorem 1.3.5; these limits
have important applicaƟons within mathemaƟcs and finance. Note that
the exponent approaches∞ while the base approaches 1, leading to the
indeterminate form 1∞. Let f(x) = (1+ 1/x)x; the problem asks to eval-
uate lim

x→∞
f(x). Let’s first evaluate lim

x→∞
ln
(
f(x)
)
.

lim
x→∞

ln
(
f(x)
)
= lim

x→∞
ln
(
1+

1
x

)x

= lim
x→∞

x ln
(
1+

1
x

)
= lim

x→∞

ln
(
1+ 1

x

)
1/x

This produces the indeterminate form 0/0, so we apply l’Hôpital’s Rule.

= lim
x→∞

1
1+1/x · (−1/x2)

(−1/x2)

= lim
x→∞

1
1+ 1/x

= 1.

Thus lim
x→∞

ln
(
f(x)
)
= 1.We return to the original limit and apply Key Idea

6.7.1.

lim
x→∞

(
1+

1
x

)x

= lim
x→∞

f(x) = lim
x→∞

eln(f(x)) = e1 = e.

2. This limit leads to the indeterminate form 00. Let f(x) = xx and consider

Notes:
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Figure 6.7.1: A graph of f(x) = xx sup-
porƟng the fact that as x → 0+, f(x) → 1.

Chapter 6 Techniques of AnƟdifferenƟaƟon

first lim
x→0+

ln
(
f(x)
)
.

lim
x→0+

ln
(
f(x)
)
= lim

x→0+
ln (xx)

= lim
x→0+

x ln x

= lim
x→0+

ln x
1/x

.

This produces the indeterminate form−∞/∞ soweapply l’Hôpital’s Rule.

= lim
x→0+

1/x
−1/x2

= lim
x→0+

−x

= 0.

Thus lim
x→0+

ln
(
f(x)
)
= 0. We return to the original limit and apply Key Idea

6.7.1.
lim

x→0+
xx = lim

x→0+
f(x) = lim

x→0+
eln(f(x)) = e0 = 1.

This result is supported by the graph of f(x) = xx given in Figure 6.7.1.

Our brief revisit of limits will be rewarded in the next secƟon where we con-
sider improper integraƟon. So far, we have only considered definite integrals

where the bounds are finite numbers, such as
∫ 1

0
f(x) dx. Improper integraƟon

considers integrals where one, or both, of the bounds are “infinity.” Such inte-
grals have many uses and applicaƟons, in addiƟon to generaƟng ideas that are
enlightening.

Notes:
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Exercises 6.7
Terms and Concepts
1. List the different indeterminate forms described in this sec-

Ɵon.

2. T/F: l’Hôpital’s Rule provides a faster method of compuƟng
derivaƟves.

3. T/F: l’Hôpital’s Rule states that d
dx

[
f(x)
g(x)

]
=

f ′(x)
g′(x)

.

4. Explain what the indeterminate form “1∞” means.

5. Fill in the blanks:

The QuoƟent Rule is applied to f(x)
g(x)

when taking
;

l’Hôpital’s Rule is applied to f(x)
g(x)

when taking certain
.

6. Create (but do not evaluate!) a limit that returns “∞0”.

7. Create a funcƟon f(x) such that lim
x→1

f(x) returns “00”.

8. Create a funcƟon f(x) such that lim
x→∞

f(x) returns “0 · ∞”.

Problems
In Exercises 9 – 54, evaluate the given limit.

9. lim
x→1

x2 + x− 2
x− 1

10. lim
x→2

x2 + x− 6
x2 − 7x+ 10

11. lim
x→π

sin x
x− π

12. lim
x→π/4

sin x− cos x
cos(2x)

13. lim
x→0

sin(5x)
x

14. lim
x→0

sin(2x)
x+ 2

15. lim
x→0

sin(2x)
sin(3x)

16. lim
x→0

sin(ax)
sin(bx)

17. lim
x→0+

ex − 1
x2

18. lim
x→0+

ex − x− 1
x2

19. lim
x→0+

x− sin x
x3 − x2

20. lim
x→∞

x4

ex

21. lim
x→∞

√
x

ex

22. lim
x→∞

1
x2
ex

23. lim
x→∞

ex√
x

24. lim
x→∞

ex

2x

25. lim
x→∞

ex

3x

26. lim
x→3

x3 − 5x2 + 3x+ 9
x3 − 7x2 + 15x− 9

27. lim
x→−2

x3 + 4x2 + 4x
x3 + 7x2 + 16x+ 12

28. lim
x→∞

ln x
x

29. lim
x→∞

ln(x2)
x

30. lim
x→∞

(
ln x
)2

x

31. lim
x→0+

x · ln x

32. lim
x→0+

√
x · ln x

33. lim
x→0+

xe1/x

34. lim
x→∞

x3 − x2

35. lim
x→∞

√
x− ln x

36. lim
x→−∞

xex

37. lim
x→0+

1
x2
e−1/x

38. lim
x→0+

(1+ x)1/x
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39. lim
x→0+

(2x)x

40. lim
x→0+

(2/x)x

41. lim
x→0+

(sin x)x Hint: use the Squeeze Theorem.

42. lim
x→1+

(1− x)1−x

43. lim
x→∞

(x)1/x

44. lim
x→∞

(1/x)x

45. lim
x→1+

(ln x)1−x

46. lim
x→∞

(1+ x)1/x

47. lim
x→∞

(1+ x2)1/x

48. lim
x→π/2

tan x cos x

49. lim
x→π/2

tan x sin(2x)

50. lim
x→1+

1
ln x

− 1
x− 1

51. lim
x→3+

5
x2 − 9

− x
x− 3

52. lim
x→∞

x tan(1/x)

53. lim
x→∞

(ln x)3

x

54. lim
x→1

x2 + x− 2
ln x
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Figure 6.8.1: Graphing f(x) = 1
1+ x2

.

6.8 Improper IntegraƟon

6.8 Improper IntegraƟon
We begin this secƟon by considering the following definite integrals:

•
∫ 100

0

1
1+ x2

dx ≈ 1.5608,

•
∫ 1000

0

1
1+ x2

dx ≈ 1.5698,

•
∫ 10,000

0

1
1+ x2

dx ≈ 1.5707.

NoƟce how the integrand is 1/(1+ x2) in each integral (which is sketched in
Figure 6.8.1). As the upper bound gets larger, one would expect the “area under
the curve” would also grow. While the definite integrals do increase in value as
the upper bound grows, they are not increasing by much. In fact, consider:∫ b

0

1
1+ x2

dx = tan−1 x
∣∣∣b
0
= tan−1 b− tan−1 0 = tan−1 b.

As b → ∞, tan−1 b → π/2. Therefore it seems that as the upper bound b grows,

the value of the definite integral
∫ b

0

1
1+ x2

dx approaches π/2 ≈ 1.5708. This

should strike the reader as being a bit amazing: even though the curve extends
“to infinity,” it has a finite amount of area underneath it.

Whenwe defined the definite integral
∫ b

a
f(x) dx, wemade two sƟpulaƟons:

1. The interval over which we integrated, [a, b], was a finite interval, and

2. The funcƟon f(x) was conƟnuous on [a, b] (ensuring that the range of f
was finite).

In this secƟon we consider integrals where one or both of the above condi-
Ɵons do not hold. Such integrals are called improper integrals.
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Figure 6.8.2: A graph of f(x) = 1
x2 in Ex-

ample 6.8.1.
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Improper Integrals with Infinite Bounds

DefiniƟon6.8.1 Improper Integrals with Infinite Bounds; Converge,
Diverge

1. Let f be a conƟnuous funcƟon on [a,∞). Define∫ ∞

a
f(x) dx to be lim

b→∞

∫ b

a
f(x) dx.

2. Let f be a conƟnuous funcƟon on (−∞, b]. Define∫ b

−∞
f(x) dx to be lim

a→−∞

∫ b

a
f(x) dx.

3. Let f be a conƟnuous funcƟon on (−∞,∞). Let c be any real num-
ber; define∫ ∞

−∞
f(x) dx to be lim

a→−∞

∫ c

a
f(x) dx + lim

b→∞

∫ b

c
f(x) dx.

An improper integral is said to converge if its corresponding limit exists;
otherwise, it diverges. The improper integral in part 3 converges if and
only if both of its limits exist.

Example 6.8.1 EvaluaƟng improper integrals
Evaluate the following improper integrals.

1.
∫ ∞

1

1
x2

dx

2.
∫ ∞

1

1
x
dx

3.
∫ 0

−∞
ex dx

4.
∫ ∞

−∞

1
1+ x2

dx

SÊ½çã®ÊÄ

1.
∫ ∞

1

1
x2

dx = lim
b→∞

∫ b

1

1
x2

dx = lim
b→∞

−1
x

∣∣∣b
1

= lim
b→∞

−1
b

+ 1

= 1.

A graph of the area defined by this integral is given in Figure 6.8.2.
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Figure 6.8.3: A graph of f(x) = 1
x in Exam-

ple 6.8.1.
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Figure 6.8.4: A graph of f(x) = ex in Ex-
ample 6.8.1.
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Figure 6.8.5: A graph of f(x) = 1
1+x2 in

Example 6.8.1.

6.8 Improper IntegraƟon

2.
∫ ∞

1

1
x
dx = lim

b→∞

∫ b

1

1
x
dx

= lim
b→∞

ln |x|
∣∣∣b
1

= lim
b→∞

ln(b)

= ∞.

The limit does not exist, hence the improper integral
∫ ∞

1

1
x
dx diverges.

Compare the graphs in Figures 6.8.2 and 6.8.3; noƟce how the graph of
f(x) = 1/x is noƟceably larger. This difference is enough to cause the
improper integral to diverge.

3.
∫ 0

−∞
ex dx = lim

a→−∞

∫ 0

a
ex dx

= lim
a→−∞

ex
∣∣∣0
a

= lim
a→−∞

e0 − ea

= 1.
A graph of the area defined by this integral is given in Figure 6.8.4.

4. We will need to break this into two improper integrals and choose a value
of c as in part 3 of DefiniƟon 6.8.1. Any value of c is fine; we choose c = 0.

∫ ∞

−∞

1
1+ x2

dx = lim
a→−∞

∫ 0

a

1
1+ x2

dx+ lim
b→∞

∫ b

0

1
1+ x2

dx

= lim
a→−∞

tan−1 x
∣∣∣0
a
+ lim

b→∞
tan−1 x

∣∣∣b
0

= lim
a→−∞

(
tan−1 0− tan−1 a

)
+ lim

b→∞

(
tan−1 b− tan−1 0

)
=

(
0− −π

2

)
+
(π
2
− 0
)
.

Each limit exists, hence the original integral converges and has value:

= π.

A graph of the area defined by this integral is given in Figure 6.8.5.
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Figure 6.8.6: A graph of f(x) = ln x
x2 in Ex-

ample 6.8.2.
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The previous secƟon introduced l’Hôpital’s Rule, a method of evaluaƟng lim-
its that return indeterminate forms. It is not uncommon for the limits resulƟng
from improper integrals to need this rule as demonstrated next.

Example 6.8.2 Improper integraƟon and l’Hôpital’s Rule
Evaluate the improper integral

∫ ∞

1

ln x
x2

dx.

SÊ½çã®ÊÄ This integral will require the use of IntegraƟon by Parts. Let
u = ln x and dv = 1/x2 dx. Then∫ ∞

1

ln x
x2

dx = lim
b→∞

∫ b

1

ln x
x2

dx

= lim
b→∞

(
− ln x

x

∣∣∣b
1
+

∫ b

1

1
x2

dx

)

= lim
b→∞

(
− ln x

x
− 1

x

)∣∣∣∣b
1

= lim
b→∞

(
− ln b

b
− 1

b
− (− ln 1− 1)

)
.

The 1/b and ln 1 terms go to 0, leaving lim
b→∞

− ln b
b

+ 1. We need to evaluate

lim
b→∞

ln b
b

with l’Hôpital’s Rule. We have:

lim
b→∞

ln b
b

by LHR
= lim

b→∞

1/b
1

= 0.

Thus the improper integral evaluates as:∫ ∞

1

ln x
x2

dx = 1.

Improper Integrals with Infinite Range

We have just considered definite integrals where the interval of integraƟon
was infinite. We now consider another type of improper integraƟon, where the
range of the integrand is infinite.

Notes:
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Note: In DefiniƟon 6.8.2, c can be one of
the endpoints (a or b). In that case, there
is only one limit to consider as part of the
definiƟon.
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Figure 6.8.7: A graph of f(x) = 1√
x in Ex-

ample 6.8.3.
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Figure 6.8.8: A graph of f(x) = 1
x2 in Ex-

ample 6.8.3.

6.8 Improper IntegraƟon

DefiniƟon 6.8.2 Improper IntegraƟon with Infinite Range

Let f(x) be a conƟnuous funcƟon on [a, b] except at c, a ≤ c ≤ b, where
x = c is a verƟcal asymptote of f. Define∫ b

a
f(x) dx = lim

t→c−

∫ t

a
f(x) dx+ lim

t→c+

∫ b

t
f(x) dx.

Example 6.8.3 Improper integraƟon of funcƟons with infinite range
Evaluate the following improper integrals:

1.
∫ 1

0

1√
x
dx 2.

∫ 1

−1

1
x2

dx.

SÊ½çã®ÊÄ

1. A graph of f(x) = 1/
√
x is given in Figure 6.8.7. NoƟce that f has a verƟcal

asymptote at x = 0; in some sense, we are trying to compute the area of
a region that has no “top.” Could this have a finite value?∫ 1

0

1√
x
dx = lim

a→0+

∫ 1

a

1√
x
dx

= lim
a→0+

2
√
x
∣∣∣1
a

= lim
a→0+

2
(√

1−
√
a
)

= 2.

It turns out that the region does have a finite area even though it has no
upper bound (strange things can occur in mathemaƟcs when considering
the infinite).

2. The funcƟon f(x) = 1/x2 has a verƟcal asymptote at x = 0, as shown
in Figure 6.8.8, so this integral is an improper integral. Let’s eschew using
limits for amoment and proceedwithout recognizing the improper nature
of the integral. This leads to:∫ 1

−1

1
x2

dx = −1
x

∣∣∣1
−1

= −1− (1)
= −2. (!)

Notes:
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Figure 6.8.9: Ploƫng funcƟons of the
form 1/x p in Example 6.8.4.
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Clearly the area in quesƟon is above the x-axis, yet the area is supposedly
negaƟve! Why does our answer not match our intuiƟon? To answer this,
evaluate the integral using DefiniƟon 6.8.2.∫ 1

−1

1
x2

dx = lim
t→0−

∫ t

−1

1
x2

dx+ lim
t→0+

∫ 1

t

1
x2

dx

= lim
t→0−

−1
x

∣∣∣t
−1

+ lim
t→0+

−1
x

∣∣∣1
t

= lim
t→0−

−1
t
− 1+ lim

t→0+
−1+

1
t

⇒
(
∞− 1

)
+
(
− 1+∞

)
.

Neither limit converges hence the original improper integral diverges. The
nonsensical answer we obtained by ignoring the improper nature of the
integral is just that: nonsensical.

Understanding Convergence and Divergence

OŌenƟmes we are interested in knowing simply whether or not an improper
integral converges, and not necessarily the value of a convergent integral. We
provide here several tools that help determine the convergence or divergence
of improper integrals without integraƟng.

Our first tool is to understand the behavior of funcƟons of the form
1
xp

.

Example 6.8.4 Improper integraƟon of 1/xp

Determine the values of p for which
∫ ∞

1

1
xp

dx converges.

SÊ½çã®ÊÄ We begin by integraƟng and then evaluaƟng the limit.∫ ∞

1

1
xp

dx = lim
b→∞

∫ b

1

1
xp

dx

= lim
b→∞

∫ b

1
x−p dx (assume p ̸= 1)

= lim
b→∞

1
−p+ 1

x−p+1
∣∣∣b
1

= lim
b→∞

1
1− p

(
b1−p − 11−p).

When does this limit converge – i.e., when is this limit not ∞? This limit con-
verges precisely when the power of b is less than 0: when 1− p < 0 ⇒ 1 < p.

Notes:
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Note: We used the upper and lower
bound of “1” in Key Idea 6.8.1 for conve-
nience. It can be replaced by any awhere
a > 0.

6.8 Improper IntegraƟon

Our analysis shows that if p > 1, then
∫ ∞

1

1
xp

dx converges. When p < 1

the improper integral diverges; we showed in Example 6.8.1 that when p = 1
the integral also diverges.

Figure 6.8.9 graphs y = 1/x with a dashed line, along with graphs of y =
1/xp, p < 1, and y = 1/xq, q > 1. Somehow the dashed line forms a dividing
line between convergence and divergence.

The result of Example 6.8.4 provides an important tool in determining the
convergence of other integrals. A similar result is proved in the exercises about

improper integrals of the form
∫ 1

0

1
xp

dx. These results are summarized in the

following Key Idea.

Key Idea 6.8.1 Convergence of Improper Integrals
∫ ∞

1

1
xp

dx and
∫ 1

0

1
xp

dx.

1. The improper integral
∫ ∞

1

1
xp

dx converges when p > 1 and diverges when p ≤ 1.

2. The improper integral
∫ 1

0

1
xp

dx converges when p < 1 and diverges when p ≥ 1.

A basic technique in determining convergence of improper integrals is to
compare an integrand whose convergence is unknown to an integrand whose
convergence is known. We oŌen use integrands of the form 1/xp to compare
to as their convergence on certain intervals is known. This is described in the
following theorem.

Theorem 6.8.1 Direct Comparison Test for Improper Integrals

Let f and g be conƟnuous on [a,∞) where 0 ≤ f(x) ≤ g(x) for all x in
[a,∞).

1. If
∫ ∞

a
g(x) dx converges, then

∫ ∞

a
f(x) dx converges.

2. If
∫ ∞

a
f(x) dx diverges, then

∫ ∞

a
g(x) dx diverges.

Notes:
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Figure 6.8.10: Graphs of f(x) = e−x2 and
f(x) = 1/x2 in Example 6.8.5.
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Figure 6.8.11: Graphs of f(x) =
1/

√
x2 − x and f(x) = 1/x in Example

6.8.5.

Chapter 6 Techniques of AnƟdifferenƟaƟon

Example 6.8.5 Determining convergence of improper integrals
Determine the convergence of the following improper integrals.

1.
∫ ∞

1
e−x2 dx 2.

∫ ∞

3

1√
x2 − x

dx

SÊ½çã®ÊÄ

1. The funcƟon f(x) = e−x2 does not have an anƟderivaƟve expressible in
terms of elementary funcƟons, so we cannot integrate directly. It is com-
parable to g(x) = 1/x2, and as demonstrated in Figure 6.8.10, e−x2 <

1/x2 on [1,∞). We know from Key Idea 6.8.1 that
∫ ∞

1

1
x2

dx converges,

hence
∫ ∞

1
e−x2 dx also converges.

2. Note that for large values of x,
1√

x2 − x
≈ 1√

x2
=

1
x
. We know from Key

Idea 6.8.1 and the subsequent note that
∫ ∞

3

1
x
dx diverges, so we seek

to compare the original integrand to 1/x.

It is easy to see that when x > 0, we have x =
√
x2 >

√
x2 − x. Taking

reciprocals reverses the inequality, giving

1
x
<

1√
x2 − x

.

Using Theorem6.8.1, we conclude that since
∫ ∞

3

1
x
dxdiverges,

∫ ∞

3

1√
x2 − x

dx

diverges as well. Figure 6.8.11 illustrates this.

Being able to compare “unknown” integrals to “known” integrals is very use-
ful in determining convergence. However, some of our examples were a liƩle
“too nice.” For instance, it was convenient that

1
x
<

1√
x2 − x

, but what if the

“−x” were replaced with a “+2x+ 5”? That is, what can we say about the con-

vergence of
∫ ∞

3

1√
x2 + 2x+ 5

dx? We have
1
x
>

1√
x2 + 2x+ 5

, so we cannot

use Theorem 6.8.1.
In cases like this (and many more) it is useful to employ the following theo-

rem.

Notes:
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Figure 6.8.12: Graphing f(x) = 1√
x2+2x+5

and f(x) = 1
x in Example 6.8.6.

6.8 Improper IntegraƟon

Theorem 6.8.2 Limit Comparison Test for Improper Integrals

Let f and g be conƟnuous funcƟons on [a,∞)where f(x) > 0 and g(x) >
0 for all x. If

lim
x→∞

f(x)
g(x)

= L, 0 < L < ∞,

then ∫ ∞

a
f(x) dx and

∫ ∞

a
g(x) dx

either both converge or both diverge.

Example 6.8.6 Determining convergence of improper integrals
Determine the convergence of

∫ ∞

3

1√
x2 + 2x+ 5

dx.

SÊ½çã®ÊÄ As x gets large, the denominator of the integrand will begin
to behave much like y = x. So we compare 1√

x2 + 2x+ 5
to 1

x
with the Limit

Comparison Test:

lim
x→∞

1/
√
x2 + 2x+ 5
1/x

= lim
x→∞

x√
x2 + 2x+ 5

.

The immediate evaluaƟonof this limit returns∞/∞, an indeterminate form.
Using l’Hôpital’s Rule seems appropriate, but in this situaƟon, it does not lead
to useful results. (We encourage the reader to employ l’Hôpital’s Rule at least
once to verify this.)

The trouble is the square root funcƟon. To get rid of it, we employ the fol-
lowing fact: If lim

x→c
f(x) = L, then lim

x→c
f(x)2 = L2. (This is true when either c or L

is∞.) So we consider now the limit

lim
x→∞

x2

x2 + 2x+ 5
.

This converges to 1, meaning the original limit also converged to 1. As x gets
very large, the funcƟon 1√

x2 + 2x+ 5
looks verymuch like 1

x
. Sincewe know that∫ ∞

3

1
x
dxdiverges, by the Limit Comparison Testwe know that

∫ ∞

3

1√
x2 + 2x+ 5

dx

also diverges. Figure 6.8.12 graphs f(x) = 1/
√
x2 + 2x+ 5 and f(x) = 1/x, il-

lustraƟng that as x gets large, the funcƟons become indisƟnguishable.

Notes:
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Chapter 6 Techniques of AnƟdifferenƟaƟon

Both the Direct and Limit Comparison Tests were given in terms of integrals
over an infinite interval. There are versions that apply to improper integrals with
an infinite range, but as they are a bit wordy and a liƩle more difficult to employ,
they are omiƩed from this text.

This chapter has explored many integraƟon techniques. We learned SubsƟ-
tuƟon, which “undoes” the Chain Rule of differenƟaƟon, as well as IntegraƟon
by Parts, which “undoes” the Product Rule. We learned specialized techniques
for handling trigonometric funcƟons and introduced the hyperbolic funcƟons,
which are closely related to the trigonometric funcƟons. All techniques effec-
Ɵvely have this goal in common: rewrite the integrand in a new way so that the
integraƟon step is easier to see and implement.

As stated before, integraƟon is, in general, hard. It is easy to write a funcƟon
whose anƟderivaƟve is impossible to write in terms of elementary funcƟons,
and evenwhen a funcƟon does have an anƟderivaƟve expressible by elementary
funcƟons, it may be really hard to discover what it is. The powerful computer
algebra systemMathemaƟca® has approximately 1,000 pages of code dedicated
to integraƟon.

Do not let this difficulty discourage you. There is great value in learning in-
tegraƟon techniques, as they allow one to manipulate an integral in ways that
can illuminate a concept for greater understanding. There is also great value
in understanding the need for good numerical techniques: the Trapezoidal and
Simpson’s Rules are just the beginning of powerful techniques for approximat-
ing the value of integraƟon.

The next chapter stresses the uses of integraƟon. We generally do not find
anƟderivaƟves for anƟderivaƟve’s sake, but rather because they provide the so-
luƟon to some typeof problem. The following chapter introduces us to a number
of different problems whose soluƟon is provided by integraƟon.

Notes:
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Exercises 6.8
Terms and Concepts
1. The definite integral was defined with what two sƟpula-

Ɵons?

2. If lim
b→∞

∫ b

0
f(x) dx exists, then the integral

∫ ∞

0
f(x) dx is

said to .

3. If
∫ ∞

1
f(x) dx = 10, and 0 ≤ g(x) ≤ f(x) for all x, then we

know that
∫ ∞

1
g(x) dx .

4. For what values of p will
∫ ∞

1

1
xp

dx converge?

5. For what values of p will
∫ ∞

10

1
xp

dx converge?

6. For what values of p will
∫ 1

0

1
xp

dx converge?

Problems
In Exercises 7 – 34, evaluate the given improper integral.

7.
∫ ∞

0
e5−2x dx

8.
∫ ∞

1

1
x3

dx

9.
∫ ∞

1
x−4 dx

10.
∫ ∞

−∞

1
x2 + 9

dx

11.
∫ 0

−∞
2x dx

12.
∫ 0

−∞

(
1
2

)x

dx

13.
∫ ∞

−∞

x
x2 + 1

dx

14.
∫ ∞

3

1
x2 − 4

dx

15.
∫ ∞

2

1
(x− 1)2

dx

16.
∫ 2

1

1
(x− 1)2

dx

17.
∫ ∞

2

1
x− 1

dx

18.
∫ 2

1

1
x− 1

dx

19.
∫ 1

−1

1
x
dx

20.
∫ 3

1

1
x− 2

dx

21.
∫ π

0
sec2 x dx

22.
∫ 1

−2

1√
|x|

dx

23.
∫ ∞

0
xe−x dx

24.
∫ ∞

0
xe−x2 dx

25.
∫ ∞

−∞
xe−x2 dx

26.
∫ ∞

−∞

1
ex + e−x dx

27.
∫ 1

0
x ln x dx

28.
∫ 1

0
x2 ln x dx

29.
∫ ∞

1

ln x
x

dx

30.
∫ 1

0
ln x dx

31.
∫ ∞

1

ln x
x2

dx

32.
∫ ∞

1

ln x√
x
dx

33.
∫ ∞

0
e−x sin x dx

34.
∫ ∞

0
e−x cos x dx
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In Exercises 35 – 44, use the Direct Comparison Test or the
Limit Comparison Test to determine whether the given def-
inite integral converges or diverges. Clearly state what test
is being used and what funcƟon the integrand is being com-
pared to.

35.
∫ ∞

10

3√
3x2 + 2x− 5

dx

36.
∫ ∞

2

4√
7x3 − x

dx

37.
∫ ∞

0

√
x+ 3√

x3 − x2 + x+ 1
dx

38.
∫ ∞

1
e−x ln x dx

39.
∫ ∞

5
e−x2+3x+1 dx

40.
∫ ∞

0

√
x

ex
dx

41.
∫ ∞

2

1
x2 + sin x

dx

42.
∫ ∞

0

x
x2 + cos x

dx

43.
∫ ∞

0

1
x+ ex

dx

44.
∫ ∞

0

1
ex − x

dx
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We begin this chapter with a reminder of a few key concepts from Chapter 5.
Let f be a conƟnuous funcƟon on [a, b]which is parƟƟoned into n equally spaced
subintervals as

a = x1 < x2 < · · · < xn < xn+1 = b.

Let ∆x = (b − a)/n denote the length of the subintervals, and let ci be any
x-value in the i th subinterval. DefiniƟon 5.3.2 states that the sum

n∑
i=1

f(ci)∆x

is a Riemann Sum. Riemann Sums are oŌen used to approximate some quan-
Ɵty (area, volume, work, pressure, etc.). The approximaƟon becomes exact by
taking the limit

lim
n→∞

n∑
i=1

f(ci)∆x.

Theorem 5.3.2 connects limits of Riemann Sums to definite integrals:

lim
n→∞

n∑
i=1

f(ci)∆x =
∫ b

a
f(x) dx.

Finally, the Fundamental Theorem of Calculus states how definite integrals can
be evaluated using anƟderivaƟves.

This chapter employs the following technique to a variety of applicaƟons.
Suppose the value Q of a quanƟty is to be calculated. We first approximate the
value ofQ using a Riemann Sum, then find the exact value via a definite integral.
We spell out this technique in the following Key Idea.

Key Idea 7.0.1 ApplicaƟon of Definite Integrals Strategy

Let a quanƟty be given whose value Q is to be computed.

1. Divide the quanƟty into n smaller “subquanƟƟes” of value Qi.

2. IdenƟfy a variable x and funcƟon f(x) such that each subquanƟty
can be approximated with the product f(ci)∆x, where ∆x repre-
sents a small change in x. Thus Qi ≈ f(ci)∆x. A sample approxi-
maƟon f(ci)∆x of Qi is called a differenƟal element.

3. Recognize that Q =

n∑
i=1

Qi ≈
n∑

i=1
f(ci)∆x, which is a Riemann

Sum.

4. Taking the appropriate limit gives Q =

∫ b

a
f(x) dx

This Key Idea will make more sense aŌer we have had a chance to use it
several Ɵmes. We begin with Area Between Curves, which we addressed briefly
in SecƟon 5.4.
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Figure 7.1.1: Subdividing a region into
verƟcal slices and approximaƟng the ar-
eas with rectangles.

Chapter 7 ApplicaƟons of IntegraƟon

7.1 Area Between Curves
We are oŌen interested in knowing the area of a region. Forget momentarily
that we addressed this already in SecƟon 5.4 and approach it instead using the
technique described in Key Idea 7.0.1.

LetQ be the area of a region bounded by conƟnuous funcƟons f and g. If we
break the region into many subregions, we have an obvious equaƟon:

Total Area = sum of the areas of the subregions.
The issue to address next is how to systemaƟcally break a region into subre-

gions. A graph will help. Consider Figure 7.1.1 (a) where a region between two
curves is shaded. While there are many ways to break this into subregions, one
parƟcularly efficient way is to “slice” it verƟcally, as shown in Figure 7.1.1 (b),
into n equally spaced slices.

We now approximate the area of a slice. Again, we have many opƟons, but
using a rectangle seems simplest. Picking any x-value ci in the i th slice, we set
the height of the rectangle to be f(ci)− g(ci), the difference of the correspond-
ing y-values. The width of the rectangle is a small difference in x-values, which
we represent with ∆x. Figure 7.1.1 (c) shows sample points ci chosen in each
subinterval and appropriate rectangles drawn. (Each of these rectangles rep-
resents a differenƟal element.) Each slice has an area approximately equal to(
f(ci)− g(ci)

)
∆x; hence, the total area is approximately the Riemann Sum

Q =

n∑
i=1

(
f(ci)− g(ci)

)
∆x.

Taking the limit as n → ∞ gives the exact area as
∫ b
a

(
f(x)− g(x)

)
dx.

Theorem7.1.1 Area Between Curves
(restatement of Theorem 5.4.3)

Let f(x) and g(x) be conƟnuous funcƟons defined on [a, b]where f(x) ≥
g(x) for all x in [a, b]. The area of the region bounded by the curves
y = f(x), y = g(x) and the lines x = a and x = b is∫ b

a

(
f(x)− g(x)

)
dx.

Example 7.1.1 Finding area enclosed by curves
Find the area of the region bounded by f(x) = sin x+ 2, g(x) = 1

2 cos(2x)− 1,
x = 0 and x = 4π, as shown in Figure 7.1.2.

Notes:
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7.1 Area Between Curves

SÊ½çã®ÊÄ The graph verifies that the upper boundary of the region is
given by f and the lower bound is given by g. Therefore the area of the region is
the value of the integral∫ 4π

0

(
f(x)− g(x)

)
dx =

∫ 4π

0

(
sin x+ 2−

(1
2
cos(2x)− 1

))
dx

= − cos x− 1
4
sin(2x) + 3x

∣∣∣4π
0

= 12π ≈ 37.7 units2.

Example 7.1.2 Finding total area enclosed by curves
Find the total area of the region enclosed by the funcƟons f(x) = −2x+ 5 and
g(x) = x3 − 7x2 + 12x− 3 as shown in Figure 7.1.3.

SÊ½çã®ÊÄ A quick calculaƟon shows that f = g at x = 1, 2 and 4. One

can proceed thoughtlessly by compuƟng
∫ 4

1

(
f(x) − g(x)

)
dx, but this ignores

the fact that on [1, 2], g(x) > f(x). (In fact, the thoughtless integraƟon returns
−9/4, hardly the expected value of an area.) Thus we compute the total area by
breaking the interval [1, 4] into two subintervals, [1, 2] and [2, 4] and using the
proper integrand in each.

Total Area =

∫ 2

1

(
g(x)− f(x)

)
dx+

∫ 4

2

(
f(x)− g(x)

)
dx

=

∫ 2

1

(
x3 − 7x2 + 14x− 8

)
dx+

∫ 4

2

(
− x3 + 7x2 − 14x+ 8

)
dx

= 5/12+ 8/3
= 37/12 = 3.083 units2.

The previous example makes note that we are expecƟng area to be posiƟve.
When first learning about the definite integral, we interpreted it as “signed area
under the curve,” allowing for “negaƟve area.” That doesn’t apply here; area is
to be posiƟve.

The previous example also demonstrates that we oŌen have to break a given
region into subregions before applying Theorem 7.1.1. The following example
shows another situaƟon where this is applicable, along with an alternate view
of applying the Theorem.

Example 7.1.3 Finding area: integraƟng with respect to y
Find the area of the region enclosed by the funcƟons y =

√
x + 2, y = −(x −

1)2 + 3 and y = 2, as shown in Figure 7.1.4.

Notes:
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Chapter 7 ApplicaƟons of IntegraƟon

SÊ½çã®ÊÄ We give two approaches to this problem. In the first ap-
proach, we noƟce that the region’s “top” is defined by two different curves.
On [0, 1], the top funcƟon is y =

√
x + 2; on [1, 2], the top funcƟon is y =

−(x− 1)2 + 3. Thus we compute the area as the sum of two integrals:

Total Area =

∫ 1

0

((√
x+ 2

)
− 2
)
dx+

∫ 2

1

((
− (x− 1)2 + 3

)
− 2
)
dx

= 2/3+ 2/3
= 4/3.

The second approach is clever and very useful in certain situaƟons. We are
used to viewing curves as funcƟons of x; we input an x-value and a y-value is re-
turned. Some curves can also be described as funcƟons of y: input a y-value and
an x-value is returned. We can rewrite the equaƟons describing the boundary
by solving for x:

y =
√
x+ 2 ⇒ x = (y− 2)2

y = −(x− 1)2 + 3 ⇒ x =
√

3− y+ 1.

Figure 7.1.5 shows the region with the boundaries relabeled. A differenƟal
element, a horizontal rectangle, is also pictured. The width of the rectangle is
a small change in y: ∆y. The height of the rectangle is a difference in x-values.
The “top” x-value is the largest value, i.e., the rightmost. The “boƩom” x-value
is the smaller, i.e., the leŌmost. Therefore the height of the rectangle is(√

3− y+ 1
)
− (y− 2)2.

The area is found by integraƟng the above funcƟon with respect to y with
the appropriate bounds. We determine these by considering the y-values the
region occupies. It is bounded below by y = 2, and bounded above by y = 3.
That is, both the “top” and “boƩom” funcƟons exist on the y interval [2, 3]. Thus

Total Area =

∫ 3

2

(√
3− y+ 1− (y− 2)2

)
dy

=
(
− 2

3
(3− y)3/2 + y− 1

3
(y− 2)3

)∣∣∣3
2

= 4/3.

This calculus–based technique of finding area can be useful evenwith shapes
that we normally think of as “easy.” Example 7.1.4 computes the area of a trian-
gle. While the formula “ 12 × base× height” is well known, in arbitrary triangles
it can be nontrivial to compute the height. Calculus makes the problem simple.

Notes:
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Figure 7.1.6: Graphing a triangular region
in Example 7.1.4.
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Figure 7.1.7: (a) A sketch of a lake, and (b)
the lake with length measurements.

7.1 Area Between Curves

Example 7.1.4 Finding the area of a triangle
Compute the area of the regions bounded by the lines
y = x+ 1, y = −2x+ 7 and y = − 1

2x+
5
2 , as shown in Figure 7.1.6.

SÊ½çã®ÊÄ Recognize that there are two “top” funcƟons to this region,
causing us to use two definite integrals.

Total Area =

∫ 2

1

(
(x+ 1)− (−1

2
x+

5
2
)
)
dx+

∫ 3

2

(
(−2x+ 7)− (−1

2
x+

5
2
)
)
dx

= 3/4+ 3/4
= 3/2.

We can also approach this by converƟng each funcƟon into a funcƟon of y. This
also requires 2 integrals, so there isn’t really any advantage to doing so. We do
it here for demonstraƟon purposes.

The “top” funcƟon is always x = 7−y
2 while there are two “boƩom” func-

Ɵons. Being mindful of the proper integraƟon bounds, we have

Total Area =

∫ 2

1

(7− y
2

− (5− 2y)
)
dy+

∫ 3

2

(7− y
2

− (y− 1)
)
dy

= 3/4+ 3/4
= 3/2.

Of course, the final answer is the same. (It is interesƟng to note that the area of
all 4 subregions used is 3/4. This is coincidental.)

Whilewehave focused on producing exact answers, we are also able tomake
approximaƟons using the principle of Theorem 7.1.1. The integrand in the theo-
rem is a distance (“top minus boƩom”); integraƟng this distance funcƟon gives
an area. By taking discrete measurements of distance, we can approximate an
area using numerical integraƟon techniques developed in SecƟon 5.5. The fol-
lowing example demonstrates this.

Example 7.1.5 Numerically approximaƟng area
To approximate the area of a lake, shown in Figure 7.1.7 (a), the “length” of the
lake is measured at 200-foot increments as shown in Figure 7.1.7 (b), where the
lengths are given in hundreds of feet. Approximate the area of the lake.

SÊ½çã®ÊÄ The measurements of length can be viewed as measuring
“top minus boƩom” of two funcƟons. The exact answer is found by integraƟng∫ 12

0

(
f(x) − g(x)

)
dx, but of course we don’t know the funcƟons f and g. Our

discrete measurements instead allow us to approximate.

Notes:
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Chapter 7 ApplicaƟons of IntegraƟon

We have the following data points:

(0, 0), (2, 2.25), (4, 5.08), (6, 6.35), (8, 5.21), (10, 2.76), (12, 0).

We also have that∆x = b−a
n = 2, so Simpson’s Rule gives

Area ≈ 2
3

(
1 · 0+ 4 · 2.25+ 2 · 5.08+ 4 · 6.35+ 2 · 5.21+ 4 · 2.76+ 1 · 0

)
= 44.013 units2.

Since the measurements are in hundreds of feet, units2 = (100 Ō)2 =
10, 000 Ō2, giving a total area of 440, 133 Ō2. (Since we are approximaƟng, we’d
likely say the area was about 440, 000 Ō2, which is a liƩle more than 10 acres.)

In the next secƟon we apply our applicaƟons–of–integraƟon techniques to
finding the volumes of certain solids.

Notes:
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Exercises 7.1
Terms and Concepts

1. T/F: The area between curves is always posiƟve.

2. T/F: Calculus can be used to find the area of basic geometric
shapes.

3. In your own words, describe how to find the total area en-
closed by y = f(x) and y = g(x).

4. Describe a situaƟon where it is advantageous to find an
area enclosed by curves through integraƟon with respect
to y instead of x.

Problems

In Exercises 5 – 12, find the area of the shaded region in the
given graph.
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12.

y =
√

x + 1 y =
√
2 − x + 1

y = 1

1 2

1

2

x

y

In Exercises 13 – 20, find the total area enclosed by the func-
Ɵons f and g.

13. f(x) = 2x2 + 5x− 3, g(x) = x2 + 4x− 1

14. f(x) = x2 − 3x+ 2, g(x) = −3x+ 3

15. f(x) = sin x, g(x) = 2x/π

16. f(x) = x3 − 4x2 + x− 1, g(x) = −x2 + 2x− 4

17. f(x) = x, g(x) =
√
x

18. f(x) = −x3 + 5x2 + 2x+ 1, g(x) = 3x2 + x+ 3

19. The funcƟons f(x) = cos(x) and g(x) = sin x intersect
infinitely many Ɵmes, forming an infinite number of re-
peated, enclosed regions. Find the areas of these regions.

20. The funcƟons f(x) = cos(2x) and g(x) = sin x intersect
infinitely many Ɵmes, forming an infinite number of re-
peated, enclosed regions. Find the areas of these regions.

In Exercises 21 – 26, find the area of the enclosed region in
two ways:

1. by treaƟng the boundaries as funcƟons of x, and

2. by treaƟng the boundaries as funcƟons of y.
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In Exercises 27 – 30, find the area triangle formed by the given
three points.

27. (1, 1), (2, 3), and (3, 3)

28. (−1, 1), (1, 3), and (2,−1)

29. (1, 1), (3, 3), and (3, 3)

30. (0, 0), (2, 5), and (5, 2)

31. Use the Trapezoidal Rule to approximate the area of the
pictured lake whose lengths, in hundreds of feet, are mea-
sured in 100-foot increments.

..

4.
9

.

5.
2. 7.

3. 4.
5

32. Use Simpson’s Rule to approximate the area of the pictured
lake whose lengths, in hundreds of feet, are measured in
200-foot increments.
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Figure 7.2.1: The volume of a general
right cylinder

Figure 7.2.2: OrienƟng a pyramid along
the x-axis in Example 7.2.1.

Chapter 7 ApplicaƟons of IntegraƟon

7.2 VolumebyCross-SecƟonal Area; Disk andWasher
Methods

The volume of a general right cylinder, as shown in Figure 7.2.1, is
Area of the base× height.

We can use this fact as the building block in finding volumes of a variety of
shapes.

Given an arbitrary solid, we can approximate its volume by cuƫng it into n
thin slices. When the slices are thin, each slice can be approximated well by a
general right cylinder. Thus the volume of each slice is approximately its cross-
secƟonal area× thickness. (These slices are the differenƟal elements.)

By orienƟng a solid along the x-axis, we can let A(xi) represent the cross-
secƟonal area of the i th slice, and let∆xi represent the thickness of this slice (the
thickness is a small change in x). The total volume of the solid is approximately:

Volume ≈
n∑

i=1

[
Area × thickness

]
=

n∑
i=1

A(xi)∆xi.

Recognize that this is a Riemann Sum. By taking a limit (as the thickness of
the slices goes to 0) we can find the volume exactly.

Theorem 7.2.1 Volume By Cross-SecƟonal Area

The volume V of a solid, oriented along the x-axis with cross-secƟonal
area A(x) from x = a to x = b, is

V =

∫ b

a
A(x) dx.

Example 7.2.1 Finding the volume of a solid
Find the volume of a pyramidwith a square base of side length 10 in and a height
of 5 in.

SÊ½çã®ÊÄ There are many ways to “orient” the pyramid along the x-
axis; Figure 7.2.2 gives one such way, with the pointed top of the pyramid at the
origin and the x-axis going through the center of the base.

Each cross secƟon of the pyramid is a square; this is a sample differenƟal
element. To determine its area A(x), we need to determine the side lengths of

Notes:
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////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
//  1.) Adds the following items to the 3D context menu:
//
//   * `Generate Default View'
//
//      Finds good default camera settings, returned as options for use with
//      the \includemedia command.
//
//   * `Get Current View'
//
//      Determines camera, cross section and part settings of the current view,
//      returned as `VIEW' section that can be copied into a views file of
//      additional views. The views file is inserted using the `3Dviews' option
//      of \includemedia.
//
//   * `Cross Section'
//
//      Toggle switch to add or remove a cross section into or from the current
//      view. The cross section can be moved in the x, y, z directions using x,
//      y, z and X, Y, Z keys on the keyboard, be tilted against and spun
//      around the upright Z axis using the Up/Down and Left/Right arrow keys
//      and caled using the s and S keys.
//
//  2.) Enables manipulation of position and orientation of indiviual parts and
//      groups of parts in the 3D scene. Parts which have been selected with the
//      mouse can be scaled moved around and rotated like the cross section as
//      described above. To spin the parts around their local up-axis, keep
//      Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
////////////////////////////////////////////////////////////////////////////////
//host.console.show();

//constructor for doubly linked list
function List(){
  this.first_node=null;
  this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
  var new_node=new Node(x);
  if(this.first_node==null){
    this.first_node=new_node;
    new_node.prev=null;
  }else{
    new_node.prev=this.last_node.prev;
    new_node.prev.next=new_node;
  }
  new_node.next=this.last_node;
  this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
  var node=it.get();
  if(node.next!=null && node.prev!=null){
    node.next.prev=node.prev;
    node.prev.next=node.next;
    node.prev=null;
    node.next=this.first_node;
    this.first_node.prev=node;
    this.first_node=node;
  }
};
List.prototype.begin=function(){
  var i=new Iterator();
  i.target=this.first_node;
  return(i);
};
List.prototype.end=function(){
  var i=new Iterator();
  i.target=this.last_node;
  return(i);
};
function Iterator(it){
  if( it!=undefined ){
    this.target=it.target;
  }else {
    this.target=null;
  }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
  if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
  this.prev=null;
  this.next=null;
  this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
  this.m=0;
  this.q0=new Array(3);
  this.z=new Array(4);
  this.f=new Array(4);
  this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.sqr_r=new Array(4);
  this.current_c=this.c[0];
  this.current_sqr_r=0;
  this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
  var e=-this.current_sqr_r;
  for(var k=0;k<3;++k){
    e+=sqr(p[k]-this.current_c[k]);
  }
  return(e);
};
Basis.prototype.reset=function(){
  this.m=0;
  for(var j=0;j<3;++j){
    this.c[0][j]=0;
  }
  this.current_c=this.c[0];
  this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
  var i, j;
  var eps=1e-32;
  if(this.m==0){
    for(i=0;i<3;++i){
      this.q0[i]=p[i];
    }
    for(i=0;i<3;++i){
      this.c[0][i]=this.q0[i];
    }
    this.sqr_r[0]=0;
  }else {
    for(i=0;i<3;++i){
      this.v[this.m][i]=p[i]-this.q0[i];
    }
    for(i=1;i<this.m;++i){
      this.a[this.m][i]=0;
      for(j=0;j<3;++j){
        this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
      }
      this.a[this.m][i]*=(2/this.z[i]);
    }
    for(i=1;i<this.m;++i){
      for(j=0;j<3;++j){
        this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
      }
    }
    this.z[this.m]=0;
    for(j=0;j<3;++j){
      this.z[this.m]+=sqr(this.v[this.m][j]);
    }
    this.z[this.m]*=2;
    if(this.z[this.m]<eps*this.current_sqr_r) return(false);
    var e=-this.sqr_r[this.m-1];
    for(i=0;i<3;++i){
      e+=sqr(p[i]-this.c[this.m-1][i]);
    }
    this.f[this.m]=e/this.z[this.m];
    for(i=0;i<3;++i){
      this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
    }
    this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
  }
  this.current_c=this.c[this.m];
  this.current_sqr_r=this.sqr_r[this.m];
  ++this.m;
  return(true);
};
function Miniball(){
  this.L=new List();
  this.B=new Basis();
  this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
  var i=new Iterator(it);
  this.support_end.set(this.L.begin());
  if((this.B.size())==4) return;
  for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
    var j=new Iterator(k);
    k.incr();
    if(this.B.excess(j.deref()) > 0){
      if(this.B.push(j.deref())){
        this.mtf_mb(j);
        this.B.pop();
        if(this.support_end.get()==j.get())
          this.support_end.incr();
        this.L.move_to_front(j);
      }
    }
  }
};
Miniball.prototype.check_in=function(b){
  this.L.push_back(b);
};
Miniball.prototype.build=function(){
  this.B.reset();
  this.support_end.set(this.L.begin());
  this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
  return(this.B.center());
};
Miniball.prototype.radius=function(){
  return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
  //create Miniball object
  var mb=new Miniball();
  //auxiliary vector
  var corner=new Vector3();
  //iterate over all visible mesh nodes in the scene
  for(i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    if(!mesh.visible) continue;
    //local to parent transformation matrix
    var trans=mesh.transform;
    //build local to world transformation matrix by recursively
    //multiplying the parent's transf. matrix on the right
    var parent=mesh.parent;
    while(parent.transform){
      trans=trans.multiply(parent.transform);
      parent=parent.parent;
    }
    //get the bbox of the mesh (local coordinates)
    var bbox=mesh.computeBoundingBox();
    //transform the local bounding box corner coordinates to
    //world coordinates for bounding sphere determination
    //BBox.min
    corner.set(bbox.min);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //BBox.max
    corner.set(bbox.max);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //remaining six BBox corners
    corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
  }
  //compute the smallest enclosing bounding sphere
  mb.build();
  //
  //current camera settings
  //
  var camera=scene.cameras.getByIndex(0);
  var res=''; //initialize result string
  //aperture angle of the virtual camera (perspective projection) *or*
  //orthographic scale (orthographic projection)
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov*180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('\n3Daac=%s,', aac);
  }else{
      camera.viewPlaneSize=2.*mb.radius();
      res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
  }
  //camera roll
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('\n3Droll=%s,',roll);
  //target to camera vector
  var c2c=new Vector3();
  c2c.set(camera.position);
  c2c.subtractInPlace(camera.targetPosition);
  c2c.normalize();
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
  //
  //new camera settings
  //
  //bounding sphere centre --> new camera target
  var coo=new Vector3();
  coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
  if(coo.length)
    res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
  //radius of orbit
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
  }else{
    //orthographic projection
    var roo=mb.radius();
  }
  res+=host.util.printf('\n3Droo=%s,', roo);
  //update camera settings in the viewer
  var currol=camera.roll;
  camera.targetPosition.set(coo);
  camera.position.set(coo.add(c2c.scale(roo)));
  camera.roll=currol;
  //determine background colour
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
  //determine lighting scheme
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+=host.util.printf('\n3Dlights=%s,', curlights);
  //determine global render mode
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      currender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      currender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      currender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      currender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      currender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      currender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      currender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      currender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      currender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      currender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      currender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      currender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      currender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      currender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      currender='HiddenWireframe';break;
  }
  if(currender!='Solid')
    res+=host.util.printf('\n3Drender=%s,', currender);
  //write result string to the console
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Copy and paste the following text to the\n'+
    '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
  var camera=scene.cameras.getByIndex(0);
  var coo=camera.targetPosition;
  var c2c=camera.position.subtract(coo);
  var roo=c2c.length;
  c2c.normalize();
  var res='VIEW%=insert optional name here\n';
  if(!(coo.x==0 && coo.y==0 && coo.z==0))
    res+=host.util.printf('  COO=%s %s %s\n', coo.x, coo.y, coo.z);
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('  C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
  if(roo > 1e-9)
    res+=host.util.printf('  ROO=%s\n', roo);
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('  ROLL=%s\n', roll);
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov * 180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('  AAC=%s\n', aac);
  }else{
    if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
      res+=host.util.printf('  ORTHO=%s\n', 1./camera.viewPlaneSize);
  }
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('  BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+='  LIGHTS='+curlights+'\n';
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      defaultrender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      defaultrender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      defaultrender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      defaultrender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      defaultrender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      defaultrender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      defaultrender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      defaultrender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      defaultrender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      defaultrender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      defaultrender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      defaultrender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      defaultrender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      defaultrender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      defaultrender='HiddenWireframe';break;
  }
  if(defaultrender!='Solid')
    res+='  RENDERMODE='+defaultrender+'\n';

  //detect existing Clipping Plane (3D Cross Section)
  var clip=null;
  if(
    clip=scene.nodes.getByName('$$$$$$')||
    clip=scene.nodes.getByName('Clipping Plane')
  );
  for(var i=0;i<scene.nodes.count;i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd==clip||nd.name=='') continue;
    var ndUTFName='';
    for (var j=0; j<nd.name.length; j++) {
      var theUnicode = nd.name.charCodeAt(j).toString(16);
      while (theUnicode.length<4) theUnicode = '0' + theUnicode;
      ndUTFName += theUnicode;
    }
    var end=nd.name.lastIndexOf('.');
    if(end>0) var ndUserName=nd.name.substr(0,end);
    else var ndUserName=nd.name;
    respart='  PART='+ndUserName+'\n';
    respart+='    UTF16NAME='+ndUTFName+'\n';
    defaultvals=true;
    if(!nd.visible){
      respart+='    VISIBLE=false\n';
      defaultvals=false;
    }
    if(nd.opacity<1.0){
      respart+='    OPACITY='+nd.opacity+'\n';
      defaultvals=false;
    }
    if(nd.constructor.name=='Mesh'){
      currender=defaultrender;
      switch(nd.renderMode){
        case scene.RENDER_MODE_BOUNDING_BOX:
          currender='BoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
          currender='TransparentBoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
          currender='TransparentBoundingBoxOutline';break;
        case scene.RENDER_MODE_VERTICES:
          currender='Vertices';break;
        case scene.RENDER_MODE_SHADED_VERTICES:
          currender='ShadedVertices';break;
        case scene.RENDER_MODE_WIREFRAME:
          currender='Wireframe';break;
        case scene.RENDER_MODE_SHADED_WIREFRAME:
          currender='ShadedWireframe';break;
        case scene.RENDER_MODE_SOLID:
          currender='Solid';break;
        case scene.RENDER_MODE_TRANSPARENT:
          currender='Transparent';break;
        case scene.RENDER_MODE_SOLID_WIREFRAME:
          currender='SolidWireframe';break;
        case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
          currender='TransparentWireframe';break;
        case scene.RENDER_MODE_ILLUSTRATION:
          currender='Illustration';break;
        case scene.RENDER_MODE_SOLID_OUTLINE:
          currender='SolidOutline';break;
        case scene.RENDER_MODE_SHADED_ILLUSTRATION:
          currender='ShadedIllustration';break;
        case scene.RENDER_MODE_HIDDEN_WIREFRAME:
          currender='HiddenWireframe';break;
        //case scene.RENDER_MODE_DEFAULT:
        //  currender='Default';break;
      }
      if(currender!=defaultrender){
        respart+='    RENDERMODE='+currender+'\n';
        defaultvals=false;
      }
    }
    if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
      var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
      var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
      var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
      respart+='    TRANSFORM='
               +lvec.x+' '+lvec.y+' '+lvec.z+' '
               +uvec.x+' '+uvec.y+' '+uvec.z+' '
               +vvec.x+' '+vvec.y+' '+vvec.z+' '
               +nd.transform.translation.x+' '
               +nd.transform.translation.y+' '
               +nd.transform.translation.z+'\n';
      defaultvals=false;
    }
    respart+='  END\n';
    if(!defaultvals) res+=respart;
  }
  if(clip){
    var centre=clip.transform.translation;
    var normal=clip.transform.transformDirection(new Vector3(0,0,1));
    res+='  CROSSSECT\n';
    if(!(centre.x==0 && centre.y==0 && centre.z==0))
      res+=host.util.printf(
        '    CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
    if(!(normal.x==1 && normal.y==0 && normal.z==0))
      res+=host.util.printf(
        '    NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
    res+=host.util.printf(
      '    VISIBLE=%s\n', clip.visible);
    res+=host.util.printf(
      '    PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
             clip.material.emissiveColor.g, clip.material.emissiveColor.b);
    res+=host.util.printf(
      '    OPACITY=%s\n', clip.opacity);
    res+=host.util.printf(
      '    INTERSECTIONCOLOR=%s %s %s\n',
        clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
    res+='  END\n';
//    for(var propt in clip){
//      console.println(propt+':'+clip[propt]);
//    }
  }
  res+='END\n';
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
    '%% predefined views (See option "3Dviews"!).\n%%\n' +
    '%% The view may be given a name after VIEW=...\n' +
    '%% (Remove \'%\' in front of \'=\'.)\n%%');
  host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
  switch(e.menuItemName){
    case "dfltview": calc3Dopts(); break;
    case "currview": get3Dview(); break;
    case "csection":
      addremoveClipPlane(e.menuItemChecked);
      break;
  }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
  if(e.selected&&e.node.name!=''){
    target=e.node;
  }else{
    target=null;
  }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
  var clip=null;
  runtime.removeCustomMenuItem("csection");
  runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
  if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
    scene.nodes.getByName('Clipping Plane')){ //added via context menu
    runtime.removeCustomMenuItem("csection");
    runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
  }
  if(clip){//plane in predefined views must be rotated by 90 deg around normal
    clip.transform.rotateAboutLineInPlace(
      Math.PI/2,clip.transform.translation,
      clip.transform.transformDirection(new Vector3(0,0,1))
    );
  }
  for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
  target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
  var backtrans=new Matrix4x4();
  var trgt=null;
  if(target) {
    trgt=target;
    var backtrans=new Matrix4x4();
    var trans=trgt.transform;
    var parent=trgt.parent;
    while(parent.transform){
      //build local to world transformation matrix
      trans.multiplyInPlace(parent.transform);
      //also build world to local back-transformation matrix
      backtrans.multiplyInPlace(parent.transform.inverse.transpose);
      parent=parent.parent;
    }
    backtrans.transposeInPlace();
  }else{
    if(
      trgt=scene.nodes.getByName('$$$$$$')||
      trgt=scene.nodes.getByName('Clipping Plane')
    ) var trans=trgt.transform;
  }
  if(!trgt) return;

  var tname=trgt.name;
  if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
  if(target)
    var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
  else  
    var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
  var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

  //get the centre of the mesh
  if(target&&trgt.constructor.name=='Mesh'){
    var centre=trans.transformPosition(trgt.computeBoundingBox().center);
  }else{ //part group (Node3 parent node, clipping plane)
    var centre=new Vector3(trans.translation);
  }
  switch(e.characterCode){
    case 30://tilt up
      rot4x4[tname].rotateAboutLineInPlace(
          -Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
      break;
    case 31://tilt down
      rot4x4[tname].rotateAboutLineInPlace(
          Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
      break;
    case 28://spin right
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 29://spin left
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 120: //x
      translateTarget(trans, new Vector3(1,0,0), e);
      break;
    case 121: //y
      translateTarget(trans, new Vector3(0,1,0), e);
      break;
    case 122: //z
      translateTarget(trans, new Vector3(0,0,1), e);
      break;
    case 88: //shift + x
      translateTarget(trans, new Vector3(-1,0,0), e);
      break;
    case 89: //shift + y
      translateTarget(trans, new Vector3(0,-1,0), e);
      break;
    case 90: //shift + z
      translateTarget(trans, new Vector3(0,0,-1), e);
      break;
    case 115: //s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1.01);
      trans.translateInPlace(centre.scale(1));
      break;
    case 83: //shift + s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1/1.01);
      trans.translateInPlace(centre.scale(1));
      break;
  }
  trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
  var cam=scene.cameras.getByIndex(0);
  if(cam.projectionType==cam.TYPE_PERSPECTIVE){
    var scale=Math.tan(cam.fov/2)
              *cam.targetPosition.subtract(cam.position).length
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }else{
    var scale=cam.viewPlaneSize/2
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }
  t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
  var curTrans=getCurTrans();
  var clip=scene.createClippingPlane();
  if(chk){
    //add Clipping Plane and place its center either into the camera target
    //position or into the centre of the currently selected mesh node
    var centre=new Vector3();
    if(target){
      var trans=target.transform;
      var parent=target.parent;
      while(parent.transform){
        trans=trans.multiply(parent.transform);
        parent=parent.parent;
      }
      if(target.constructor.name=='Mesh'){
        var centre=trans.transformPosition(target.computeBoundingBox().center);
      }else{
        var centre=new Vector3(trans.translation);
      }
      target=null;
    }else{
      centre.set(scene.cameras.getByIndex(0).targetPosition);
    }
    clip.transform.setView(
      new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
    clip.transform.translateInPlace(centre);
  }else{
    if(
      scene.nodes.getByName('$$$$$$')||
      scene.nodes.getByName('Clipping Plane')
    ){
      clip.remove();clip=null;
    }
  }
  restoreTrans(curTrans);
  return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
  var tA=new Array();
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd.name=='') continue;
    tA[nd.name]=new Matrix4x4(nd.transform);
  }
  return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(tA[nd.name]) nd.transform.set(tA[nd.name]);
  }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();



////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
////////////////////////////////////////////////////////////////////////////////

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh) 
{ 
  var t=new Matrix4x4(mesh.transform); 
  if(mesh.parent.name != "") { 
    var parentTransform=fulltransform(mesh.parent); 
    t.multiplyInPlace(parentTransform); 
    return t; 
  } else
    return t; 
} 

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
  var node=nodes.getByIndex(i); 
  var name=node.name;
  var end=name.lastIndexOf(".")-1;
  if(end > 0) {
    if(name.charAt(end) == "\001") {
      var start=name.lastIndexOf("-")+1;
      if(end > start) {
        node.name=name.substr(0,start-1);
        var nodeMatrix=fulltransform(node.parent);
        var c=nodeMatrix.translation; // position
        var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
        bbnodes.push(node);
        bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
      }
    }
  }
}

var camera=scene.cameras.getByIndex(0); 
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
  var T=new Matrix4x4();
  T.setView(zero,camera.position.subtract(camera.targetPosition),
            camera.up.subtract(camera.position));

  for(var j=0; j < bbcount; j++)
    bbnodes[j].transform.set(T.multiply(bbtrans[j]));
  runtime.refresh(); 
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();






Figure 7.2.3: Cuƫng a slice in the pyramid
in Example 7.2.1 at x = 3.

7.2 Volume by Cross-SecƟonal Area; Disk and Washer Methods

the square.
When x = 5, the square has side length 10; when x = 0, the square has side

length 0. Since the edges of the pyramid are lines, it is easy to figure that each
cross-secƟonal square has side length 2x, giving A(x) = (2x)2 = 4x2.

If one were to cut a slice out of the pyramid at x = 3, as shown in Figure
7.2.3, one would have a shape with square boƩom and top with sloped sides. If
the slice were thin, both the boƩom and top squares would have sides lengths
of about 6, and thus the cross–secƟonal area of the boƩom and top would be
about 36in2. Leƫng∆xi represent the thickness of the slice, the volume of this
slice would then be about 36∆xiin3.

Cuƫng the pyramid into n slices divides the total volume into n equally–
spaced smaller pieces, each with volume (2xi)2∆x, where xi is the approximate
locaƟon of the slice along the x-axis and ∆x represents the thickness of each
slice. One can approximate total volume of the pyramid by summing up the
volumes of these slices:

Approximate volume =

n∑
i=1

(2xi)2∆x.

Taking the limit as n → ∞ gives the actual volume of the pyramid; recoginizing
this sum as a Riemann Sum allows us to find the exact answer using a definite
integral, matching the definite integral given by Theorem 7.2.1.

We have

V = lim
n→∞

n∑
i=1

(2xi)2∆x

=

∫ 5

0
4x2 dx

=
4
3
x3
∣∣∣5
0

=
500
3

in3 ≈ 166.67 in3.

We can check our work by consulƟng the general equaƟon for the volume of a
pyramid (see the back cover under “Volume of A General Cone”):

1
3 × area of base× height.

Certainly, using this formula from geometry is faster than our new method, but
the calculus–based method can be applied to much more than just cones.

An important special case of Theorem 7.2.1 is when the solid is a solid of
revoluƟon, that is, when the solid is formed by rotaƟng a shape around an axis.

Start with a funcƟon y = f(x) from x = a to x = b. Revolving this curve
about a horizontal axis creates a three-dimensional solid whose cross secƟons

Notes:
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(a)

(b)

Figure 7.2.4: Sketching a solid in Example
7.2.2.

Chapter 7 ApplicaƟons of IntegraƟon

are disks (thin circles). Let R(x) represent the radius of the cross-secƟonal disk at
x; the area of this disk is πR(x)2. Applying Theorem 7.2.1 gives the DiskMethod.

Key Idea 7.2.1 The Disk Method

Let a solid be formed by revolving the curve y = f(x) from x = a to x = b
around a horizontal axis, and let R(x) be the radius of the cross-secƟonal
disk at x. The volume of the solid is

V = π

∫ b

a
R(x)2 dx.

Example 7.2.2 Finding volume using the Disk Method
Find the volume of the solid formed by revolving the curve y = 1/x, from x = 1
to x = 2, around the x-axis.

SÊ½çã®ÊÄ A sketch can help us understand this problem. In Figure
7.2.4(a) the curve y = 1/x is sketched along with the differenƟal element – a
disk – at xwith radius R(x) = 1/x. In Figure 7.2.4 (b) the whole solid is pictured,
along with the differenƟal element.

The volume of the differenƟal element shown in part (a) of the figure is ap-
proximately πR(xi)2∆x, where R(xi) is the radius of the disk shown and ∆x is
the thickness of that slice. The radius R(xi) is the distance from the x-axis to the
curve, hence R(xi) = 1/xi.

Slicing the solid into n equally–spaced slices, we can approximate the total
volume by adding up the approximate volume of each slice:

Approximate volume =

n∑
i=1

π

(
1
xi

)2

∆x.

Taking the limit of the above sum as n → ∞ gives the actual volume; recog-
nizing this sum as a Riemann sum allows us to evaluate the limit with a definite
integral, which matches the formula given in Key Idea 7.2.1:

V = lim
n→∞

n∑
i=1

π

(
1
xi

)2

∆x

= π

∫ 2

1

(
1
x

)2

dx

= π

∫ 2

1

1
x2

dx

Notes:

364





(a)

(b)

Figure 7.2.5: Sketching a solid in Example
7.2.3.

(a)

(b)

Figure 7.2.6: Establishing the Washer
Method; see also Figure 7.2.7.

7.2 Volume by Cross-SecƟonal Area; Disk and Washer Methods

= π

[
−1
x

] ∣∣∣2
1

= π

[
−1
2
− (−1)

]
=

π

2
units3.

While Key Idea 7.2.1 is given in terms of funcƟons of x, the principle involved
can be applied to funcƟons of y when the axis of rotaƟon is verƟcal, not hori-
zontal. We demonstrate this in the next example.

Example 7.2.3 Finding volume using the Disk Method
Find the volume of the solid formed by revolving the curve y = 1/x, from x = 1
to x = 2, about the y-axis.

SÊ½çã®ÊÄ Since the axis of rotaƟon is verƟcal, we need to convert the
funcƟon into a funcƟon of y and convert the x-bounds to y-bounds. Since y =
1/x defines the curve, we rewrite it as x = 1/y. The bound x = 1 corresponds to
the y-bound y = 1, and the bound x = 2 corresponds to the y-bound y = 1/2.

Thus we are rotaƟng the curve x = 1/y, from y = 1/2 to y = 1 about the
y-axis to form a solid. The curve and sample differenƟal element are sketched in
Figure 7.2.5 (a), with a full sketch of the solid in Figure 7.2.5 (b). We integrate
to find the volume:

V = π

∫ 1

1/2

1
y2

dy

= −π

y

∣∣∣1
1/2

= π units3.

We can also compute the volume of solids of revoluƟon that have a hole in
the center. The general principle is simple: compute the volume of the solid
irrespecƟve of the hole, then subtract the volume of the hole. If the outside
radius of the solid is R(x) and the inside radius (defining the hole) is r(x), then
the volume is

V = π

∫ b

a
R(x)2 dx− π

∫ b

a
r(x)2 dx = π

∫ b

a

(
R(x)2 − r(x)2

)
dx.

One can generate a solid of revoluƟon with a hole in the middle by revolving
a region about an axis. Consider Figure 7.2.6(a), where a region is sketched along

Notes:
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Figure 7.2.7: Establishing the Washer
Method; see also Figure 7.2.6.

(a)

(b)

(c)

Figure 7.2.8: Sketching the differenƟal el-
ement and solid in Example 7.2.4.

Chapter 7 ApplicaƟons of IntegraƟon

with a dashed, horizontal axis of rotaƟon. By rotaƟng the region about the axis, a
solid is formed as sketched in Figure 7.2.6(b). The outside of the solid has radius
R(x), whereas the inside has radius r(x). Each cross secƟon of this solid will be
a washer (a disk with a hole in the center) as sketched in Figure 7.2.7. This leads
us to the Washer Method.

Key Idea 7.2.2 The Washer Method

Let a region bounded by y = f(x), y = g(x), x = a and x = b be ro-
tated about a horizontal axis that does not intersect the region, forming
a solid. Each cross secƟon at x will be a washer with outside radius R(x)
and inside radius r(x). The volume of the solid is

V = π

∫ b

a

(
R(x)2 − r(x)2

)
dx.

Even though we introduced it first, the Disk Method is just a special case of
the Washer Method with an inside radius of r(x) = 0.

Example 7.2.4 Finding volume with the Washer Method
Find the volume of the solid formed by rotaƟng the region bounded by y =
x2 − 2x+ 2 and y = 2x− 1 about the x-axis.

SÊ½çã®ÊÄ A sketch of the region will help, as given in Figure 7.2.8(a).
RotaƟng about the x-axis will produce cross secƟons in the shape of washers, as
shown in Figure 7.2.8(b); the complete solid is shown in part (c). The outside
radius of this washer is R(x) = 2x+ 1; the inside radius is r(x) = x2− 2x+ 2. As
the region is bounded from x = 1 to x = 3, we integrate as follows to compute
the volume.

V = π

∫ 3

1

(
(2x− 1)2 − (x2 − 2x+ 2)2

)
dx

= π

∫ 3

1

(
− x4 + 4x3 − 4x2 + 4x− 3

)
dx

= π
[
− 1

5
x5 + x4 − 4

3
x3 + 2x2 − 3x

]∣∣∣3
1

=
104
15

π ≈ 21.78 units3.

When rotaƟng about a verƟcal axis, the outside and inside radius funcƟons
must be funcƟons of y.

Notes:
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(a)

(b)

(c)

Figure 7.2.9: Sketching the solid in Exam-
ple 7.2.5.

7.2 Volume by Cross-SecƟonal Area; Disk and Washer Methods

Example 7.2.5 Finding volume with the Washer Method
Find the volume of the solid formed by rotaƟng the triangular region with ver-
Ɵces at (1, 1), (2, 1) and (2, 3) about the y-axis.

SÊ½çã®ÊÄ The triangular region is sketched in Figure 7.2.9(a); the dif-
ferenƟal element is sketched in (b) and the full solid is drawn in (c). They help us
establish the outside and inside radii. Since the axis of rotaƟon is verƟcal, each
radius is a funcƟon of y.

The outside radius R(y) is formed by the line connecƟng (2, 1) and (2, 3); it
is a constant funcƟon, as regardless of the y-value the distance from the line to
the axis of rotaƟon is 2. Thus R(y) = 2.

The inside radius is formedby the line connecƟng (1, 1) and (2, 3). The equa-
Ɵon of this line is y = 2x−1, but we need to refer to it as a funcƟon of y. Solving
for x gives r(y) = 1

2 (y+ 1).
We integrate over the y-bounds of y = 1 to y = 3. Thus the volume is

V = π

∫ 3

1

(
22 −

(1
2
(y+ 1)

)2) dy

= π

∫ 3

1

(
− 1

4
y2 − 1

2
y+

15
4

)
dy

= π
[
− 1

12
y3 − 1

4
y2 +

15
4
y
]∣∣∣3

1

=
10
3
π ≈ 10.47 units3.

This secƟon introduced a new applicaƟon of the definite integral. Our de-
fault view of the definite integral is that it gives “the area under the curve.” How-
ever, we can establish definite integrals that represent other quanƟƟes; in this
secƟon, we computed volume.

The ulƟmate goal of this secƟon is not to compute volumes of solids. That
can be useful, but what ismore useful is the understanding of this basic principle
of integral calculus, outlined in Key Idea 7.0.1: to find the exact value of some
quanƟty,

• we start with an approximaƟon (in this secƟon, slice the solid and approx-
imate the volume of each slice),

• then make the approximaƟon beƩer by refining our original approxima-
Ɵon (i.e., use more slices),

• then use limits to establish a definite integral which gives the exact value.
We pracƟce this principle in the next secƟon where we find volumes by slic-

ing solids in a different way.

Notes:
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Exercises 7.2
Terms and Concepts

1. T/F: A solid of revoluƟon is formed by revolving a shape
around an axis.

2. In your ownwords, explain how the Disk andWasherMeth-
ods are related.

3. Explain the how the units of volume are found in the inte-
gral of Theorem 7.2.1: if A(x) has units of in2, how does∫
A(x) dx have units of in3?

4. A fundamental principle of this secƟon is “ can be
found by integraƟng an area funcƟon.”

Problems
In Exercises 5 – 8, a region of the Cartesian plane is shaded.
Use the Disk/Washer Method to find the volume of the solid
of revoluƟon formed by revolving the region about the x-
axis.
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In Exercises 9 – 12, a region of the Cartesian plane is shaded.
Use the Disk/Washer Method to find the volume of the solid
of revoluƟon formed by revolving the region about the y-
axis.
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y = 3 − x2
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y = cos x
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.
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(Hint: IntegraƟon By Parts will be necessary, twice. First let
u = arccos2 x, then let u = arccos x.)
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12.

.....

y =
√

x

.

y = x
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y

In Exercises 13 – 18, a region of the Cartesian plane is de-
scribed. Use the Disk/Washer Method to find the volume of
the solid of revoluƟon formed by rotaƟng the region about
each of the given axes.

13. Region bounded by: y =
√
x, y = 0 and x = 1.

Rotate about:

(a) the x-axis
(b) y = 1

(c) the y-axis
(d) x = 1

14. Region bounded by: y = 4− x2 and y = 0.
Rotate about:

(a) the x-axis
(b) y = 4

(c) y = −1
(d) x = 2

15. The triangle with verƟces (1, 1), (1, 2) and (2, 1).
Rotate about:

(a) the x-axis
(b) y = 2

(c) the y-axis
(d) x = 1

16. Region bounded by y = x2 − 2x+ 2 and y = 2x− 1.
Rotate about:

(a) the x-axis
(b) y = 1

(c) y = 5

17. Region bounded by y = 1/
√
x2 + 1, x = −1, x = 1 and

the x-axis.
Rotate about:

(a) the x-axis
(b) y = 1

(c) y = −1

18. Region bounded by y = 2x, y = x and x = 2.
Rotate about:

(a) the x-axis
(b) y = 4

(c) the y-axis
(d) x = 2

In Exercises 19 – 22, a solid is described. Orient the solid along
the x-axis such that a cross-secƟonal area funcƟon A(x) can
be obtained, then apply Theorem 7.2.1 to find the volume of
the solid.

19. A right circular cone with height of 10 and base radius of 5.

5

10

20. A skew right circular cone with height of 10 and base radius
of 5. (Hint: all cross-secƟons are circles.)

5

10

21. A right triangular cone with height of 10 and whose base is
a right, isosceles triangle with side length 4.

4 4

10

22. A solid with length 10 with a rectangular base and triangu-
lar top, wherein one end is a square with side length 5 and
the other end is a triangle with base and height of 5.

10

5
5

5
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(a)

(b)

(c)

Figure 7.3.1: Introducing the Shell
Method.

Chapter 7 ApplicaƟons of IntegraƟon

7.3 The Shell Method
OŌen a given problem can be solved in more than one way. A parƟcular method
may be chosen out of convenience, personal preference, or perhaps necessity.
UlƟmately, it is good to have opƟons.

The previous secƟon introduced the Disk and Washer Methods, which com-
puted the volume of solids of revoluƟon by integraƟng the cross–secƟonal area
of the solid. This secƟon develops another method of compuƟng volume, the
Shell Method. Instead of slicing the solid perpendicular to the axis of rotaƟon
creaƟng cross-secƟons, we now slice it parallel to the axis of rotaƟon, creaƟng
“shells.”

Consider Figure 7.3.1, where the region shown in (a) is rotated around the
y-axis forming the solid shown in (b). A small slice of the region is drawn in (a),
parallel to the axis of rotaƟon. When the region is rotated, this thin slice forms
a cylindrical shell, as pictured in part (c) of the figure. The previous secƟon
approximated a solid with lots of thin disks (or washers); we now approximate
a solid with many thin cylindrical shells.

To compute the volume of one shell, first consider the paper label on a soup
can with radius r and height h. What is the area of this label? A simple way of
determining this is to cut the label and lay it out flat, forming a rectangle with
height h and length 2πr. Thus the area is A = 2πrh; see Figure 7.3.2(a).

Do a similar process with a cylindrical shell, with height h, thickness∆x, and
approximate radius r. Cuƫng the shell and laying it flat forms a rectangular solid
with length 2πr, height h and depth ∆x. Thus the volume is V ≈ 2πrh∆x; see
Figure 7.3.2(b). (We say “approximately” since our radius was an approxima-
Ɵon.)

By breaking the solid into n cylindrical shells, we can approximate the volume
of the solid as

V ≈
n∑

i=1
2πrihi∆xi,

where ri, hi and∆xi are the radius, height and thickness of the i th shell, respec-
Ɵvely.

This is a Riemann Sum. Taking a limit as the thickness of the shells ap-
proaches 0 leads to a definite integral.

Notes:
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Figure 7.3.3: Graphing a region in Exam-
ple 7.3.1.

7.3 The Shell Method
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Figure 7.3.2: Determining the volume of a thin cylindrical shell.

Key Idea 7.3.1 The Shell Method

Let a solid be formed by revolving a region R, bounded by x = a and
x = b, around a verƟcal axis. Let r(x) represent the distance from the axis
of rotaƟon to x (i.e., the radius of a sample shell) and let h(x) represent
the height of the solid at x (i.e., the height of the shell). The volume of
the solid is

V = 2π
∫ b

a
r(x)h(x) dx.

Special Cases:

1. When the region R is bounded above by y = f(x) and below by y = g(x),
then h(x) = f(x)− g(x).

2. When the axis of rotaƟon is the y-axis (i.e., x = 0) then r(x) = x.

Let’s pracƟce using the Shell Method.

Example 7.3.1 Finding volume using the Shell Method
Find the volume of the solid formed by rotaƟng the region bounded by y = 0,
y = 1/(1+ x2), x = 0 and x = 1 about the y-axis.

SÊ½çã®ÊÄ This is the region used to introduce the Shell Method in Fig-
ure 7.3.1, but is sketched again in Figure 7.3.3 for closer reference. A line is
drawn in the region parallel to the axis of rotaƟon represenƟng a shell that will

Notes:
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Figure 7.3.4: Graphing a region in Exam-
ple 7.3.2.
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be carved out as the region is rotated about the y-axis. (This is the differenƟal
element.)

The distance this line is from the axis of rotaƟon determines r(x); as the
distance from x to the y-axis is x, we have r(x) = x. The height of this line
determines h(x); the top of the line is at y = 1/(1 + x2), whereas the boƩom
of the line is at y = 0. Thus h(x) = 1/(1+ x2)− 0 = 1/(1+ x2). The region is
bounded from x = 0 to x = 1, so the volume is

V = 2π
∫ 1

0

x
1+ x2

dx.

This requires subsƟtuƟon. Let u = 1 + x2, so du = 2x dx. We also change the
bounds: u(0) = 1 and u(1) = 2. Thus we have:

= π

∫ 2

1

1
u
du

= π ln u
∣∣∣2
1

= π ln 2 ≈ 2.178 units3.

Note: in order to find this volume using the Disk Method, two integrals would
be needed to account for the regions above and below y = 1/2.

With the Shell Method, nothing special needs to be accounted for to com-
pute the volume of a solid that has a hole in the middle, as demonstrated next.

Example 7.3.2 Finding volume using the Shell Method
Find the volumeof the solid formed by rotaƟng the triangular region determined
by the points (0, 1), (1, 1) and (1, 3) about the line x = 3.

SÊ½çã®ÊÄ The region is sketched in Figure 7.3.4(a) along with the dif-
ferenƟal element, a line within the region parallel to the axis of rotaƟon. In part
(b) of the figure, we see the shell traced out by the differenƟal element, and in
part (c) the whole solid is shown.

The height of the differenƟal element is the distance from y = 1 to y = 2x+
1, the line that connects the points (0, 1) and (1, 3). Thus h(x) = 2x+1−1 = 2x.
The radius of the shell formed by the differenƟal element is the distance from
x to x = 3; that is, it is r(x) = 3 − x. The x-bounds of the region are x = 0 to

Notes:

372





.....

x =
1

2
y−

1
2

.

︸ ︷︷ ︸
h(y)

.


r(y)

. 1.

1

.

2

.

3

.

y

. x.

y

(a)

(b)

(c)

Figure 7.3.5: Graphing a region in Exam-
ple 7.3.3.
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x = 1, giving

V = 2π
∫ 1

0
(3− x)(2x) dx

= 2π
∫ 1

0

(
6x− 2x2) dx

= 2π
(
3x2 − 2

3
x3
) ∣∣∣1

0

=
14
3
π ≈ 14.66 units3.

When revolving a region around a horizontal axis, we must consider the ra-
dius and height funcƟons in terms of y, not x.

Example 7.3.3 Finding volume using the Shell Method
Find the volume of the solid formed by rotaƟng the region given in Example 7.3.2
about the x-axis.

SÊ½çã®ÊÄ The region is sketched in Figure 7.3.5(a) with a sample dif-
ferenƟal element. In part (b) of the figure the shell formed by the differenƟal
element is drawn, and the solid is sketched in (c). (Note that the triangular re-
gion looks “short and wide” here, whereas in the previous example the same
region looked “tall and narrow.” This is because the bounds on the graphs are
different.)

The height of the differenƟal element is an x-distance, between x = 1
2y−

1
2

and x = 1. Thus h(y) = 1−( 12y−
1
2 ) = − 1

2y+
3
2 . The radius is the distance from

y to the x-axis, so r(y) = y. The y bounds of the region are y = 1 and y = 3,
leading to the integral

V = 2π
∫ 3

1

[
y
(
−1
2
y+

3
2

)]
dy

= 2π
∫ 3

1

[
−1
2
y2 +

3
2
y
]
dy

= 2π
[
−1
6
y3 +

3
4
y2
] ∣∣∣3

1

= 2π
[
9
4
− 7

12

]
=

10
3
π ≈ 10.472 units3.
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Figure 7.3.6: Graphing a region in Exam-
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At the beginning of this secƟon it was stated that “it is good to have opƟons.”
The next example finds the volume of a solid rather easily with the ShellMethod,
but using the Washer Method would be quite a chore.

Example 7.3.4 Finding volume using the Shell Method
Find the volumeof the solid formedby revolving the region bounded by y = sin x
and the x-axis from x = 0 to x = π about the y-axis.

SÊ½çã®ÊÄ The region and a differenƟal element, the shell formed by
this differenƟal element, and the resulƟng solid are given in Figure 7.3.6. The
radius of a sample shell is r(x) = x; the height of a sample shell is h(x) = sin x,
each from x = 0 to x = π. Thus the volume of the solid is

V = 2π
∫ π

0
x sin x dx.

This requires IntegraƟon By Parts. Set u = x and dv = sin x dx; we leave it to
the reader to fill in the rest. We have:

= 2π
[
− x cos x

∣∣∣π
0
+

∫ π

0
cos x dx

]
= 2π

[
π + sin x

∣∣∣π
0

]
= 2π

[
π + 0

]
= 2π2 ≈ 19.74 units3.

Note that in order to use the Washer Method, we would need to solve y =
sin x for x, requiring the use of the arcsine funcƟon. We leave it to the reader
to verify that the outside radius funcƟon is R(y) = π − arcsin y and the inside
radius funcƟon is r(y) = arcsin y. Thus the volume can be computed as

π

∫ 1

0

[
(π − arcsin y)2 − (arcsin y)2

]
dy.

This integral isn’t terrible given that the arcsin2 y terms cancel, but it is more
onerous than the integral created by the Shell Method.

We end this secƟon with a table summarizing the usage of the Washer and
Shell Methods.

Notes:
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7.3 The Shell Method

Key Idea 7.3.2 Summary of the Washer and Shell Methods

Let a region R be given with x-bounds x = a and x = b and y-bounds
y = c and y = d.

Washer Method Shell Method

Horizontal
Axis

π

∫ b

a

(
R(x)2 − r(x)2

)
dx 2π

∫ d

c
r(y)h(y) dy

VerƟcal
Axis

π

∫ d

c

(
R(y)2 − r(y)2

)
dy 2π

∫ b

a
r(x)h(x) dx

As in the previous secƟon, the real goal of this secƟon is not to be able to
compute volumes of certain solids. Rather, it is to be able to solve a problem
by first approximaƟng, then using limits to refine the approximaƟon to give the
exact value. In this secƟon, we approximate the volume of a solid by cuƫng it
into thin cylindrical shells. By summing up the volumes of each shell, we get an
approximaƟon of the volume. By taking a limit as the number of equally spaced
shells goes to infinity, our summaƟon can be evaluated as a definite integral,
giving the exact value.

We use this same principle again in the next secƟon, where we find the
length of curves in the plane.

Notes:
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Exercises 7.3
Terms and Concepts

1. T/F: A solid of revoluƟon is formed by revolving a shape
around an axis.

2. T/F: The Shell Method can only be used when the Washer
Method fails.

3. T/F: The Shell Method works by integraƟng cross–secƟonal
areas of a solid.

4. T/F: When finding the volume of a solid of revoluƟon that
was revolved around a verƟcal axis, the Shell Method inte-
grates with respect to x.

Problems

In Exercises 5 – 8, a region of the Cartesian plane is shaded.
Use the Shell Method to find the volume of the solid of revo-
luƟon formed by revolving the region about the y-axis.
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In Exercises 9 – 12, a region of the Cartesian plane is shaded.
Use the Shell Method to find the volume of the solid of revo-
luƟon formed by revolving the region about the x-axis.
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y = cos x
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In Exercises 13 – 18, a region of the Cartesian plane is de-
scribed. Use the Shell Method to find the volume of the solid
of revoluƟon formed by rotaƟng the region about each of the
given axes.

13. Region bounded by: y =
√
x, y = 0 and x = 1.

Rotate about:

(a) the y-axis
(b) x = 1

(c) the x-axis
(d) y = 1

14. Region bounded by: y = 4− x2 and y = 0.
Rotate about:

(a) x = 2
(b) x = −2

(c) the x-axis
(d) y = 4

15. The triangle with verƟces (1, 1), (1, 2) and (2, 1).
Rotate about:

(a) the y-axis
(b) x = 1

(c) the x-axis
(d) y = 2

16. Region bounded by y = x2 − 2x+ 2 and y = 2x− 1.
Rotate about:

(a) the y-axis
(b) x = 1

(c) x = −1

17. Region bounded by y = 1/
√
x2 + 1, x = 1 and the x and

y-axes.
Rotate about:

(a) the y-axis (b) x = 1

18. Region bounded by y = 2x, y = x and x = 2.
Rotate about:

(a) the y-axis
(b) x = 2

(c) the x-axis
(d) y = 4
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Figure 7.4.1: Graphing y = sin x on [0, π]
and approximaƟng the curve with line
segments.
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Figure 7.4.2: Zooming in on the i th subin-
terval [xi, xi+1] of a parƟƟon of [a, b].

Chapter 7 ApplicaƟons of IntegraƟon

7.4 Arc Length and Surface Area
In previous secƟonswe have used integraƟon to answer the following quesƟons:

1. Given a region, what is its area?

2. Given a solid, what is its volume?

In this secƟon, we address a related quesƟon: Given a curve, what is its
length? This is oŌen referred to as arc length.

Consider the graph of y = sin x on [0, π] given in Figure 7.4.1(a). How long is
this curve? That is, if we were to use a piece of string to exactly match the shape
of this curve, how long would the string be?

As we have done in the past, we start by approximaƟng; later, we will refine
our answer using limits to get an exact soluƟon.

The length of straight–line segments is easy to compute using the Distance
Formula. We can approximate the length of the given curve by approximaƟng
the curve with straight lines and measuring their lengths.

In Figure 7.4.1(b), the curve y = sin x has been approximated with 4 line
segments (the interval [0, π] has been divided into 4 equally–lengthed subinter-
vals). It is clear that these four line segments approximate y = sin x very well
on the first and last subinterval, though not so well in the middle. Regardless,
the sum of the lengths of the line segments is 3.79, so we approximate the arc
length of y = sin x on [0, π] to be 3.79.

In general, we can approximate the arc length of y = f(x) on [a, b] in the
following manner. Let a = x1 < x2 < . . . < xn < xn+1 = b be a parƟƟon
of [a, b] into n subintervals. Let ∆xi represent the length of the i th subinterval
[xi, xi+1].

Figure 7.4.2 zooms in on the i th subinterval where y = f(x) is approximated
by a straight line segment. The dashed lines show that we can view this line seg-
ment as the hypotenuse of a right triangle whose sides have length∆xi and∆yi.
Using the Pythagorean Theorem, the length of this line segment is

√
∆x2i +∆y2i .

Summing over all subintervals gives an arc length approximaƟon

L ≈
n∑

i=1

√
∆x2i +∆y2i .

As shown here, this is not a Riemann Sum. While we could conclude that
taking a limit as the subinterval length goes to zero gives the exact arc length,
we would not be able to compute the answer with a definite integral. We need
first to do a liƩle algebra.

Notes:
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Note: This is our first use of differenƟa-
bility on a closed interval since SecƟon
2.1.

The theorem also requires that f ′ be con-
Ɵnuous on [a, b]; while examples are ar-
cane, it is possible for f to be differen-
Ɵable yet f ′ is not conƟnuous.

7.4 Arc Length and Surface Area

In the above expression factor out a∆x2i term:

n∑
i=1

√
∆x2i +∆y2i =

n∑
i=1

√
∆x2i

(
1+

∆y2i
∆x2i

)
.

Now pull the∆x2i term out of the square root:

=

n∑
i=1

√
1+

∆y2i
∆x2i

∆xi.

This is nearly a Riemann Sum. Consider the ∆y2i /∆x2i term. The expression
∆yi/∆xi measures the “change in y/change in x,” that is, the “rise over run” of
f on the i th subinterval. The Mean Value Theorem of DifferenƟaƟon (Theorem
3.2.1) states that there is a ci in the i th subinterval where f ′(ci) = ∆yi/∆xi. Thus
we can rewrite our above expression as:

=

n∑
i=1

√
1+ f ′(ci)2 ∆xi.

This is a Riemann Sum. As long as f ′ is conƟnuous, we can invoke Theorem 5.3.2
and conclude

=

∫ b

a

√
1+ f ′(x)2 dx.

Theorem 7.4.1 Arc Length

Let f be differenƟable on [a, b], where f ′ is also conƟnuous on [a, b]. Then
the arc length of f from x = a to x = b is

L =
∫ b

a

√
1+ f ′(x)2 dx.

As the integrand contains a square root, it is oŌen difficult to use the formula
in Theorem 7.4.1 to find the length exactly. When exact answers are difficult to
come by, we resort to using numerical methods of approximaƟng definite inte-
grals. The following examples will demonstrate this.

Notes:
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Figure 7.4.3: A graph of f(x) = x3/2 from
Example 7.4.1.

Chapter 7 ApplicaƟons of IntegraƟon

Example 7.4.1 Finding arc length
Find the arc length of f(x) = x3/2 from x = 0 to x = 4.

SÊ½çã®ÊÄ We find f ′(x) = 3
2x

1/2; note that on [0, 4], f is differenƟable
and f ′ is also conƟnuous. Using the formula, we find the arc length L as

L =
∫ 4

0

√
1+

(
3
2
x1/2

)2

dx

=

∫ 4

0

√
1+

9
4
x dx

=

∫ 4

0

(
1+

9
4
x
)1/2

dx

=
2
3
· 4
9
·
(
1+

9
4
x
)3/2 ∣∣∣4

0

=
8
27

(
103/2 − 1

)
≈ 9.07units.

A graph of f is given in Figure 7.4.3.

Example 7.4.2 Finding arc length
Find the arc length of f(x) =

1
8
x2 − ln x from x = 1 to x = 2.

SÊ½çã®ÊÄ This funcƟon was chosen specifically because the resulƟng
integral can be evaluated exactly. We begin by finding f ′(x) = x/4 − 1/x. The
arc length is

L =
∫ 2

1

√
1+

(
x
4
− 1

x

)2

dx

=

∫ 2

1

√
1+

x2

16
− 1

2
+

1
x2

dx

=

∫ 2

1

√
x2

16
+

1
2
+

1
x2

dx

=

∫ 2

1

√(
x
4
+

1
x

)2

dx

Notes:
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Figure 7.4.4: A graph of f(x) = 1
8 x

2 − ln x
from Example 7.4.2.

x
√
1+ cos2 x

0
√
2

π/4
√

3/2
π/2 1
3π/4

√
3/2

π
√
2

Figure 7.4.5: A table of values of y =√
1+ cos2 x to evaluate a definite inte-

gral in Example 7.4.3.

7.4 Arc Length and Surface Area

=

∫ 2

1

(
x
4
+

1
x

)
dx

=

(
x2

8
+ ln x

) ∣∣∣∣∣
2

1

=
3
8
+ ln 2 ≈ 1.07 units.

A graph of f is given in Figure 7.4.4; the porƟon of the curve measured in this
problem is in bold.

The previous examples found the arc length exactly through careful choice
of the funcƟons. In general, exact answers are much more difficult to come by
and numerical approximaƟons are necessary.

Example 7.4.3 ApproximaƟng arc length numerically
Find the length of the sine curve from x = 0 to x = π.

SÊ½çã®ÊÄ This is somewhat of a mathemaƟcal curiosity; in Example
5.4.3 we found the area under one “hump” of the sine curve is 2 square units;
now we are measuring its arc length.

The setup is straighƞorward: f(x) = sin x and f ′(x) = cos x. Thus

L =
∫ π

0

√
1+ cos2 x dx.

This integral cannot be evaluated in terms of elementary funcƟons sowewill ap-
proximate it with Simpson’s Method with n = 4. Figure 7.4.5 gives

√
1+ cos2 x

evaluated at 5 evenly spaced points in [0, π]. Simpson’s Rule then states that∫ π

0

√
1+ cos2 x dx ≈ π − 0

4 · 3

(√
2+ 4

√
3/2+ 2(1) + 4

√
3/2+

√
2
)

= 3.82918.

Using a computer with n = 100 the approximaƟon is L ≈ 3.8202; our approxi-
maƟon with n = 4 is quite good.

Notes:
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Figure 7.4.6: Establishing the formula for
surface area.

Chapter 7 ApplicaƟons of IntegraƟon

Surface Area of Solids of RevoluƟon

We have already seen how a curve y = f(x) on [a, b] can be revolved around
an axis to form a solid. Instead of compuƟng its volume, we now consider its
surface area.

We begin as we have in the previous secƟons: we parƟƟon the interval [a, b]
with n subintervals, where the i th subinterval is [xi, xi+1]. On each subinterval,
we can approximate the curve y = f(x) with a straight line that connects f(xi)
and f(xi+1) as shown in Figure 7.4.6(a). Revolving this line segment about the x-
axis creates part of a cone (called a frustumof a cone) as shown in Figure 7.4.6(b).
The surface area of a frustum of a cone is

2π · length · average of the two radii R and r.

The length is given by L; we use the material just covered by arc length to
state that

L ≈
√

1+ f ′(ci)2∆xi

for some ci in the i th subinterval. The radii are just the funcƟon evaluated at the
endpoints of the interval. That is,

R = f(xi+1) and r = f(xi).

Thus the surface area of this sample frustum of the cone is approximately

2π
f(xi) + f(xi+1)

2
√

1+ f ′(ci)2∆xi.

Since f is a conƟnuous funcƟon, the IntermediateValue Theoremstates there

is some di in [xi, xi+1] such that f(di) =
f(xi) + f(xi+1)

2
; we can use this to rewrite

the above equaƟon as
2πf(di)

√
1+ f ′(ci)2∆xi.

Summing over all the subintervals we get the total surface area to be approxi-
mately

Surface Area ≈
n∑

i=1
2πf(di)

√
1+ f ′(ci)2∆xi,

which is a Riemann Sum. Taking the limit as the subinterval lengths go to zero
gives us the exact surface area, given in the following theorem.

Notes:
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Figure 7.4.7: Revolving y = sin x on [0, π]
about the x-axis.

7.4 Arc Length and Surface Area

Theorem 7.4.2 Surface Area of a Solid of RevoluƟon

Let f be differenƟable on [a, b], where f ′ is also conƟnuous on [a, b].

1. The surface area of the solid formed by revolving the graph of y =
f(x), where f(x) ≥ 0, about the x-axis is

Surface Area = 2π
∫ b

a
f(x)
√

1+ f ′(x)2 dx.

2. The surface area of the solid formed by revolving the graph of y =
f(x) about the y-axis, where a, b ≥ 0, is

Surface Area = 2π
∫ b

a
x
√

1+ f ′(x)2 dx.

(When revolving y = f(x) about the y-axis, the radii of the resulƟng frustum
are xi and xi+1; their average value is simply the midpoint of the interval. In the
limit, this midpoint is just x. This gives the second part of Theorem 7.4.2.)

Example 7.4.4 Finding surface area of a solid of revoluƟon
Find the surface area of the solid formed by revolving y = sin x on [0, π] around
the x-axis, as shown in Figure 7.4.7.

SÊ½çã®ÊÄ The setup is relaƟvely straighƞorward. Using Theorem7.4.2,
we have the surface area SA is:

SA = 2π
∫ π

0
sin x

√
1+ cos2 x dx

= −2π
1
2

(
sinh−1(cos x) + cos x

√
1+ cos2 x

)∣∣∣π
0

= 2π
(√

2+ sinh−1 1
)
≈ 14.42 units2.

The integraƟon step above is nontrivial, uƟlizing an integraƟon method called
Trigonometric SubsƟtuƟon.

It is interesƟng to see that the surface area of a solid, whose shape is defined
by a trigonometric funcƟon, involves both a square root and an inverse hyper-
bolic trigonometric funcƟon.

Example 7.4.5 Finding surface area of a solid of revoluƟon
Find the surface area of the solid formed by revolving the curve y = x2 on [0, 1]
about the x-axis and the y-axis.

Notes:
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(a)

(b)

Figure 7.4.8: The solids used in Example
7.4.5.

Figure 7.4.9: A graph of Gabriel’s Horn.

Chapter 7 ApplicaƟons of IntegraƟon

SÊ½çã®ÊÄ About the x-axis: the integral is straighƞorward to setup:

SA = 2π
∫ 1

0
x2
√

1+ (2x)2 dx.

Like the integral in Example 7.4.4, this requires Trigonometric SubsƟtuƟon.

=
π

32

(
2(8x3 + x)

√
1+ 4x2 − sinh−1(2x)

)∣∣∣1
0

=
π

32

(
18

√
5− sinh−1 2

)
≈ 3.81 units2.

The solid formed by revolving y = x2 around the x-axis is graphed in Figure 7.4.8
(a).

About the y-axis: since we are revolving around the y-axis, the “radius” of
the solid is not f(x) but rather x. Thus the integral to compute the surface area
is:

SA = 2π
∫ 1

0
x
√

1+ (2x)2 dx.

This integral can be solved using subsƟtuƟon. Set u = 1+ 4x2; the new bounds
are u = 1 to u = 5. We then have

=
π

4

∫ 5

1

√
u du

=
π

4
2
3
u3/2

∣∣∣∣5
1

=
π

6

(
5
√
5− 1

)
≈ 5.33 units2.

The solid formed by revolving y = x2 about the y-axis is graphed in Figure 7.4.8
(b).

Our final example is a famous mathemaƟcal “paradox.”

Example 7.4.6 The surface area and volume of Gabriel’s Horn
Consider the solid formed by revolving y = 1/x about the x-axis on [1,∞). Find
the volume and surface area of this solid. (This shape, as graphed in Figure 7.4.9,
is known as “Gabriel’s Horn” since it looks like a very long horn that only a su-
pernatural person, such as an angel, could play.)

Notes:
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7.4 Arc Length and Surface Area

SÊ½çã®ÊÄ To compute the volume it is natural to use the Disk Method.
We have:

V = π

∫ ∞

1

1
x2

dx

= lim
b→∞

π

∫ b

1

1
x2

dx

= lim
b→∞

π

(
−1
x

)∣∣∣∣b
1

= lim
b→∞

π

(
1− 1

b

)
= π units3.

Gabriel’s Horn has a finite volume of π cubic units. Since we have already seen
that regions with infinite length can have a finite area, this is not too difficult to
accept.

We now consider its surface area. The integral is straighƞorward to setup:

SA = 2π
∫ ∞

1

1
x
√

1+ 1/x4 dx.

IntegraƟng this expression is not trivial. We can, however, compare it to other
improper integrals. Since 1 <

√
1+ 1/x4 on [1,∞), we can state that

2π
∫ ∞

1

1
x
dx < 2π

∫ ∞

1

1
x
√

1+ 1/x4 dx.

By Key Idea 6.8.1, the improper integral on the leŌ diverges. Since the integral
on the right is larger, we conclude it also diverges, meaning Gabriel’s Horn has
infinite surface area.

Hence the “paradox”: we can fill Gabriel’s Hornwith a finite amount of paint,
but since it has infinite surface area, we can never paint it.

Somehow this paradox is striking when we think about it in terms of vol-
ume and area. However, we have seen a similar paradox before, as referenced
above. We know that the area under the curve y = 1/x2 on [1,∞) is finite, yet
the shape has an infinite perimeter. Strange things can occur when we deal with
the infinite.

A standard equaƟon from physics is “Work = force × distance”, when the
force applied is constant. In the next secƟon we learn how to compute work
when the force applied is variable.

Notes:
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Exercises 7.4
Terms and Concepts

1. T/F: The integral formula for compuƟng Arc Length was
found by first approximaƟng arc length with straight line
segments.

2. T/F: The integral formula for compuƟng Arc Length includes
a square–root, meaning the integraƟon is probably easy.

Problems
In Exercises 3 – 12, find the arc length of the funcƟon on the
given interval.

3. f(x) = x on [0, 1].

4. f(x) =
√
8x on [−1, 1].

5. f(x) = 1
3
x3/2 − x1/2 on [0, 1].

6. f(x) = 1
12

x3 + 1
x
on [1, 4].

7. f(x) = 2x3/2 − 1
6
√
x on [0, 9].

8. f(x) = cosh x on [− ln 2, ln 2].

9. f(x) = 1
2
(
ex + e−x) on [0, ln 5].

10. f(x) = 1
12

x5 + 1
5x3

on [.1, 1].

11. f(x) = ln
(
sin x

)
on [π/6, π/2].

12. f(x) = ln
(
cos x

)
on [0, π/4].

In Exercises 13 – 20, set up the integral to compute the arc
length of the funcƟon on the given interval. Do not evaluate
the integral.

13. f(x) = x2 on [0, 1].

14. f(x) = x10 on [0, 1].

15. f(x) =
√
x on [0, 1].

16. f(x) = ln x on [1, e].

17. f(x) =
√
1− x2 on [−1, 1]. (Note: this describes the top

half of a circle with radius 1.)

18. f(x) =
√

1− x2/9 on [−3, 3]. (Note: this describes the top
half of an ellipse with a major axis of length 6 and a minor
axis of length 2.)

19. f(x) = 1
x
on [1, 2].

20. f(x) = sec x on [−π/4, π/4].

In Exercises 21 – 28, use Simpson’s Rule, with n = 4, to ap-
proximate the arc length of the funcƟon on the given interval.
Note: these are the same problems as in Exercises 13–20.

21. f(x) = x2 on [0, 1].

22. f(x) = x10 on [0, 1].

23. f(x) =
√
x on [0, 1]. (Note: f ′(x) is not defined at x = 0.)

24. f(x) = ln x on [1, e].

25. f(x) =
√
1− x2 on [−1, 1]. (Note: f ′(x) is not defined at

the endpoints.)

26. f(x) =
√

1− x2/9 on [−3, 3]. (Note: f ′(x) is not defined
at the endpoints.)

27. f(x) = 1
x
on [1, 2].

28. f(x) = sec x on [−π/4, π/4].

In Exercises 29 – 33, find the surface area of the described
solid of revoluƟon.

29. The solid formed by revolving y = 2x on [0, 1] about the
x-axis.

30. The solid formed by revolving y = x2 on [0, 1] about the
y-axis.

31. The solid formed by revolving y = x3 on [0, 1] about the
x-axis.

32. The solid formed by revolving y =
√
x on [0, 1] about the

x-axis.

33. The sphere formed by revolving y =
√
1− x2 on [−1, 1]

about the x-axis.
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Note: Mass and weight are closely re-
lated, yet different, concepts. The mass
m of an object is a quanƟtaƟve measure
of that object’s resistance to acceleraƟon.
The weight w of an object is a measure-
ment of the force applied to the object by
the acceleraƟon of gravity g.
Since the two measurements are pro-

porƟonal, w = m · g, they are oŌen
used interchangeably in everyday conver-
saƟon. When compuƟng work, one must
be careful to note which is being referred
to. When mass is given, it must be mulƟ-
plied by the acceleraƟon of gravity to ref-
erence the related force.

7.5 Work

7.5 Work
Work is the scienƟfic term used to describe the acƟon of a force which moves
an object. When a constant force F is applied to move an object a distance d,
the amount of work performed isW = F · d.

The SI unit of force is the Newton, (kg·m/s2), and the SI unit of distance is
a meter (m). The fundamental unit of work is one Newton–meter, or a joule
(J). That is, applying a force of one Newton for one meter performs one joule
of work. In Imperial units (as used in the United States), force is measured in
pounds (lb) and distance is measured in feet (Ō), hence work is measured in
Ō–lb.

When force is constant, the measurement of work is straighƞorward. For
instance, liŌing a 200 lb object 5 Ō performs 200 · 5 = 1000 Ō–lb of work.

What if the force applied is variable? For instance, imagine a climber pulling
a 200 Ō rope up a verƟcal face. The rope becomes lighter as more is pulled in,
requiring less force and hence the climber performs less work.

In general, let F(x) be a force funcƟon on an interval [a, b]. We want to mea-
sure the amount of work done applying the force F from x = a to x = b. We can
approximate the amount of work being done by parƟƟoning [a, b] into subinter-
vals a = x1 < x2 < · · · < xn+1 = b and assuming that F is constant on each
subinterval. Let ci be a value in the i th subinterval [xi, xi+1]. Then the work done
on this interval is approximatelyWi ≈ F(ci) · (xi+1 − xi) = F(ci)∆xi, a constant
force× the distance over which it is applied. The total work is

W =

n∑
i=1

Wi ≈
n∑

i=1
F(ci)∆xi.

This, of course, is a Riemann sum. Taking a limit as the subinterval lengths go
to zero gives an exact value of work which can be evaluated through a definite
integral.

Key Idea 7.5.1 Work

Let F(x) be a conƟnuous funcƟon on [a, b] describing the amount of force
being applied to an object in the direcƟon of travel from distance x = a
to distance x = b. The total workW done on [a, b] is

W =

∫ b

a
F(x) dx.

Notes:

387



Chapter 7 ApplicaƟons of IntegraƟon

Example 7.5.1 CompuƟng work performed: applying variable force
A 60m climbing rope is hanging over the side of a tall cliff. How much work
is performed in pulling the rope up to the top, where the rope has a mass of
66g/m?

SÊ½çã®ÊÄ Weneed to create a force funcƟon F(x)on the interval [0, 60].
To do so, we must first decide what x is measuring: it is the length of the rope
sƟll hanging or is it the amount of rope pulled in? As long as we are consistent,
either approach is fine. We adopt for this example the convenƟon that x is the
amount of rope pulled in. This seems to match intuiƟon beƩer; pulling up the
first 10 meters of rope involves x = 0 to x = 10 instead of x = 60 to x = 50.

As x is the amount of rope pulled in, the amount of rope sƟll hanging is 60−x.
This length of rope has a mass of 66 g/m, or 0.066 kg/m. The mass of the rope
sƟll hanging is 0.066(60 − x) kg; mulƟplying this mass by the acceleraƟon of
gravity, 9.8 m/s2, gives our variable force funcƟon

F(x) = (9.8)(0.066)(60− x) = 0.6468(60− x).

Thus the total work performed in pulling up the rope is

W =

∫ 60

0
0.6468(60− x) dx = 1, 164.24 J.

By comparison, consider the work done in liŌing the enƟre rope 60 meters.
The ropeweighs 60×0.066×9.8 = 38.808N, so thework applying this force for
60 meters is 60×38.808 = 2, 328.48 J. This is exactly twice the work calculated
before (and we leave it to the reader to understand why.)

Example 7.5.2 CompuƟng work performed: applying variable force
Consider again pulling a 60 m rope up a cliff face, where the rope has a mass of
66 g/m. At what point is exactly half the work performed?

SÊ½çã®ÊÄ From Example 7.5.1 we know the total work performed is
1, 164.24 J. We want to find a height h such that the work in pulling the rope
from a height of x = 0 to a height of x = h is 582.12, half the total work. Thus
we want to solve the equaƟon∫ h

0
0.6468(60− x) dx = 582.12

for h.

Notes:
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Note: In Example 7.5.2, we find that half
of the work performed in pulling up a 60
m rope is done in the last 42.43m. Why is
it not coincidental that 60/

√
2 = 42.43?

7.5 Work

∫ h

0
0.6468(60− x) dx = 582.12

(
38.808x− 0.3234x2

) ∣∣∣h
0
= 582.12

38.808h− 0.3234h2 = 582.12
−0.3234h2 + 38.808h− 582.12 = 0.

Apply the QuadraƟc Formula:

h = 17.57 and 102.43

As the rope is only 60m long, the only sensible answer is h = 17.57. Thus about
half the work is done pulling up the first 17.5m the other half of the work is done
pulling up the remaining 42.43m.

Example 7.5.3 CompuƟng work performed: applying variable force
A box of 100 lb of sand is being pulled up at a uniform rate a distance of 50 Ō
over 1 minute. The sand is leaking from the box at a rate of 1 lb/s. The box itself
weighs 5 lb and is pulled by a rope weighing .2 lb/Ō.

1. How much work is done liŌing just the rope?

2. How much work is done liŌing just the box and sand?

3. What is the total amount of work performed?

SÊ½çã®ÊÄ

1. We start by forming the force funcƟon Fr(x) for the rope (where the sub-
script denotes we are considering the rope). As in the previous example,
let x denote the amount of rope, in feet, pulled in. (This is the same as
saying x denotes the height of the box.) The weight of the rope with x
feet pulled in is Fr(x) = 0.2(50 − x) = 10 − 0.2x. (Note that we do not
have to include the acceleraƟon of gravity here, for theweight of the rope
per foot is given, not its mass per meter as before.) The work performed
liŌing the rope is

Wr =

∫ 50

0
(10− 0.2x) dx = 250 Ō–lb.

Notes:
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2. The sand is leaving the box at a rate of 1 lb/s. As the verƟcal trip is to take
oneminute, we know that 60 lbwill have leŌwhen the box reaches its final
height of 50 Ō. Again leƫng x represent the height of the box, we have
two points on the line that describes the weight of the sand: when x = 0,
the sand weight is 100 lb, producing the point (0, 100); when x = 50, the
sand in the box weighs 40 lb, producing the point (50, 40). The slope of
this line is 100−40

0−50 = −1.2, giving the equaƟon of the weight of the sand
at height x as w(x) = −1.2x+ 100. The box itself weighs a constant 5 lb,
so the total force funcƟon is Fb(x) = −1.2x+105. IntegraƟng from x = 0
to x = 50 gives the work performed in liŌing box and sand:

Wb =

∫ 50

0
(−1.2x+ 105) dx = 3750 Ō–lb.

3. The total work is the sum of Wr and Wb: 250 + 3750 = 4000 Ō–lb. We
can also arrive at this via integraƟon:

W =

∫ 50

0
(Fr(x) + Fb(x)) dx

=

∫ 50

0
(10− 0.2x− 1.2x+ 105) dx

=

∫ 50

0
(−1.4x+ 115) dx

= 4000 Ō–lb.

Hooke’s Law and Springs

Hooke’s Law states that the force required to compress or stretch a spring x
units from its natural length is proporƟonal to x; that is, this force is F(x) = kx
for some constant k. For example, if a force of 1 N stretches a given spring
2 cm, then a force of 5 N will stretch the spring 10 cm. ConverƟng the dis-
tances to meters, we have that stretching this spring 0.02 m requires a force
of F(0.02) = k(0.02) = 1 N, hence k = 1/0.02 = 50 N/m.

Example 7.5.4 CompuƟng work performed: stretching a spring
A force of 20 lb stretches a spring from a natural length of 7 inches to a length
of 12 inches. How much work was performed in stretching the spring to this
length?

SÊ½çã®ÊÄ In many ways, we are not at all concerned with the actual
length of the spring, only with the amount of its change. Hence, we do not care

Notes:
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Fluid lb/Ō3 kg/m3

Concrete 150 2400
Fuel Oil 55.46 890.13
Gasoline 45.93 737.22
Iodine 307 4927

Methanol 49.3 791.3
Mercury 844 13546
Milk 63.6–65.4 1020 – 1050
Water 62.4 1000

Figure 7.5.2: Weight and Mass densiƟes

7.5 Work

that 20 lb of force stretches the spring to a length of 12 inches, but rather that
a force of 20 lb stretches the spring by 5 in. This is illustrated in Figure 7.5.1;
we only measure the change in the spring’s length, not the overall length of the
spring.

.

.

.
F

.

0

.

1

.

2

.

3

.

4

.

5

.

6

.

0

.

1

.

2

.

3

.

4

.

5

.

6

.

Figure 7.5.1: IllustraƟng the important aspects of stretching a spring in compuƟng work
in Example 7.5.4.

ConverƟng the units of length to feet, we have

F(5/12) = 5/12k = 20 lb.

Thus k = 48 lb/Ō and F(x) = 48x.
We compute the total work performed by integraƟng F(x) from x = 0 to

x = 5/12:

W =

∫ 5/12

0
48x dx

= 24x2
∣∣∣5/12
0

= 25/6 ≈ 4.1667 Ō–lb.

Pumping Fluids

Another useful example of the applicaƟon of integraƟon to compute work
comes in the pumping of fluids, oŌen illustrated in the context of emptying a
storage tank by pumping the fluid out the top. This situaƟon is different than
our previous examples for the forces involved are constant. AŌer all, the force
required to move one cubic foot of water (about 62.4 lb) is the same regardless
of its locaƟon in the tank. What is variable is the distance that cubic foot of
water has to travel; water closer to the top travels less distance than water at
the boƩom, producing less work.

We demonstrate how to compute the total work done in pumping a fluid out
of the top of a tank in the next two examples.

Notes:

391



..

y

.0 .

30

.

35

.

35
−

y i

.

10

.

yi

.

yi+1

.

}
∆yi

.
.

Figure 7.5.3: IllustraƟng a water tank in
order to compute the work required to
empty it in Example 7.5.5.
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Example 7.5.5 CompuƟng work performed: pumping fluids
A cylindrical storage tank with a radius of 10 Ō and a height of 30 Ō is filled with
water, which weighs approximately 62.4 lb/Ō3. Compute the amount of work
performed by pumping the water up to a point 5 feet above the top of the tank.

SÊ½çã®ÊÄ Wewill refer oŌen to Figure 7.5.3which illustrates the salient
aspects of this problem.

We start aswe oŌen do: we parƟƟon an interval into subintervals. We orient
our tank verƟcally since this makes intuiƟve sense with the base of the tank at
y = 0. Hence the top of the water is at y = 30, meaning we are interested in
subdividing the y-interval [0, 30] into n subintervals as

0 = y1 < y2 < · · · < yn+1 = 30.

Consider the workWi of pumping only the water residing in the i th subinterval,
illustrated in Figure 7.5.3. The force required to move this water is equal to its
weight which we calculate as volume × density. The volume of water in this
subinterval is Vi = 102π∆yi; its density is 62.4 lb/Ō3. Thus the required force is
6240π∆yi lb.

We approximate the distance the force is applied by using any y-value con-
tained in the i th subinterval; for simplicity, we arbitrarily use yi for now (it will
not maƩer later on). The water will be pumped to a point 5 feet above the top
of the tank, that is, to the height of y = 35 Ō. Thus the distance the water at
height yi travels is 35− yi Ō.

In all, the approximate work Wi peformed in moving the water in the i th
subinterval to a point 5 feet above the tank is

Wi ≈ 6240π∆yi(35− yi).

To approximate the total work performed in pumping out all the water from the
tank, we sum all the workWi performed in pumping the water from each of the
n subintervals of [0, 30]:

W ≈
n∑

i=1
Wi =

n∑
i=1

6240π∆yi(35− yi).

This is a Riemann sum. Taking the limit as the subinterval length goes to 0 gives

W =

∫ 30

0
6240π(35− y) dy

= 6240π
(
35y− 1/2y2

) ∣∣∣30
0

= 11, 762, 123 Ō–lb
≈ 1.176× 107 Ō–lb.

Notes:
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Figure 7.5.5: A graph of the conical water
tank in Example 7.5.6.

7.5 Work

We can “streamline” the above process a bit as we may now recognize what
the important features of the problem are. Figure 7.5.4 shows the tank from
Example 7.5.5 without the i th subinterval idenƟfied. Instead, we just draw one
differenƟal element. This helps establish the height a small amount of water
must travel along with the force required to move it (where the force is volume
× density).

We demonstrate the concepts again in the next examples.

Example 7.5.6 CompuƟng work performed: pumping fluids
A conicalwater tank has its top at ground level and its base 10 feet belowground.
The radius of the cone at ground level is 2 Ō. It is filled with water weighing 62.4
lb/Ō3 and is to be empƟed by pumping thewater to a spigot 3 feet above ground
level. Find the total amount of work performed in emptying the tank.

SÊ½çã®ÊÄ The conical tank is sketched in Figure 7.5.5. We can orient
the tank in a variety of ways; we could let y = 0 represent the base of the tank
and y = 10 represent the top of the tank, but we choose to keep the convenƟon
of the wording given in the problem and let y = 0 represent ground level and
hence y = −10 represents the boƩom of the tank. The actual “height” of the
water does not maƩer; rather, we are concerned with the distance the water
travels.

The figure also sketches a differenƟal element, a cross–secƟonal circle. The
radius of this circle is variable, depending on y. When y = −10, the circle has
radius 0; when y = 0, the circle has radius 2. These two points, (−10, 0) and
(0, 2), allow us to find the equaƟon of the line that gives the radius of the cross–
secƟonal circle, which is r(y) = 1/5y + 2. Hence the volume of water at this
height is V(y) = π(1/5y + 2)2dy, where dy represents a very small height of
the differenƟal element. The force required to move the water at height y is
F(y) = 62.4× V(y).

The distance the water at height y travels is given by h(y) = 3− y. Thus the
total work done in pumping the water from the tank is

W =

∫ 0

−10
62.4π(1/5y+ 2)2(3− y) dy

= 62.4π
∫ 0

−10

(
− 1
25

y3 − 17
25

y2 − 8
5
y+ 12

)
dy

= 62.2π · 220
3

≈ 14, 376 Ō–lb.

Notes:
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Example 7.5.7 CompuƟng work performed: pumping fluids
A rectangular swimming pool is 20 Ō wide and has a 3 Ō “shallow end” and a 6 Ō
“deep end.” It is to have its water pumped out to a point 2 Ō above the current
top of the water. The cross–secƟonal dimensions of the water in the pool are
given in Figure 7.5.6; note that the dimensions are for the water, not the pool
itself. Compute the amount of work performed in draining the pool.

SÊ½çã®ÊÄ For the purposes of this problem we choose to set y = 0
to represent the boƩom of the pool, meaning the top of the water is at y = 6.
Figure 7.5.7 shows the pool oriented with this y-axis, along with 2 differenƟal
elements as the pool must be split into two different regions.

The top region lies in the y-interval of [3, 6], where the length of the differen-
Ɵal element is 25 Ō as shown. As the pool is 20 Ō wide, this differenƟal element
represents a thin slice of water with volume V(y) = 20 · 25 · dy. The water is
to be pumped to a height of y = 8, so the height funcƟon is h(y) = 8 − y. The
work done in pumping this top region of water is

Wt = 62.4
∫ 6

3
500(8− y) dy = 327, 600 Ō–lb.

The boƩom region lies in the y-interval of [0, 3]; we need to compute the
length of the differenƟal element in this interval.

One end of the differenƟal element is at x = 0 and the other is along the line
segment joining the points (10, 0) and (15, 3). The equaƟon of this line is y =
3/5(x−10); as we will be integraƟng with respect to y, we rewrite this equaƟon
as x = 5/3y + 10. So the length of the differenƟal element is a difference of
x-values: x = 0 and x = 5/3y+ 10, giving a length of x = 5/3y+ 10.

Again, as the pool is 20 Ō wide, this differenƟal element represents a thin
slice of water with volume V(y) = 20 · (5/3y + 10) · dy; the height funcƟon is
the same as before at h(y) = 8− y. The work performed in emptying this part
of the pool is

Wb = 62.4
∫ 3

0
20(5/3y+ 10)(8− y) dy = 299, 520 Ō–lb.

The total work in empyƟng the pool is

W = Wb +Wt = 327, 600+ 299, 520 = 627, 120 Ō–lb.

NoƟce how the emptying of the boƩom of the pool performs almost as much
work as emptying the top. The top porƟon travels a shorter distance but has
more water. In the end, this extra water produces more work.

The next secƟon introduces one final applicaƟon of the definite integral, the
calculaƟon of fluid force on a plate.

Notes:
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Exercises 7.5
Terms and Concepts

1. What are the typical units of work?

2. If a man has a mass of 80 kg on Earth, will his mass on the
moon be bigger, smaller, or the same?

3. If a woman weighs 130 lb on Earth, will her weight on the
moon be bigger, smaller, or the same?

4. Fill in the blanks:
Some integrals in this secƟon are set up by mulƟplying a
variable by a constant distance; others are set
up by mulƟplying a constant force by a variable .

Problems

5. A 100 Ō rope, weighing 0.1 lb/Ō, hangs over the edge of a
tall building.

(a) Howmuchwork is done pulling the enƟre rope to the
top of the building?

(b) How much rope is pulled in when half of the total
work is done?

6. A 50 m rope, with a mass density of 0.2 kg/m, hangs over
the edge of a tall building.

(a) Howmuchwork is done pulling the enƟre rope to the
top of the building?

(b) How much work is done pulling in the first 20 m?

7. A rope of length ℓ Ō hangs over the edge of tall cliff. (As-
sume the cliff is taller than the length of the rope.) The
rope has a weight density of d lb/Ō.

(a) Howmuchwork is done pulling the enƟre rope to the
top of the cliff?

(b) What percentage of the total work is done pulling in
the first half of the rope?

(c) How much rope is pulled in when half of the total
work is done?

8. A 20 m rope with mass density of 0.5 kg/m hangs over the
edge of a 10 m building. How much work is done pulling
the rope to the top?

9. A crane liŌs a 2,000 lb load verƟcally 30 Ō with a 1” cable
weighing 1.68 lb/Ō.

(a) How much work is done liŌing the cable alone?

(b) How much work is done liŌing the load alone?

(c) Could one conclude that the work done liŌing the ca-
ble is negligible compared to thework done liŌing the
load?

10. A 100 lb bag of sand is liŌed uniformly 120 Ō in oneminute.
Sand leaks from the bag at a rate of 1/4 lb/s. What is the
total work done in liŌing the bag?

11. A boxweighing 2 lb liŌs 10 lb of sand verƟcally 50 Ō. A crack
in the box allows the sand to leak out such that 9 lb of sand
is in the box at the end of the trip. Assume the sand leaked
out at a uniform rate. What is the total work done in liŌing
the box and sand?

12. A force of 1000 lb compresses a spring 3 in. Howmuchwork
is performed in compressing the spring?

13. A force of 2 N stretches a spring 5 cm. How much work is
performed in stretching the spring?

14. A force of 50 lb compresses a spring froma natural length of
18 in to 12 in. Howmuchwork is performed in compressing
the spring?

15. A force of 20 lb stretches a spring from a natural length of
6 in to 8 in. How much work is performed in stretching the
spring?

16. A force of 7 N stretches a spring from a natural length of 11
cm to 21 cm. How much work is performed in stretching
the spring from a length of 16 cm to 21 cm?

17. A force of f N stretches a spring dm from its natural length.
How much work is performed in stretching the spring?

18. A 20 lb weight is aƩached to a spring. The weight rests on
the spring, compressing the spring from a natural length of
1 Ō to 6 in.
How much work is done in liŌing the box 1.5 Ō (i.e, the
spring will be stretched 1 Ō beyond its natural length)?

19. A 20 lb weight is aƩached to a spring. The weight rests on
the spring, compressing the spring from a natural length of
1 Ō to 6 in.
How much work is done in liŌing the box 6 in (i.e, bringing
the spring back to its natural length)?

20. A 5 m tall cylindrical tank with radius of 2 m is filled with 3
m of gasoline, with a mass density of 737.22 kg/m3. Com-
pute the total work performed in pumping all the gasoline
to the top of the tank.

21. A 6 Ō cylindrical tank with a radius of 3 Ō is filled with wa-
ter, which has a weight density of 62.4 lb/Ō3. The water is
to be pumped to a point 2 Ō above the top of the tank.

(a) How much work is performed in pumping all the wa-
ter from the tank?

(b) How much work is performed in pumping 3 Ō of wa-
ter from the tank?

(c) At what point is 1/2 of the total work done?
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22. A gasoline tanker is filled with gasoline with a weight den-
sity of 45.93 lb/Ō3. The dispensing valve at the base is
jammed shut, forcing the operator to empty the tank via
pumping the gas to a point 1 Ō above the top of the tank.
Assume the tank is a perfect cylinder, 20 Ō long with a di-
ameter of 7.5 Ō. How much work is performed in pumping
all the gasoline from the tank?

23. A fuel oil storage tank is 10 Ō deep with trapezoidal sides,
5 Ō at the top and 2 Ō at the boƩom, and is 15 Ō wide (see
diagram below). Given that fuel oil weighs 55.46 lb/Ō3, find
the work performed in pumping all the oil from the tank to
a point 3 Ō above the top of the tank.

10

2

15

5

24. A conical water tank is 5 m deep with a top radius of 3 m.
(This is similar to Example 7.5.6.) The tank is filledwith pure
water, with a mass density of 1000 kg/m3.

(a) Find the work performed in pumping all the water to
the top of the tank.

(b) Find the work performed in pumping the top 2.5 m
of water to the top of the tank.

(c) Find the work performed in pumping the top half of
the water, by volume, to the top of the tank.

25. A water tank has the shape of a truncated cone, with di-
mensions given below, and is filledwithwaterwith aweight
density of 62.4 lb/Ō3. Find the work performed in pumping
all water to a point 1 Ō above the top of the tank.

2 Ō

5 Ō
10 Ō

26. A water tank has the shape of an inverted pyramid, with di-
mensions given below, and is filled with water with a mass
density of 1000 kg/m3. Find the work performed in pump-
ing all water to a point 5 m above the top of the tank.

2 m

2 m

7 m

27. A water tank has the shape of an truncated, inverted pyra-
mid, with dimensions given below, and is filled with wa-
ter with a mass density of 1000 kg/m3. Find the work per-
formed in pumping all water to a point 1 m above the top
of the tank.

5 m

5 m

2 m

2 m

9 m
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Figure 7.6.1: The cylindrical and rectan-
gular tank in Example 7.6.1.

7.6 Fluid Forces

7.6 Fluid Forces
In the unfortunate situaƟon of a car driving into a body of water, the conven-
Ɵonal wisdom is that the water pressure on the doors will quickly be so great
that they will be effecƟvely unopenable. (Survival techniques suggest immedi-
ately opening the door, rolling down or breaking the window, or waiƟng unƟl
the water fills up the interior at which point the pressure is equalized and the
door will open. See Mythbusters episode #72 to watch Adam Savage test these
opƟons.)

How can this be true? How much force does it take to open the door of
a submerged car? In this secƟon we will find the answer to this quesƟon by
examining the forces exerted by fluids.

We start with pressure, which is related to force by the following equaƟons:

Pressure =
Force
Area

⇔ Force = Pressure× Area.

In the context of fluids, we have the following definiƟon.

DefiniƟon 7.6.1 Fluid Pressure

Let w be the weight–density of a fluid. The pressure p exerted on an
object at depth d in the fluid is p = w · d.

We use this definiƟon to find the force exerted on a horizontal sheet by con-
sidering the sheet’s area.

Example 7.6.1 CompuƟng fluid force

1. A cylindrical storage tank has a radius of 2 Ō and holds 10 Ō of a fluid
with a weight–density of 50 lb/Ō3. (See Figure 7.6.1(a).) What is the force
exerted on the base of the cylinder by the fluid?

2. A rectangular tank whose base is a 5 Ō square has a circular hatch at the
boƩom with a radius of 2 Ō. The tank holds 10 Ō of a fluid with a weight–
density of 50 lb/Ō3. (See Figure 7.6.1(b).) What is the force exerted on
the hatch by the fluid?

SÊ½çã®ÊÄ

1. Using DefiniƟon 7.6.1, we calculate that the pressure exerted on the cylin-
der’s base isw · d = 50 lb/Ō3 × 10 Ō = 500 lb/Ō2. The area of the base is

Notes:
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π · 22 = 4π Ō2. So the force exerted by the fluid is

F = 500× 4π = 6283 lb.

Note that we effecƟvely just computed theweight of the fluid in the tank.

2. The dimensions of the tank in this problem are irrelevant. All we are con-
cerned with are the dimensions of the hatch and the depth of the fluid.
Since the dimensions of the hatch are the same as the base of the tank
in the previous part of this example, as is the depth, we see that the fluid
force is the same. That is, F = 6283 lb.
A key concept to understand here is that we are effecƟvely measuring the
weight of a 10 Ō column of water above the hatch. The size of the tank
holding the fluid does not maƩer.

The previous example demonstrates that compuƟng the force exerted on a
horizontally oriented plate is relaƟvely easy to compute. What about a verƟcally
oriented plate? For instance, supposewe have a circular porthole located on the
side of a submarine. How do we compute the fluid force exerted on it?

Pascal’s Principle states that the pressure exerted by a fluid at a depth is
equal in all direcƟons. Thus the pressure on any porƟon of a plate that is 1 Ō
below the surface of water is the same no maƩer how the plate is oriented.
(Thus a hollow cube submerged at a great depth will not simply be “crushed”
from above, but the sides will also crumple in. The fluid will exert force on all
sides of the cube.)

So consider a verƟcally oriented plate as shown in Figure 7.6.2 submerged in
a fluid with weight–densityw. What is the total fluid force exerted on this plate?
We find this force by first approximaƟng the force on small horizontal strips.

Let the top of the plate be at depth b and let the boƩom be at depth a. (For
now we assume that surface of the fluid is at depth 0, so if the boƩom of the
plate is 3 Ō under the surface, we have a = −3. Wewill come back to this later.)
We parƟƟon the interval [a, b] into n subintervals

a = y1 < y2 < · · · < yn+1 = b,

with the i th subinterval having length ∆yi. The force Fi exerted on the plate in
the i th subinterval is Fi = Pressure× Area.

The pressure is depth ×w. We approximate the depth of this thin strip by
choosing any value di in [yi, yi+1]; the depth is approximately−di. (Our conven-
Ɵon has di being a negaƟve number, so−di is posiƟve.) For convenience, we let
di be an endpoint of the subinterval; we let di = yi.

The area of the thin strip is approximately length×width. The width is∆yi.
The length is a funcƟon of some y-value ci in the i th subinterval. We state the

Notes:
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7.6 Fluid Forces

length is ℓ(ci). Thus

Fi = Pressure× Area
= −yi · w× ℓ(ci) ·∆yi.

To approximate the total force, we add up the approximate forces on each of
the n thin strips:

F =
n∑

i=1
Fi ≈

n∑
i=1

−w · yi · ℓ(ci) ·∆yi.

This is, of course, another Riemann Sum. We can find the exact force by taking
a limit as the subinterval lengths go to 0; we evaluate this limit with a definite
integral.

Key Idea 7.6.1 Fluid Force on a VerƟcally Oriented Plate

Let a verƟcally oriented plate be submerged in a fluid with weight–
density w where the top of the plate is at y = b and the boƩom is at
y = a. Let ℓ(y) be the length of the plate at y.

1. If y = 0 corresponds to the surface of the fluid, then the force
exerted on the plate by the fluid is

F =
∫ b

a
w · (−y) · ℓ(y) dy.

2. In general, let d(y) represent the distance between the surface of
the fluid and the plate at y. Then the force exerted on the plate by
the fluid is

F =
∫ b

a
w · d(y) · ℓ(y) dy.

Example 7.6.2 Finding fluid force
Consider a thin plate in the shape of an isosceles triangle as shown in Figure
7.6.3 submerged in water with a weight–density of 62.4 lb/Ō3. If the boƩom
of the plate is 10 Ō below the surface of the water, what is the total fluid force
exerted on this plate?

SÊ½çã®ÊÄ We approach this problem in two different ways to illustrate
the different ways Key Idea 7.6.1 can be implemented. First we will let y = 0
represent the surface of the water, then we will consider an alternate conven-
Ɵon.

Notes:
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1. We let y = 0 represent the surface of the water; therefore the boƩom of
the plate is at y = −10. We center the triangle on the y-axis as shown
in Figure 7.6.4. The depth of the plate at y is −y as indicated by the Key
Idea. We now consider the length of the plate at y.
We need to find equaƟons of the leŌ and right edges of the plate. The
right hand side is a line that connects the points (0,−10) and (2,−6):
that line has equaƟon x = 1/2(y+ 10). (Find the equaƟon in the familiar
y = mx+b format and solve for x.) Likewise, the leŌhand side is described
by the line x = −1/2(y + 10). The total length is the distance between
these two lines: ℓ(y) = 1/2(y+ 10)− (−1/2(y+ 10)) = y+ 10.
The total fluid force is then:

F =
∫ −6

−10
62.4(−y)(y+ 10) dy

= 62.4 · 176
3

≈ 3660.8 lb.

2. SomeƟmes it seems easier to orient the thin plate nearer the origin. For
instance, consider the convenƟon that the boƩom of the triangular plate
is at (0, 0), as shown in Figure 7.6.5. The equaƟons of the leŌ and right
hand sides are easy to find. They are y = 2x and y = −2x, respecƟvely,
which we rewrite as x = 1/2y and x = −1/2y. Thus the length funcƟon
is ℓ(y) = 1/2y− (−1/2y) = y.
As the surface of the water is 10 Ō above the base of the plate, we have
that the surface of the water is at y = 10. Thus the depth funcƟon is the
distance between y = 10 and y; d(y) = 10 − y. We compute the total
fluid force as:

F =
∫ 4

0
62.4(10− y)(y) dy

≈ 3660.8 lb.

The correct answer is, of course, independent of the placement of the plate in
the coordinate plane as long as we are consistent.

Example 7.6.3 Finding fluid force
Find the total fluid force on a car door submerged up to the boƩomof its window
in water, where the car door is a rectangle 40” long and 27” high (based on the
dimensions of a 2005 Fiat Grande Punto.)

SÊ½çã®ÊÄ The car door, as a rectangle, is drawn in Figure 7.6.6. Its
length is 10/3 Ō and its height is 2.25 Ō. We adopt the convenƟon that the top

Notes:
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7.6 Fluid Forces

of the door is at the surface of the water, both of which are at y = 0. Using the
weight–density of water of 62.4 lb/Ō3, we have the total force as

F =
∫ 0

−2.25
62.4(−y)10/3 dy

=

∫ 0

−2.25
−208y dy

= −104y2
∣∣∣0
−2.25

= 526.5 lb.

Most adults would find it very difficult to apply over 500 lb of force to a car
door while seated inside, making the door effecƟvely impossible to open. This
is counter–intuiƟve as most assume that the door would be relaƟvely easy to
open. The truth is that it is not, hence the survival Ɵps menƟoned at the begin-
ning of this secƟon.

Example 7.6.4 Finding fluid force
An underwater observaƟon tower is being built with circular viewing portholes
enabling visitors to see underwater life. Each verƟcally oriented porthole is to
have a 3 Ō diameter whose center is to be located 50 Ō underwater. Find the
total fluid force exerted on each porthole. Also, compute the fluid force on a
horizontally oriented porthole that is under 50 Ō of water.

SÊ½çã®ÊÄ We place the center of the porthole at the origin, meaning
the surface of thewater is at y = 50 and the depth funcƟonwill be d(y) = 50−y;
see Figure 7.6.7

The equaƟon of a circle with a radius of 1.5 is x2 + y2 = 2.25; solving for
x we have x = ±

√
2.25− y2, where the posiƟve square root corresponds to

the right side of the circle and the negaƟve square root corresponds to the leŌ
side of the circle. Thus the length funcƟon at depth y is ℓ(y) = 2

√
2.25− y2.

IntegraƟng on [−1.5, 1.5] we have:

F = 62.4
∫ 1.5

−1.5
2(50− y)

√
2.25− y2 dy

= 62.4
∫ 1.5

−1.5

(
100
√

2.25− y2 − 2y
√

2.25− y2
)
dy

= 6240
∫ 1.5

−1.5

(√
2.25− y2

)
dy− 62.4

∫ 1.5

−1.5

(
2y
√

2.25− y2
)
dy.

Notes:
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The second integral above can be evaluated using subsƟtuƟon. Let u = 2.25−y2
with du = −2y dy. The new bounds are: u(−1.5) = 0 and u(1.5) = 0; the new
integral will integrate from u = 0 to u = 0, hence the integral is 0.

The first integral above finds the area of half a circle of radius 1.5, thus the
first integral evaluates to 6240 · π · 1.52/2 = 22, 054. Thus the total fluid force
on a verƟcally oriented porthole is 22, 054 lb.

Finding the force on a horizontally oriented porthole ismore straighƞorward:

F = Pressure× Area = 62.4 · 50× π · 1.52 = 22, 054 lb.

That these two forces are equal is not coincidental; it turns out that the fluid
force applied to a verƟcally oriented circle whose center is at depth d is the
same as force applied to a horizontally oriented circle at depth d.

We end this chapter with a reminder of the true skills meant to be developed
here. We are not truly concerned with an ability to find fluid forces or the vol-
umes of solids of revoluƟon. Work done by a variable force is important, though
measuring the work done in pulling a rope up a cliff is probably not.

What we are actually concerned with is the ability to solve certain problems
by first approximaƟng the soluƟon, then refining the approximaƟon, then recog-
nizing if/when this refining process results in a definite integral through a limit.
Knowing the formulas found inside the special boxes within this chapter is ben-
eficial as it helps solve problems found in the exercises, and other mathemaƟcal
skills are strengthened by properly applying these formulas. However, more im-
portantly, understand how each of these formulas was constructed. Each is the
result of a summaƟon of approximaƟons; each summaƟon was a Riemann sum,
allowing us to take a limit and find the exact answer through a definite integral.

The next chapter addresses an enƟrely different topic: sequences and series.
In short, a sequence is a list of numbers, where a series is the summaƟon of a list
of numbers. These seemingly–simple ideas lead to very powerful mathemaƟcs.

Notes:
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Exercises 7.6
Terms and Concepts

1. State in your own words Pascal’s Principle.

2. State in your own words how pressure is different from
force.

Problems

In Exercises 3 – 12, find the fluid force exerted on the given
plate, submerged in water with a weight density of 62.4
lb/Ō3.

3.

2 Ō

2 Ō

1 Ō

4.

1 Ō

2 Ō

1 Ō

5.

4 Ō

5 Ō

6 Ō

6.
4 Ō

5 Ō

6 Ō

7.

2 Ō

5 Ō

8. 4 Ō

5 Ō

9.

4 Ō

2 Ō

5 Ō

10.

4 Ō

2 Ō

5 Ō

11.

2 Ō

2 Ō

1 Ō
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12.

2 Ō

2 Ō

1 Ō

In Exercises 13 – 18, the side of a container is pictured. Find
the fluid force exerted on this plate when the container is full
of:

1. water, with a weight density of 62.4 lb/Ō3, and

2. concrete, with a weight density of 150 lb/Ō3.

13.

3 Ō

5 Ō

14.

4 Ō

y = x2

4 Ō

15.

4 Ō

y = 4 − x2

4 Ō

16.

2 Ō

y = −
√
1 − x2

17.

2 Ō

y =
√
1 − x2

18.

6 Ō

y = −
√
9 − x2

19. How deep must the center of a verƟcally oriented circular
plate with a radius of 1 Ō be submerged in water, with a
weight density of 62.4 lb/Ō3, for the fluid force on the plate
to reach 1,000 lb?

20. How deep must the center of a verƟcally oriented square
plate with a side length of 2 Ō be submerged in water, with
a weight density of 62.4 lb/Ō3, for the fluid force on the
plate to reach 1,000 lb?
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NotaƟon: WeuseN to describe the set of
natural numbers, that is, the integers 1, 2,
3, …

Factorial: The expression 4! refers to the
number 4 · 3 · 2 · 1 = 24.

In general, n! = n·(n−1)·(n−2) · · · 2·1,
where n is a natural number.

We define 0! = 1. While this does not
immediately make sense, it makes many
mathemaƟcal formulas work properly.

8: S�Øç�Ä��Ý �Ä� S�Ù®�Ý
This chapter introduces sequences and series, important mathemaƟcal con-
strucƟons that are useful when solving a large variety of mathemaƟcal prob-
lems. The content of this chapter is considerably different from the content of
the chapters before it. While the material we learn here definitely falls under
the scope of “calculus,” we will make very liƩle use of derivaƟves or integrals.
Limits are extremely important, though, especially limits that involve infinity.

One of the problems addressed by this chapter is this: suppose we know
informaƟon about a funcƟon and its derivaƟves at a point, such as f(1) = 3,
f ′(1) = 1, f ′′(1) = −2, f ′′′(1) = 7, and so on. What can I say about f(x) itself?
Is there any reasonable approximaƟon of the value of f(2)? The topic of Taylor
Series addresses this problem, and allows us to make excellent approximaƟons
of funcƟons when limited knowledge of the funcƟon is available.

8.1 Sequences
We commonly refer to a set of events that occur one aŌer the other as a se-
quence of events. In mathemaƟcs, we use the word sequence to refer to an
ordered set of numbers, i.e., a set of numbers that “occur one aŌer the other.”

For instance, the numbers 2, 4, 6, 8, …, form a sequence. The order is impor-
tant; the first number is 2, the second is 4, etc. It seems natural to seek a formula
that describes a given sequence, and oŌen this can be done. For instance, the
sequence above could be described by the funcƟon a(n) = 2n, for the values of
n = 1, 2, . . . To find the 10th term in the sequence, we would compute a(10).
This leads us to the following, formal definiƟon of a sequence.

DefiniƟon 8.1.1 Sequence

A sequence is a funcƟon a(n) whose domain is N. The range of a
sequence is the set of all disƟnct values of a(n).

The terms of a sequence are the values a(1), a(2), …, which are usually
denoted with subscripts as a1, a2, ….

A sequence a(n) is oŌen denoted as {an}.
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Figure 8.1.1: Ploƫng sequences in Exam-
ple 8.1.1.

Chapter 8 Sequences and Series

Example 8.1.1 LisƟng terms of a sequence
List the first four terms of the following sequences.

1. {an} =

{
3n

n!

}
2. {an} = {4+(−1)n} 3. {an} =

{
(−1)n(n+1)/2

n2

}
SÊ½çã®ÊÄ

1. a1 =
31

1!
= 3; a2 =

32

2!
=

9
2
; a3 =

33

3!
=

9
2
; a4 =

34

4!
=

27
8

We can plot the terms of a sequence with a scaƩer plot. The “x”-axis is
used for the values of n, and the values of the terms are ploƩed on the
y-axis. To visualize this sequence, see Figure 8.1.1(a).

2. a1 = 4+ (−1)1 = 3; a2 = 4+ (−1)2 = 5;

a3 = 4+(−1)3 = 3; a4 = 4+(−1)4 = 5. Note that the range of this
sequence is finite, consisƟng of only the values 3 and 5. This sequence is
ploƩed in Figure 8.1.1(b).

3. a1 =
(−1)1(2)/2

12
= −1; a2 =

(−1)2(3)/2

22
= −1

4

a3 =
(−1)3(4)/2

32
=

1
9

a4 =
(−1)4(5)/2

42
=

1
16

;

a5 =
(−1)5(6)/2

52
= − 1

25
.

We gave one extra term to begin to show the paƩern of signs is “−,−,+,
+,−,−, . . .” due to the fact that the exponent of−1 is a special quadraƟc.
This sequence is ploƩed in Figure 8.1.1(c).

Example 8.1.2 Determining a formula for a sequence
Find the nth term of the following sequences, i.e., find a funcƟon that describes
each of the given sequences.

1. 2, 5, 8, 11, 14, . . .

2. 2,−5, 10,−17, 26,−37, . . .

3. 1, 1, 2, 6, 24, 120, 720, . . .

4.
5
2
,
5
2
,
15
8
,
5
4
,
25
32

, . . .

Notes:
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8.1 Sequences

SÊ½çã®ÊÄ Weshould first note that there is never exactly one funcƟon that
describes a finite set of numbers as a sequence. There are many sequences
that start with 2, then 5, as our first example does. We are looking for a simple
formula that describes the terms given, knowing there is possiblymore than one
answer.

1. Note how each term is 3 more than the previous one. This implies a linear
funcƟon would be appropriate: a(n) = an = 3n+b for some appropriate
value of b. As we want a1 = 2, we set b = −1. Thus an = 3n− 1.

2. First noƟce how the sign changes from term to term. This is most com-
monly accomplished bymulƟplying the terms by either (−1)n or (−1)n+1.
Using (−1)n mulƟplies the odd terms by (−1); using (−1)n+1 mulƟplies
the even terms by (−1). As this sequence has negaƟve even terms, we
will mulƟply by (−1)n+1.

AŌer this, we might feel a bit stuck as to how to proceed. At this point,
we are just looking for a paƩern of some sort: what do the numbers 2, 5,
10, 17, etc., have in common? There are many correct answers, but the
one that we’ll use here is that each is one more than a perfect square.
That is, 2 = 12 + 1, 5 = 22 + 1, 10 = 32 + 1, etc. Thus our formula is
an = (−1)n+1(n2 + 1).

3. One who is familiar with the factorial funcƟon will readily recognize these
numbers. They are 0!, 1!, 2!, 3!, etc. Since our sequences start with n = 1,
we cannot write an = n!, for this misses the 0! term. Instead, we shiŌ by
1, and write an = (n− 1)!.

4. This one may appear difficult, especially as the first two terms are the
same, but a liƩle “sleuthing” will help. NoƟce how the terms in the nu-
merator are always mulƟples of 5, and the terms in the denominator are
always powers of 2. Does something as simple as an = 5n

2n work?

When n = 1, we see that we indeed get 5/2 as desired. When n = 2,
we get 10/4 = 5/2. Further checking shows that this formula indeed
matches the other terms of the sequence.

A common mathemaƟcal endeavor is to create a new mathemaƟcal object
(for instance, a sequence) and then apply previously knownmathemaƟcs to the
new object. We do so here. The fundamental concept of calculus is the limit, so
we will invesƟgate what it means to find the limit of a sequence.

Notes:
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Chapter 8 Sequences and Series

DefiniƟon 8.1.2 Limit of a Sequence, Convergent, Divergent

Let {an} be a sequence and let L be a real number. Given any ε > 0, if
anm can be found such that |an − L| < ε for all n > m, then we say the
limit of {an}, as n approaches infinity, is L, denoted

lim
n→∞

an = L.

If lim
n→∞

an exists, we say the sequence converges; otherwise, the se-
quence diverges.

This definiƟon states, informally, that if the limit of a sequence is L, then if
you go far enough out along the sequence, all subsequent terms will be really
close to L. Of course, the terms “far enough” and “really close” are subjecƟve
terms, but hopefully the intent is clear.

This definiƟon is reminiscent of the ε–δ proofs of Chapter 1. In that chapter
we developed other tools to evaluate limits apart from the formal definiƟon; we
do so here as well.

Theorem 8.1.1 Limit of a Sequence

Let {an} be a sequence and let f(x) be a funcƟonwhose domain contains
the posiƟve real numbers where f(n) = an for all n in N.

If lim
x→∞

f(x) = L, then lim
n→∞

an = L.

Theorem 8.1.1 allows us, in certain cases, to apply the tools developed in
Chapter 1 to limits of sequences. Note two things not stated by the theorem:

1. If lim
x→∞

f(x) does not exist, we cannot conclude that lim
n→∞

an does not exist.
It may, or may not, exist. For instance, we can define a sequence {an} =
{cos(2πn)}. Let f(x) = cos(2πx). Since the cosine funcƟon oscillates
over the real numbers, the limit lim

x→∞
f(x) does not exist.

However, for every posiƟve integer n, cos(2πn) = 1, so lim
n→∞

an = 1.

2. If we cannot find a funcƟon f(x) whose domain contains the posiƟve real
numbers where f(n) = an for all n inN, we cannot conclude lim

n→∞
an does

not exist. It may, or may not, exist.

Notes:
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Figure 8.1.2: ScaƩer plots of the se-
quences in Example 8.1.3.

8.1 Sequences

Example 8.1.3 Determining convergence/divergence of a sequence
Determine the convergence or divergence of the following sequences.

1. {an} =

{
3n2 − 2n+ 1
n2 − 1000

}
2. {an} = {cos n} 3. {an} =

{
(−1)n

n

}

SÊ½çã®ÊÄ

1. Using Theorem1.6.1, we can state that lim
x→∞

3x2 − 2x+ 1
x2 − 1000

= 3. (We could
have also directly applied l’Hôpital’s Rule.) Thus the sequence {an} con-
verges, and its limit is 3. A scaƩer plot of every 5 values of an is given in
Figure 8.1.2 (a). The values of an vary widely near n = 30, ranging from
about−73 to 125, but as n grows, the values approach 3.

2. The limit lim
x→∞

cos x does not exist as cos x oscillates (and takes on every
value in [−1, 1] infinitely many Ɵmes). Thus we cannot apply Theorem
8.1.1.

The fact that the cosine funcƟon oscillates strongly hints that cos n, when
n is restricted toN, will also oscillate. Figure 8.1.2 (b), where the sequence
is ploƩed, implies that this is true. Because only discrete values of cosine
are ploƩed, it does not bear strong resemblance to the familiar cosine
wave. The proof of the following statement is beyond the scope of this
text, but it is true: there are infinitely many integers n that are arbitrarily
(i.e., very) close to an even mulƟple of π, so that cos n ≈ 1. Similarly,
there are infinitely many integers m that are arbitrarily close to an odd
mulƟple of π, so that cosm ≈ −1. As the sequence takes on values near
1 and−1 infinitely many Ɵmes, we conclude that lim

n→∞
an does not exist.

3. We cannot actually apply Theorem 8.1.1 here, as the funcƟon f(x) =

(−1)x/x is not well defined. (What does (−1)
√
2 mean? In actuality, there

is an answer, but it involves complex analysis, beyond the scope of this
text.)

Instead, we invoke the definiƟon of the limit of a sequence. By looking at
the plot in Figure 8.1.2 (c), we would like to conclude that the sequence
converges to L = 0. Let ε > 0 be given. We can find a natural numberm

Notes:
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such that 1/m < ε. Let n > m, and consider |an − L|:

|an − L| =
∣∣∣∣ (−1)n

n
− 0
∣∣∣∣

=
1
n

<
1
m

(since n > m)

< ε.

We have shown that by pickingm large enough, we can ensure that an is
arbitrarily close to our limit, L = 0, hence by the definiƟon of the limit of
a sequence, we can say lim

n→∞
an = 0.

In the previous example we used the definiƟon of the limit of a sequence to
determine the convergence of a sequence as we could not apply Theorem 8.1.1.
In general, we like to avoid invoking the definiƟon of a limit, and the following
theorem gives us tool that we could use in that example instead.

Theorem 8.1.2 Absolute Value Theorem

Let {an} be a sequence. If lim
n→∞

|an| = 0, then lim
n→∞

an = 0

Example 8.1.4 Determining the convergence/divergence of a sequence
Determine the convergence or divergence of the following sequences.

1. {an} =

{
(−1)n

n

}
2. {an} =

{
(−1)n(n+ 1)

n

}
SÊ½çã®ÊÄ

1. This appeared in Example 8.1.3. We want to apply Theorem 8.1.2, so con-
sider the limit of {|an|}:

lim
n→∞

|an| = lim
n→∞

∣∣∣∣ (−1)n

n

∣∣∣∣
= lim

n→∞

1
n

= 0.

Since this limit is 0, we can apply Theorem 8.1.2 and state that lim
n→∞

an =
0.

Notes:
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Figure 8.1.3: A plot of a sequence in Ex-
ample 8.1.4, part 2.

8.1 Sequences

2. Because of the alternaƟng nature of this sequence (i.e., every other term

ismulƟplied by−1), we cannot simply look at the limit lim
x→∞

(−1)x(x+ 1)
x

.
We can try to apply the techniques of Theorem 8.1.2:

lim
n→∞

|an| = lim
n→∞

∣∣∣∣ (−1)n(n+ 1)
n

∣∣∣∣
= lim

n→∞

n+ 1
n

= 1.

Wehave concluded thatwhenwe ignore the alternaƟng sign, the sequence
approaches 1. This means we cannot apply Theorem 8.1.2; it states the
the limit must be 0 in order to conclude anything.
Since we know that the signs of the terms alternate and we know that
the limit of |an| is 1, we know that as n approaches infinity, the terms
will alternate between values close to 1 and −1, meaning the sequence
diverges. A plot of this sequence is given in Figure 8.1.3.

We conƟnue our study of the limits of sequences by considering some of the
properƟes of these limits.

Theorem 8.1.3 ProperƟes of the Limits of Sequences

Let {an} and {bn} be sequences such that lim
n→∞

an = L, lim
n→∞

bn = K, and
let c be a real number.

1. lim
n→∞

(an ± bn) = L± K

2. lim
n→∞

(an · bn) = L · K

3. lim
n→∞

(an/bn) = L/K, K ̸= 0

4. lim
n→∞

c · an = c · L

Example 8.1.5 Applying properƟes of limits of sequences
Let the following sequences, and their limits, be given:

• {an} =

{
n+ 1
n2

}
, and lim

n→∞
an = 0;

• {bn} =

{(
1+

1
n

)n}
, and lim

n→∞
bn = e; and

• {cn} =
{
n · sin(5/n)

}
, and lim

n→∞
cn = 5.

Notes:
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Evaluate the following limits.

1. lim
n→∞

(an + bn) 2. lim
n→∞

(bn · cn) 3. lim
n→∞

(1000 · an)

SÊ½çã®ÊÄ We will use Theorem 8.1.3 to answer each of these.

1. Since lim
n→∞

an = 0 and lim
n→∞

bn = e, we conclude that lim
n→∞

(an + bn) =

0+ e = e. So even though we are adding something to each term of the
sequence bn, we are adding something so small that the final limit is the
same as before.

2. Since lim
n→∞

bn = e and lim
n→∞

cn = 5, we conclude that lim
n→∞

(bn · cn) =

e · 5 = 5e.

3. Since lim
n→∞

an = 0, we have lim
n→∞

1000an = 1000 · 0 = 0. It does not
maƩer that wemulƟply each term by 1000; the sequence sƟll approaches
0. (It just takes longer to get close to 0.)

There is more to learn about sequences than just their limits. We will also
study their range and the relaƟonships terms have with the terms that follow.
We start with some definiƟons describing properƟes of the range.

DefiniƟon 8.1.3 Bounded and Unbounded Sequences

A sequence {an} is said to be bounded if there exist real numbers m
andM such thatm < an < M for all n in N.

A sequence {an} is said to be unbounded if it is not bounded.

A sequence {an} is said to be bounded above if there exists an M such
that an < M for all n in N; it is bounded below if there exists anm such
thatm < an for all n in N.

It follows from this definiƟon that an unbounded sequencemay be bounded
above or bounded below; a sequence that is both bounded above and below is
simply a bounded sequence.

Example 8.1.6 Determining boundedness of sequences
Determine the boundedness of the following sequences.

1. {an} =

{
1
n

}
2. {an} = {2n}

Notes:
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Figure 8.1.4: A plot of {an} = {1/n} and
{an} = {2n} from Example 8.1.6.

Note: Keep in mind what Theorem 8.1.4
does not say. It does not say that
bounded sequences must converge, nor
does it say that if a sequence does not
converge, it is not bounded.

8.1 Sequences

SÊ½çã®ÊÄ

1. The terms of this sequence are always posiƟve but are decreasing, so we
have 0 < an < 2 for all n. Thus this sequence is bounded. Figure 8.1.4(a)
illustrates this.

2. The terms of this sequence obviously grow without bound. However, it is
also true that these terms are all posiƟve, meaning 0 < an. Thus we can
say the sequence is unbounded, but also bounded below. Figure 8.1.4(b)
illustrates this.

The previous example produces some interesƟng concepts. First, we can
recognize that the sequence {1/n} converges to 0. This says, informally, that
“most” of the terms of the sequence are “really close” to 0. This implies that the
sequence is bounded, using the following logic. First, “most” terms are near 0,
so we could find some sort of bound on these terms (using DefiniƟon 8.1.2, the
bound is ε). That leaves a “few” terms that are not near 0 (i.e., a finite number
of terms). A finite list of numbers is always bounded.

This logic implies that if a sequence converges, it must be bounded. This is
indeed true, as stated by the following theorem.

Theorem 8.1.4 Convergent Sequences are Bounded

Let {an} be a convergent sequence. Then {an} is bounded.

In Example 8.1.5 we saw the sequence {bn} =
{
(1+ 1/n)n

}
, where it was

stated that lim
n→∞

bn = e. (Note that this is simply restaƟng part of Theorem
1.3.5.) Even though it may be difficult to intuiƟvely grasp the behavior of this
sequence, we know immediately that it is bounded.

Another interesƟng concept to come out of Example 8.1.6 again involves
the sequence {1/n}. We stated, without proof, that the terms of the sequence
were decreasing. That is, that an+1 < an for all n. (This is easy to show. Clearly
n < n + 1. Taking reciprocals flips the inequality: 1/n > 1/(n + 1). This is the
same as an > an+1.) Sequences that either steadily increase or decrease are
important, so we give this property a name.

Notes:
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Note: It is someƟmes useful to call
a monotonically increasing sequence
strictly increasing if an < an+1 for all
n; i.e, we remove the possibility that
subsequent terms are equal.
A similar statement holds for strictly de-
creasing.
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Figure 8.1.5: A plot of {an} = {(n +
1)/n} in Example 8.1.7.

Chapter 8 Sequences and Series

DefiniƟon 8.1.4 Monotonic Sequences

1. A sequence {an} is monotonically increasing if an ≤ an+1 for all
n, i.e.,

a1 ≤ a2 ≤ a3 ≤ · · · an ≤ an+1 · · ·

2. A sequence {an} is monotonically decreasing if an ≥ an+1 for all
n, i.e.,

a1 ≥ a2 ≥ a3 ≥ · · · an ≥ an+1 · · ·

3. A sequence ismonotonic if it is monotonically increasing ormono-
tonically decreasing.

Example 8.1.7 Determining monotonicity
Determine the monotonicity of the following sequences.

1. {an} =

{
n+ 1
n

}

2. {an} =

{
n2 + 1
n+ 1

}
3. {an} =

{
n2 − 9

n2 − 10n+ 26

}

4. {an} =

{
n2

n!

}

SÊ½çã®ÊÄ In each of the following, wewill examine an+1−an. If an+1−
an ≥ 0, we conclude that an ≤ an+1 and hence the sequence is increasing. If
an+1 − an ≤ 0, we conclude that an ≥ an+1 and the sequence is decreasing. Of
course, a sequence need not be monotonic and perhaps neither of the above
will apply.

We also give a scaƩer plot of each sequence. These are useful as they sug-
gest a paƩern of monotonicity, but analyƟc work should be done to confirm a
graphical trend.

1. an+1 − an =
n+ 2
n+ 1

− n+ 1
n

=
(n+ 2)(n)− (n+ 1)2

(n+ 1)n

=
−1

n(n+ 1)
< 0 for all n.

Since an+1−an < 0 for all n, we conclude that the sequence is decreasing.

Notes:
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Figure 8.1.6: Plots of sequences in Exam-
ple 8.1.7.

8.1 Sequences

2. an+1 − an =
(n+ 1)2 + 1

n+ 2
− n2 + 1

n+ 1

=

(
(n+ 1)2 + 1

)
(n+ 1)− (n2 + 1)(n+ 2)

(n+ 1)(n+ 2)

=
n2 + 4n+ 1

(n+ 1)(n+ 2)
> 0 for all n.

Since an+1− an > 0 for all n, we conclude the sequence is increasing; see
Figure 8.1.6(a).

3. We can clearly see in Figure 8.1.6(b), where the sequence is ploƩed, that
it is not monotonic. However, it does seem that aŌer the first 4 terms
it is decreasing. To understand why, perform the same analysis as done
before:

an+1 − an =
(n+ 1)2 − 9

(n+ 1)2 − 10(n+ 1) + 26
− n2 − 9

n2 − 10n+ 26

=
n2 + 2n− 8
n2 − 8n+ 17

− n2 − 9
n2 − 10n+ 26

=
(n2 + 2n− 8)(n2 − 10n+ 26)− (n2 − 9)(n2 − 8n+ 17)

(n2 − 8n+ 17)(n2 − 10n+ 26)

=
−10n2 + 60n− 55

(n2 − 8n+ 17)(n2 − 10n+ 26)
.

We want to know when this is greater than, or less than, 0. The denomi-
nator is always posiƟve, therefore we are only concerned with the numer-
ator. For small values of n, the numerator is posiƟve. As n grows large,
the numerator is dominated by −10n2, meaning the enƟre fracƟon will
be negaƟve; i.e., for large enough n, an+1 − an < 0. Using the quadraƟc
formula we can determine that the numerator is negaƟve for n ≥ 5.
In short, the sequence is simply not monotonic, though it is useful to note
that for n ≥ 5, the sequence is monotonically decreasing.

4. Again, the plot in Figure 8.1.6(c) shows that the sequence is not mono-
tonic, but it suggests that it is monotonically decreasing aŌer the first
term. We perform the usual analysis to confirm this.

an+1 − an =
(n+ 1)2

(n+ 1)!
− n2

n!

=
(n+ 1)2 − n2(n+ 1)

(n+ 1)!

=
−n3 + 2n+ 1

(n+ 1)!

Notes:
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Chapter 8 Sequences and Series

When n = 1, the above expression is > 0; for n ≥ 2, the above expres-
sion is < 0. Thus this sequence is not monotonic, but it is monotonically
decreasing aŌer the first term.

Knowing that a sequence is monotonic can be useful. Consider, for example,
a sequence that is monotonically decreasing and is bounded below. We know
the sequence is always geƫng smaller, but that there is a bound to how small it
can become. This is enough to prove that the sequence will converge, as stated
in the following theorem.

Theorem 8.1.5 Bounded Monotonic Sequences are Convergent

1. Let {an} be a monotonically increasing sequence that is bounded
above. Then {an} converges.

2. Let {an} be a monotonically decreasing sequence that is bounded
below. Then {an} converges.

Consider once again the sequence {an} = {1/n}. It is easy to show it is
monotonically decreasing and that it is always posiƟve (i.e., bounded below by
0). Therefore we can conclude by Theorem 8.1.5 that the sequence converges.
We already knew this by other means, but in the following secƟon this theorem
will become very useful.

We can replace Theorem 8.1.5 with the statement “Let {an} be a bounded,
monotonic sequence. Then {an} converges; i.e., lim

n→∞
an exists.” We leave it to

the reader in the exercises to show the theorem and the above statement are
equivalent.

Sequences are a great source of mathemaƟcal inquiry. The On-Line Ency-
clopedia of Integer Sequences (http://oeis.org) contains thousands of se-
quences and their formulae. (As of this wriƟng, there are 297,573 sequences
in the database.) Perusing this database quickly demonstrates that a single se-
quence can represent several different “real life” phenomena.

InteresƟng as this is, our interest actually lies elsewhere. We are more in-
terested in the sum of a sequence. That is, given a sequence {an}, we are very
interested in a1+a2+a3+ · · · . Of course, one might immediately counter with
“Doesn’t this just add up to ‘infinity’?” Many Ɵmes, yes, but there are many im-
portant cases where the answer is no. This is the topic of series, which we begin
to invesƟgate in the next secƟon.

Notes:
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Exercises 8.1
Terms and Concepts
1. Use your own words to define a sequence.

2. The domain of a sequence is the numbers.

3. Use your own words to describe the range of a sequence.

4. Describe what it means for a sequence to be bounded.

Problems
In Exercises 5 – 8, give the first five terms of the given se-
quence.

5. {an} =

{
4n

(n+ 1)!

}

6. {bn} =

{(
−3
2

)n}

7. {cn} =

{
− nn+1

n+ 2

}

8. {dn} =

{
1√
5

((
1+

√
5

2

)n

−
(
1−

√
5

2

)n
)}

In Exercises 9 – 12, determine the nth term of the given se-
quence.

9. 4, 7, 10, 13, 16, . . .

10. 3, −3
2
,
3
4
, −3

8
, . . .

11. 10, 20, 40, 80, 160, . . .

12. 1, 1, 1
2
,
1
6
,

1
24

,
1

120
, . . .

In Exercises 13 – 16, use the following informaƟon to deter-
mine the limit of the given sequences.

• {an} =

{
2n − 20

2n

}
; lim

n→∞
an = 1

• {bn} =

{(
1+ 2

n

)n}
; lim

n→∞
bn = e2

• {cn} = {sin(3/n)}; lim
n→∞

cn = 0

13. {an} =

{
2n − 20
7 · 2n

}
14. {an} = {3bn − an}

15. {an} =

{
sin(3/n)

(
1+ 2

n

)n}

16. {an} =

{(
1+ 2

n

)2n
}

In Exercises 17 – 28, determine whether the sequence con-
verges or diverges. If convergent, give the limit of the se-
quence.

17. {an} =

{
(−1)n n

n+ 1

}

18. {an} =

{
4n2 − n+ 5
3n2 + 1

}

19. {an} =

{
4n

5n

}

20. {an} =

{
n− 1
n

− n
n− 1

}
, n ≥ 2

21. {an} = {ln(n)}

22. {an} =

{
3n√
n2 + 1

}

23. {an} =

{(
1+ 1

n

)n}

24. {an} =

{
5− 1

n

}

25. {an} =

{
(−1)n+1

n

}

26. {an} =

{
1.1n

n

}

27. {an} =

{
2n

n+ 1

}

28. {an} =

{
(−1)n n2

2n − 1

}
In Exercises 29 – 34, determine whether the sequence is
bounded, bounded above, bounded below, or none of the
above.

29. {an} = {sin n}

30. {an} = {tan n}

31. {an} =

{
(−1)n 3n− 1

n

}

32. {an} =

{
3n2 − 1

n

}
33. {an} = {n cos n}
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34. {an} = {2n − n!}

In Exercises 35 – 38, determine whether the sequence is
monotonically increasing or decreasing. If it is not, determine
if there is anm such that it is monotonic for all n ≥ m.

35. {an} =

{
n

n+ 2

}

36. {an} =

{
n2 − 6n+ 9

n

}

37. {an} =

{
(−1)n 1

n3

}

38. {an} =

{
n2

2n

}
Exercises 39 – 42 explore further the theory of sequences.

39. Prove Theorem 8.1.2; that is, use the definiƟon of the limit
of a sequence to show that if lim

n→∞
|an| = 0, then lim

n→∞
an =

0.

40. Let {an} and {bn} be sequences such that lim
n→∞

an = L and
lim

n→∞
bn = K.

(a) Show that if an < bn for all n, then L ≤ K.

(b) Give an example where L = K.

41. Prove the Squeeze Theorem for sequences: Let {an} and
{bn} be such that lim

n→∞
an = L and lim

n→∞
bn = L, and let

{cn} be such that an ≤ cn ≤ bn for all n. Then lim
n→∞

cn = L

42. Prove the statement “Let {an} be a bounded, monotonic
sequence. Then {an} converges; i.e., lim

n→∞
an exists.” is

equivalent to Theorem 8.1.5. That is,

(a) Show that if Theorem 8.1.5 is true, then above state-
ment is true, and

(b) Show that if the above statement is true, then Theo-
rem 8.1.5 is true.
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8.2 Infinite Series

8.2 Infinite Series
Given the sequence {an} = {1/2n} = 1/2, 1/4, 1/8, . . ., consider the follow-
ing sums:

a1 = 1/2 = 1/2
a1 + a2 = 1/2+ 1/4 = 3/4

a1 + a2 + a3 = 1/2+ 1/4+ 1/8 = 7/8
a1 + a2 + a3 + a4 = 1/2+ 1/4+ 1/8+ 1/16 = 15/16

In general, we can show that

a1 + a2 + a3 + · · ·+ an =
2n − 1
2n

= 1− 1
2n

.

Let Sn be the sum of the first n terms of the sequence {1/2n}. From the above,
we see that S1 = 1/2, S2 = 3/4, etc. Our formula at the end shows that Sn =
1− 1/2n.

Now consider the following limit: lim
n→∞

Sn = lim
n→∞

(
1−1/2n

)
= 1. This limit

can be interpreted as saying something amazing: the sum of all the terms of the
sequence {1/2n} is 1.

This example illustrates some interesƟng concepts that we explore in this
secƟon. We begin this exploraƟon with some definiƟons.

DefiniƟon 8.2.1 Infinite Series, nth ParƟal Sums, Convergence,
Divergence

Let {an} be a sequence.

1. The sum
∞∑
n=1

an is an infinite series (or, simply series).

2. Let Sn =

n∑
i=1

ai ; the sequence {Sn} is the sequence of nth parƟal

sums of {an}.

3. If the sequence {Sn} converges to L, we say the series
∞∑
n=1

an con-

verges to L, and we write
∞∑
n=1

an = L.

4. If the sequence {Sn} diverges, the series
∞∑
n=1

an diverges.

Notes:
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Using our new terminology, we can state that the series
∞∑
n=1

1/2n converges,

and
∞∑
n=1

1/2n = 1.

We will explore a variety of series in this secƟon. We start with two series
that diverge, showing how we might discern divergence.

Example 8.2.1 Showing series diverge

1. Let {an} = {n2}. Show
∞∑
n=1

an diverges.

2. Let {bn} = {(−1)n+1}. Show
∞∑
n=1

bn diverges.

SÊ½çã®ÊÄ

1. Consider Sn, the nth parƟal sum.

Sn = a1 + a2 + a3 + · · ·+ an
= 12 + 22 + 32 · · ·+ n2.

By Theorem 5.3.1, this is

=
n(n+ 1)(2n+ 1)

6
.

Since lim
n→∞

Sn = ∞, we conclude that the series
∞∑
n=1

n2 diverges. It is

instrucƟve to write
∞∑
n=1

n2 = ∞ for this tells us how the series diverges: it

grows without bound.

A scaƩer plot of the sequences {an} and {Sn} is given in Figure 8.2.1(a).
The terms of {an} are growing, so the terms of the parƟal sums {Sn} are
growing even faster, illustraƟng that the series diverges.

Notes:
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Figure 8.2.1: ScaƩer plots relaƟng to Ex-
ample 8.2.1.

8.2 Infinite Series

2. The sequence {bn} starts with 1, −1, 1, −1, . . .. Consider some of the
parƟal sums Sn of {bn}:

S1 = 1
S2 = 0
S3 = 1
S4 = 0

This paƩern repeats; we find that Sn =

{
1 n is odd
0 n is even . As {Sn} oscil-

lates, repeaƟng 1, 0, 1, 0, . . ., we conclude that lim
n→∞

Sn does not exist,

hence
∞∑
n=1

(−1)n+1 diverges.

A scaƩer plot of the sequence {bn} and the parƟal sums {Sn} is given in
Figure 8.2.1(b). When n is odd, bn = Sn so the marks for bn are drawn
oversized to show they coincide.

While it is important to recognize when a series diverges, we are generally
more interested in the series that converge. In this secƟon we will demonstrate
a few general techniques for determining convergence; later secƟons will delve
deeper into this topic.

Geometric Series

One important type of series is a geometric series.

DefiniƟon 8.2.2 Geometric Series

A geometric series is a series of the form
∞∑
n=0

rn = 1+ r+ r2 + r3 + · · ·+ rn + · · ·

Note that the index starts at n = 0, not n = 1.

We started this secƟon with a geometric series, although we dropped the
first term of 1. One reason geometric series are important is that they have nice
convergence properƟes.

Notes:
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Chapter 8 Sequences and Series

Theorem 8.2.1 Geometric Series Test

Consider the geometric series
∞∑
n=0

rn.

1. The nth parƟal sum is: Sn =
1− r n+1

1− r
, r ̸= 1.

2. The series converges if, and only if, |r| < 1. When |r| < 1,

∞∑
n=0

rn =
1

1− r
.

According to Theorem 8.2.1, the series

∞∑
n=0

1
2n

=

∞∑
n=0

(
1
2

)2

= 1+
1
2
+

1
4
+ · · ·

converges as r = 1/2, and
∞∑
n=0

1
2n

=
1

1− 1/2
= 2. This concurs with our intro-

ductory example; while there we got a sum of 1, we skipped the first term of 1.

Example 8.2.2 Exploring geometric series
Check the convergence of the following series. If the series converges, find its
sum.

1.
∞∑
n=2

(
3
4

)n

2.
∞∑
n=0

(
−1
2

)n

3.
∞∑
n=0

3n

SÊ½çã®ÊÄ

1. Since r = 3/4 < 1, this series converges. By Theorem 8.2.1, we have that

∞∑
n=0

(
3
4

)n

=
1

1− 3/4
= 4.

However, note the subscript of the summaƟon in the given series: we are
to start with n = 2. Therefore we subtract off the first two terms, giving:

∞∑
n=2

(
3
4

)n

= 4− 1− 3
4
=

9
4
.

This is illustrated in Figure 8.2.2.

Notes:
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Figure 8.2.3: ScaƩer plots relaƟng to the
series in Example 8.2.2.

Note: Theorem 8.2.2 assumes that an +
b ̸= 0 for all n. If an + b = 0 for
somen, then of course the series does not
converge regardless of p as not all of the
terms of the sequence are defined.

8.2 Infinite Series

2. Since |r| = 1/2 < 1, this series converges, and by Theorem 8.2.1,

∞∑
n=0

(
−1
2

)n

=
1

1− (−1/2)
=

2
3
.

The parƟal sums of this series are ploƩed in Figure 8.2.3(a). Note how
the parƟal sums are not purely increasing as some of the terms of the
sequence {(−1/2)n} are negaƟve.

3. Since r > 1, the series diverges. (This makes “common sense”; we expect
the sum

1+ 3+ 9+ 27+ 81+ 243+ · · ·

to diverge.) This is illustrated in Figure 8.2.3(b).

p–Series

Another important type of series is the p-series.

DefiniƟon 8.2.3 p–Series, General p–Series

1. A p–series is a series of the form
∞∑
n=1

1
np

, where p > 0.

2. A general p–series is a series of the form
∞∑
n=1

1
(an+ b)p

, where p > 0 and a, b are real numbers.

Like geometric series, one of the nice things about p–series is that they have
easy to determine convergence properƟes.

Theorem 8.2.2 p–Series Test

A general p–series
∞∑
n=1

1
(an+ b)p

will converge if, and only if, p > 1.

Notes:

423



Chapter 8 Sequences and Series

Example 8.2.3 Determining convergence of series
Determine the convergence of the following series.

1.
∞∑
n=1

1
n

2.
∞∑
n=1

1
n2

3.
∞∑
n=1

1√
n

4.
∞∑
n=1

(−1)n

n

5.
∞∑

n=11

1
( 12n− 5)3

6.
∞∑
n=1

1
2n

SÊ½çã®ÊÄ

1. This is a p–series with p = 1. By Theorem 8.2.2, this series diverges.

This series is a famous series, called the Harmonic Series, so named be-
cause of its relaƟonship to harmonics in the study of music and sound.

2. This is a p–series with p = 2. By Theorem 8.2.2, it converges. Note that
the theorem does not give a formula by which we can determine what
the series converges to; we just know it converges. A famous, unexpected
result is that this series converges to π2/6.

3. This is a p–series with p = 1/2; the theorem states that it diverges.

4. This is not a p–series; the definiƟon does not allow for alternaƟng signs.
Therefore we cannot apply Theorem 8.2.2. (Another famous result states
that this series, the AlternaƟng Harmonic Series, converges to ln 2.)

5. This is a general p–series with p = 3, therefore it converges.

6. This is not a p–series, but a geometric series with r = 1/2. It converges.

Later secƟons will provide tests by which we can determine whether or not
a given series converges. This, in general, is much easier than determiningwhat
a given series converges to. There are many cases, though, where the sum can
be determined.

Example 8.2.4 Telescoping series

Evaluate the sum
∞∑
n=1

(
1
n
− 1

n+ 1

)
.

SÊ½çã®ÊÄ It will help to write down some of the first few parƟal sums

Notes:
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8.2 Infinite Series

of this series.

S1 =
1
1
− 1

2
= 1− 1

2

S2 =
(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
= 1− 1

3

S3 =
(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
+

(
1
3
− 1

4

)
= 1− 1

4

S4 =
(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
+

(
1
3
− 1

4

)
+

(
1
4
− 1

5

)
= 1− 1

5

Note how most of the terms in each parƟal sum are canceled out! In general,
we see that Sn = 1 − 1

n+ 1
. The sequence {Sn} converges, as lim

n→∞
Sn =

lim
n→∞

(
1− 1

n+ 1

)
= 1, and so we conclude that

∞∑
n=1

(
1
n
− 1

n+ 1

)
= 1. Par-

Ɵal sums of the series are ploƩed in Figure 8.2.4.

The series in Example 8.2.4 is an example of a telescoping series. Informally,
a telescoping series is one in which most terms cancel with preceding or follow-
ing terms, reducing the number of terms in each parƟal sum. The parƟal sum Sn
did not contain n terms, but rather just two: 1 and 1/(n+ 1).

When possible, seek away towrite an explicit formula for the nth parƟal sum
Sn. This makes evaluaƟng the limit lim

n→∞
Sn much more approachable. We do so

in the next example.

Example 8.2.5 EvaluaƟng series
Evaluate each of the following infinite series.

1.
∞∑
n=1

2
n2 + 2n

2.
∞∑
n=1

ln
(
n+ 1
n

)

SÊ½çã®ÊÄ

1. We can decompose the fracƟon 2/(n2 + 2n) as

2
n2 + 2n

=
1
n
− 1

n+ 2
.

(See SecƟon 6.5, ParƟal FracƟonDecomposiƟon, to recall how this is done,
if necessary.)

Notes:
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Chapter 8 Sequences and Series

Expressing the terms of {Sn} is now more instrucƟve:

S1 = 1−
1
3

= 1−
1
3

S2 =

(
1−

1
3

)
+

(
1
2
−

1
4

)
= 1+

1
2
−

1
3
−

1
4

S3 =

(
1−

1
3

)
+

(
1
2
−

1
4

)
+

(
1
3
−

1
5

)
= 1+

1
2
−

1
4
−

1
5

S4 =

(
1−

1
3

)
+

(
1
2
−

1
4

)
+

(
1
3
−

1
5

)
+

(
1
4
−

1
6

)
= 1+

1
2
−

1
5
−

1
6

S5 =

(
1−

1
3

)
+

(
1
2
−

1
4

)
+

(
1
3
−

1
5

)
+

(
1
4
−

1
6

)
+

(
1
5
−

1
7

)
= 1+

1
2
−

1
6
−

1
7

We again have a telescoping series. In each parƟal sum, most of the terms
cancel and we obtain the formula Sn = 1 +

1
2
− 1

n+ 1
− 1

n+ 2
. Taking

limits allows us to determine the convergence of the series:

lim
n→∞

Sn = lim
n→∞

(
1+

1
2
− 1

n+ 1
− 1

n+ 2

)
=

3
2
, so

∞∑
n=1

1
n2 + 2n

=
3
2
.

This is illustrated in Figure 8.2.5(a).

2. We begin by wriƟng the first few parƟal sums of the series:

S1 = ln (2)

S2 = ln (2) + ln
(
3
2

)
S3 = ln (2) + ln

(
3
2

)
+ ln

(
4
3

)
S4 = ln (2) + ln

(
3
2

)
+ ln

(
4
3

)
+ ln

(
5
4

)
At first, this does not seem helpful, but recall the logarithmic idenƟty:
ln x+ ln y = ln(xy). Applying this to S4 gives:

S4 = ln (2)+ ln
(
3
2

)
+ ln

(
4
3

)
+ ln

(
5
4

)
= ln

(
2
1
· 3
2
· 4
3
· 5
4

)
= ln (5) .

We can conclude that {Sn} =
{
ln(n+ 1)

}
. This sequence does not con-

verge, as lim
n→∞

Sn = ∞. Therefore
∞∑
n=1

ln
(
n+ 1
n

)
= ∞; the series di-

verges. Note in Figure 8.2.5(b) how the sequence of parƟal sums grows

Notes:
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8.2 Infinite Series

slowly; aŌer 100 terms, it is not yet over 5. Graphically we may be fooled
into thinking the series converges, but our analysis above shows that it
does not.

We are learning about a new mathemaƟcal object, the series. As done be-
fore, we apply “old” mathemaƟcs to this new topic.

Theorem 8.2.3 ProperƟes of Infinite Series

Let
∞∑
n=1

an = L,
∞∑
n=1

bn = K, and let c be a constant.

1. Constant MulƟple Rule:
∞∑
n=1

c · an = c ·
∞∑
n=1

an = c · L.

2. Sum/Difference Rule:
∞∑
n=1

(
an ± bn

)
=

∞∑
n=1

an ±
∞∑
n=1

bn = L± K.

Before using this theorem, we provide a few “famous” series.

Key Idea 8.2.1 Important Series

1.
∞∑
n=0

1
n!

= e. (Note that the index starts with n = 0.)

2.
∞∑
n=1

1
n2

=
π2

6
.

3.
∞∑
n=1

(−1)n+1

n2
=

π2

12
.

4.
∞∑
n=0

(−1)n

2n+ 1
=

π

4
.

5.
∞∑
n=1

1
n

diverges. (This is called the Harmonic Series.)

6.
∞∑
n=1

(−1)n+1

n
= ln 2. (This is called the AlternaƟng Harmonic Series.)

Notes:
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Figure 8.2.6: ScaƩer plots relaƟng to the
series in Example 8.2.6.

Chapter 8 Sequences and Series

Example 8.2.6 EvaluaƟng series
Evaluate the given series.

1.
∞∑
n=1

(−1)n+1(n2 − n
)

n3
2.

∞∑
n=1

1000
n!

3.
1
16

+
1
25

+
1
36

+
1
49

+ · · ·

SÊ½çã®ÊÄ

1. We start by using algebra to break the series apart:

∞∑
n=1

(−1)n+1(n2 − n
)

n3
=

∞∑
n=1

(
(−1)n+1n2

n3
− (−1)n+1n

n3

)

=

∞∑
n=1

(−1)n+1

n
−

∞∑
n=1

(−1)n+1

n2

= ln(2)− π2

12
≈ −0.1293.

This is illustrated in Figure 8.2.6(a).

2. This looks very similar to the series that involves e in Key Idea 8.2.1. Note,
however, that the series given in this example starts with n = 1 and not
n = 0. The first term of the series in the Key Idea is 1/0! = 1, so we will
subtract this from our result below:

∞∑
n=1

1000
n!

= 1000 ·
∞∑
n=1

1
n!

= 1000 · (e− 1) ≈ 1718.28.

This is illustrated in Figure 8.2.6(b). The graph shows how this parƟcular
series converges very rapidly.

3. The denominators in each term are perfect squares; we are adding
∞∑
n=4

1
n2

(note we start with n = 4, not n = 1). This series will converge. Using the

Notes:
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8.2 Infinite Series

formula from Key Idea 8.2.1, we have the following:
∞∑
n=1

1
n2

=

3∑
n=1

1
n2

+

∞∑
n=4

1
n2

∞∑
n=1

1
n2

−
3∑

n=1

1
n2

=

∞∑
n=4

1
n2

π2

6
−
(
1
1
+

1
4
+

1
9

)
=

∞∑
n=4

1
n2

π2

6
− 49

36
=

∞∑
n=4

1
n2

0.2838 ≈
∞∑
n=4

1
n2

It may take a while before one is comfortable with this statement, whose
truth lies at the heart of the study of infinite series: it is possible that the sum of
an infinite list of nonzero numbers is finite. We have seen this repeatedly in this
secƟon, yet it sƟll may “take some geƫng used to.”

As one contemplates the behavior of series, a few facts become clear.

1. In order to add an infinite list of nonzero numbers and get a finite result,
“most” of those numbers must be “very near” 0.

2. If a series diverges, it means that the sum of an infinite list of numbers is
not finite (it may approach±∞ or it may oscillate), and:

(a) The series will sƟll diverge if the first term is removed.
(b) The series will sƟll diverge if the first 10 terms are removed.
(c) The series will sƟll diverge if the first 1, 000, 000 terms are removed.
(d) The series will sƟll diverge if any finite number of terms from any-

where in the series are removed.

These concepts are very important and lie at the heart of the next two the-
orems.

Theorem 8.2.4 nth–Term Test for Divergence

Consider the series
∞∑
n=1

an. If lim
n→∞

an ̸= 0, then
∞∑
n=1

an diverges.

Notes:
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Important! This theorem does not state that if lim
n→∞

an = 0 then
∞∑
n=1

an

converges. The standard example of this is the Harmonic Series, as given in Key
Idea 8.2.1. TheHarmonic Sequence, {1/n}, converges to 0; theHarmonic Series,
∞∑
n=1

1
n
, diverges.

Looking back, we can apply this theorem to the series in Example 8.2.1. In
that example, the nth terms of both sequences do not converge to 0, therefore
we can quickly conclude that each series diverges.

One can rewrite Theorem 8.2.4 to state “If a series converges, then the un-
derlying sequence converges to 0.” While it is important to understand the truth
of this statement, in pracƟce it is rarely used. It is generally far easier to prove
the convergence of a sequence than the convergence of a series.

Theorem 8.2.5 Infinite Nature of Series

The convergence or divergence of an infinite series remains unchanged
by the addiƟon or subtracƟon of any finite number of terms. That is:

1. A divergent series will remain divergent with the addiƟon or sub-
tracƟon of any finite number of terms.

2. A convergent series will remain convergent with the addiƟon or
subtracƟon of any finite number of terms. (Of course, the sumwill
likely change.)

Consider once more the Harmonic Series
∞∑
n=1

1
n
which diverges; that is, the

sequence of parƟal sums {Sn} grows (very, very slowly) without bound. One
might think that by removing the “large” terms of the sequence that perhaps
the series will converge. This is simply not the case. For instance, the sum of the
first 10million terms of the Harmonic Series is about 16.7. Removing the first 10
million terms from the Harmonic Series changes the nth parƟal sums, effecƟvely
subtracƟng 16.7 from the sum. However, a sequence that is growing without
bound will sƟll grow without bound when 16.7 is subtracted from it.

The equaƟons below illustrate this. The first line shows the infinite sum of
the Harmonic Series split into the sum of the first 10 million terms plus the sum
of “everything else.” The next equaƟon shows us subtracƟng these first 10 mil-
lion terms from both sides. The final equaƟon employs a bit of “psuedo–math”:

Notes:
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8.2 Infinite Series

subtracƟng 16.7 from “infinity” sƟll leaves one with “infinity.”

∞∑
n=1

1
n =

10,000,000∑
n=1

1
n

+

∞∑
n=10,000,001

1
n

∞∑
n=1

1
n −

10,000,000∑
n=1

1
n

=

∞∑
n=10,000,001

1
n

∞ − 16.7 = ∞.

This secƟon introduced us to series and defined a few special types of series
whose convergence properƟes are well known: we know when a p-series or
a geometric series converges or diverges. Most series that we encounter are
not one of these types, but we are sƟll interested in knowing whether or not
they converge. The next three secƟons introduce tests that help us determine
whether or not a given series converges.

Notes:
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Exercises 8.2
Terms and Concepts

1. Use your own words to describe how sequences and series
are related.

2. Use your own words to define a parƟal sum.

3. Given a series
∞∑
n=1

an, describe the two sequences related

to the series that are important.

4. Use your own words to explain what a geometric series is.

5. T/F: If {an} is convergent, then
∞∑
n=1

an is also convergent.

6. T/F: If {an} converges to 0, then
∞∑
n=0

an converges.

Problems

In Exercises 7 – 14, a series
∞∑
n=1

an is given.

(a) Give the first 5 parƟal sums of the series.

(b) Give a graph of the first 5 terms of an and Sn on the
same axes.

7.
∞∑
n=1

(−1)n

n

8.
∞∑
n=1

1
n2

9.
∞∑
n=1

cos(πn)

10.
∞∑
n=1

n

11.
∞∑
n=1

1
n!

12.
∞∑
n=1

1
3n

13.
∞∑
n=1

(
− 9
10

)n

14.
∞∑
n=1

(
1
10

)n

In Exercises 15 – 20, use Theorem 8.2.4 to show the given se-
ries diverges.

15.
∞∑
n=1

3n2

n(n+ 2)

16.
∞∑
n=1

2n

n2

17.
∞∑
n=1

n!
10n

18.
∞∑
n=1

5n − n5

5n + n5

19.
∞∑
n=1

2n + 1
2n+1

20.
∞∑
n=1

(
1+ 1

n

)n

In Exercises 21 – 30, state whether the given series converges
or diverges.

21.
∞∑
n=1

1
n5

22.
∞∑
n=0

1
5n

23.
∞∑
n=0

6n

5n

24.
∞∑
n=1

n−4

25.
∞∑
n=1

√
n

26.
∞∑
n=1

10
n!

27. T/F: If {an} converges to 0, then
∞∑
n=0

an converges.

28.
∞∑
n=1

2
(2n+ 8)2

29.
∞∑
n=1

1
2n
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30.
∞∑
n=1

1
2n− 1

In Exercises 31 – 46, a series is given.
(a) Find a formula for Sn, the nth parƟal sum of the series.
(b) Determine whether the series converges or diverges.

If it converges, state what it converges to.

31.
∞∑
n=0

1
4n

32.
∞∑
n=1

2

33. 13 + 23 + 33 + 43 + · · ·

34.
∞∑
n=1

(−1)nn

35.
∞∑
n=0

5
2n

36.
∞∑
n=1

e−n

37. 1− 1
3
+

1
9
− 1

27
+

1
81

+ · · ·

38.
∞∑
n=1

1
n(n+ 1)

39.
∞∑
n=1

3
n(n+ 2)

40.
∞∑
n=1

1
(2n− 1)(2n+ 1)

41.
∞∑
n=1

ln
(

n
n+ 1

)

42.
∞∑
n=1

2n+ 1
n2(n+ 1)2

43. 1
1 · 4 +

1
2 · 5 +

1
3 · 6 +

1
4 · 7 + · · ·

44. 2+
(
1
2
+

1
3

)
+

(
1
4
+

1
9

)
+

(
1
8
+

1
27

)
+ · · ·

45.
∞∑
n=2

1
n2 − 1

46.
∞∑
n=0

(
sin 1

)n
47. Break theHarmonic Series into the sumof the odd and even

terms:
∞∑
n=1

1
n
=

∞∑
n=1

1
2n− 1

+

∞∑
n=1

1
2n

.

The goal is to show that each of the series on the right di-
verge.

(a) Show why
∞∑
n=1

1
2n− 1

>

∞∑
n=1

1
2n

.

(Compare each nth parƟal sum.)

(b) Show why
∞∑
n=1

1
2n− 1

< 1+
∞∑
n=1

1
2n

(c) Explain why (a) and (b) demonstrate that the series
of odd terms is convergent, if, and only if, the series
of even terms is also convergent. (That is, show both
converge or both diverge.)

(d) Explain why knowing the Harmonic Series is diver-
gent determines that the even and odd series are also
divergent.

48. Show the series
∞∑
n=1

n
(2n− 1)(2n+ 1)

diverges.
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Note: Theorem 8.3.1 does not state that
the integral and the summaƟon have the
same value.
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Figure 8.3.1: IllustraƟng the truth of the
Integral Test.

Chapter 8 Sequences and Series

8.3 Integral and Comparison Tests
Knowing whether or not a series converges is very important, especially when
we discuss Power Series in SecƟon 8.6. Theorems 8.2.1 and 8.2.2 give criteria
for when Geometric and p-series converge, and Theorem 8.2.4 gives a quick test
to determine if a series diverges. There are many important series whose con-
vergence cannot be determined by these theorems, though, so we introduce a
set of tests that allow us to handle a broad range of series. We start with the
Integral Test.

Integral Test

We stated in SecƟon 8.1 that a sequence {an} is a funcƟon a(n) whose do-
main isN, the set of natural numbers. If we can extend a(n) toR, the real num-
bers, and it is both posiƟve and decreasing on [1,∞), then the convergence of
∞∑
n=1

an is the same as
∫ ∞

1
a(x) dx.

Theorem 8.3.1 Integral Test

Let a sequence {an} be defined by an = a(n), where a(n) is conƟnuous,

posiƟve and decreasing on [1,∞). Then
∞∑
n=1

an converges, if, and only if,∫ ∞

1
a(x) dx converges.

We can demonstrate the truth of the Integral Test with two simple graphs.
In Figure 8.3.1(a), the height of each rectangle is a(n) = an for n = 1, 2, . . .,
and clearly the rectangles enclose more area than the area under y = a(x).
Therefore we can conclude that∫ ∞

1
a(x) dx <

∞∑
n=1

an. (8.1)

In Figure 8.3.1(b), we draw rectangles under y = a(x)with the Right-Hand rule,
starƟng with n = 2. This Ɵme, the area of the rectangles is less than the area

under y = a(x), so
∞∑
n=2

an <

∫ ∞

1
a(x) dx. Note how this summaƟon starts

with n = 2; adding a1 to both sides lets us rewrite the summaƟon starƟng with

Notes:
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Figure 8.3.2: Ploƫng the sequence and
series in Example 8.3.1.

8.3 Integral and Comparison Tests

n = 1:
∞∑
n=1

an < a1 +
∫ ∞

1
a(x) dx. (8.2)

Combining EquaƟons (8.1) and (8.2), we have

∞∑
n=1

an < a1 +
∫ ∞

1
a(x) dx < a1 +

∞∑
n=1

an. (8.3)

From EquaƟon (8.3) we can make the following two statements:

1. If
∞∑
n=1

an diverges, so does
∫ ∞

1
a(x)dx (because

∞∑
n=1

an < a1+
∫ ∞

1
a(x)dx)

2. If
∞∑
n=1

an converges, so does
∫ ∞

1
a(x)dx (because

∫ ∞

1
a(x)dx <

∞∑
n=1

an.)

Therefore the series and integral either both converge or both diverge. Theo-
rem 8.2.5 allows us to extend this theorem to series where a(n) is posiƟve and
decreasing on [b,∞) for some b > 1.

Example 8.3.1 Using the Integral Test

Determine the convergence of
∞∑
n=1

ln n
n2

. (The terms of the sequence {an} =

{ln n/n2} and the nth parƟal sums are given in Figure 8.3.2.)

SÊ½çã®ÊÄ Figure 8.3.2 implies that a(n) = (ln n)/n2 is posiƟve and
decreasing on [2,∞). We can determine this analyƟcally, too. We know a(n)
is posiƟve as both ln n and n2 are posiƟve on [2,∞). To determine that a(n) is
decreasing, consider a ′(n) = (1− 2 ln n)/n3, which is negaƟve for n ≥ 2. Since
a ′(n) is negaƟve, a(n) is decreasing.

Applying the Integral Test, we test the convergence of
∫ ∞

1

ln x
x2

dx. Integrat-

ing this improper integral requires the use of IntegraƟon by Parts, with u = ln x
and dv = 1/x2 dx.∫ ∞

1

ln x
x2

dx = lim
b→∞

∫ b

1

ln x
x2

dx

= lim
b→∞

−1
x
ln x
∣∣∣b
1
+

∫ b

1

1
x2

dx

Notes:
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Chapter 8 Sequences and Series

= lim
b→∞

−1
x
ln x− 1

x

∣∣∣b
1

= lim
b→∞

1− 1
b
− ln b

b
. Apply L’Hôpital’s Rule:

= 1.

Since
∫ ∞

1

ln x
x2

dx converges, so does
∞∑
n=1

ln n
n2

.

Theorem 8.2.2 was given without jusƟficaƟon, staƟng that the general p-

series
∞∑
n=1

1
(an+ b)p

converges if, and only if, p > 1. In the following example,

we prove this to be true by applying the Integral Test.

Example 8.3.2 Using the Integral Test to establish Theorem 8.2.2.

Use the Integral Test to prove that
∞∑
n=1

1
(an+ b)p

converges if, and only if, p > 1.

SÊ½çã®ÊÄ Consider the integral
∫ ∞

1

1
(ax+ b)p

dx; assuming p ̸= 1,

∫ ∞

1

1
(ax+ b)p

dx = lim
c→∞

∫ c

1

1
(ax+ b)p

dx

= lim
c→∞

1
a(1− p)

(ax+ b)1−p
∣∣∣c
1

= lim
c→∞

1
a(1− p)

(
(ac+ b)1−p − (a+ b)1−p).

This limit converges if, and only if, p > 1. It is easy to show that the integral also
diverges in the case of p = 1. (This result is similar to the work preceding Key
Idea 6.8.1.)

Therefore
∞∑
n=1

1
(an+ b)p

converges if, and only if, p > 1.

We consider two more convergence tests in this secƟon, both comparison
tests. That is, we determine the convergence of one series by comparing it to
another series with known convergence.

Notes:
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Note: A sequence {an} is a posiƟve
sequence if an > 0 for all n.

Because of Theorem 8.2.5, any theorem
that relies on a posiƟve sequence sƟll
holds true when an > 0 for all but a fi-
nite number of values of n.

8.3 Integral and Comparison Tests

Direct Comparison Test

Theorem 8.3.2 Direct Comparison Test

Let {an} and {bn} be posiƟve sequences where an ≤ bn for all n ≥ N,
for some N ≥ 1.

1. If
∞∑
n=1

bn converges, then
∞∑
n=1

an converges.

2. If
∞∑
n=1

an diverges, then
∞∑
n=1

bn diverges.

Example 8.3.3 Applying the Direct Comparison Test

Determine the convergence of
∞∑
n=1

1
3n + n2

.

SÊ½çã®ÊÄ This series is neither a geometric or p-series, but seems re-
lated. We predict it will converge, so we look for a series with larger terms that
converges. (Note too that the Integral Test seems difficult to apply here.)

Since 3n < 3n + n2,
1
3n

>
1

3n + n2
for all n ≥ 1. The series

∞∑
n=1

1
3n

is a

convergent geometric series; by Theorem 8.3.2,
∞∑
n=1

1
3n + n2

converges.

Example 8.3.4 Applying the Direct Comparison Test

Determine the convergence of
∞∑
n=1

1
n− ln n

.

SÊ½çã®ÊÄ We know the Harmonic Series
∞∑
n=1

1
n
diverges, and it seems

that the given series is closely related to it, hence we predict it will diverge.
Since n ≥ n− ln n for all n ≥ 1,

1
n
≤ 1

n− ln n
for all n ≥ 1.

The Harmonic Series diverges, so we conclude that
∞∑
n=1

1
n− ln n

diverges as

well.

Notes:
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Chapter 8 Sequences and Series

The concept of direct comparison is powerful and oŌen relaƟvely easy to
apply. PracƟce helps one develop the necessary intuiƟon to quickly pick a proper
series with which to compare. However, it is easy to construct a series for which
it is difficult to apply the Direct Comparison Test.

Consider
∞∑
n=1

1
n+ ln n

. It is very similar to the divergent series given in Ex-

ample 8.3.4. We suspect that it also diverges, as
1
n
≈ 1

n+ ln n
for large n. How-

ever, the inequality that we naturally want to use “goes the wrong way”: since
n ≤ n+ ln n for all n ≥ 1,

1
n
≥ 1

n+ ln n
for all n ≥ 1. The given series has terms

less than the terms of a divergent series, and we cannot conclude anything from
this.

Fortunately, we can apply another test to the given series to determine its
convergence.

Limit Comparison Test

Theorem 8.3.3 Limit Comparison Test

Let {an} and {bn} be posiƟve sequences.

1. If lim
n→∞

an
bn

= L, where L is a posiƟve real number, then
∞∑
n=1

an and

∞∑
n=1

bn either both converge or both diverge.

2. If lim
n→∞

an
bn

= 0, then if
∞∑
n=1

bn converges, then so does
∞∑
n=1

an.

3. If lim
n→∞

an
bn

= ∞, then if
∞∑
n=1

bn diverges, then so does
∞∑
n=1

an.

Theorem 8.3.3 is most useful when the convergence of the series from {bn}
is known and we are trying to determine the convergence of the series from
{an}.

We use the Limit Comparison Test in the next example to examine the series
∞∑
n=1

1
n+ ln n

which moƟvated this new test.

Notes:
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8.3 Integral and Comparison Tests

Example 8.3.5 Applying the Limit Comparison Test

Determine the convergence of
∞∑
n=1

1
n+ ln n

using the Limit Comparison Test.

SÊ½çã®ÊÄ We compare the terms of
∞∑
n=1

1
n+ ln n

to the terms of the

Harmonic Sequence
∞∑
n=1

1
n
:

lim
n→∞

1/(n+ ln n)
1/n

= lim
n→∞

n
n+ ln n

= 1 (aŌer applying L’Hôpital’s Rule).

Since the Harmonic Series diverges, we conclude that
∞∑
n=1

1
n+ ln n

diverges as

well.

Example 8.3.6 Applying the Limit Comparison Test

Determine the convergence of
∞∑
n=1

1
3n − n2

SÊ½çã®ÊÄ This series is similar to the one in Example 8.3.3, but nowwe
are considering “3n − n2” instead of “3n + n2.” This difference makes applying
the Direct Comparison Test difficult.

Instead, weuse the Limit Comparison Test and comparewith the series
∞∑
n=1

1
3n

:

lim
n→∞

1/(3n − n2)
1/3n

= lim
n→∞

3n

3n − n2

= 1 (aŌer applying L’Hôpital’s Rule twice).

We know
∞∑
n=1

1
3n

is a convergent geometric series, hence
∞∑
n=1

1
3n − n2

converges

as well.

As menƟoned before, pracƟce helps one develop the intuiƟon to quickly
choose a series with which to compare. A general rule of thumb is to pick a
series based on the dominant term in the expression of {an}. It is also helpful
to note that factorials dominate exponenƟals, which dominate algebraic func-
Ɵons (e.g., polynomials), which dominate logarithms. In the previous example,

Notes:
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Chapter 8 Sequences and Series

the dominant term of
1

3n − n2
was 3n, so we compared the series to

∞∑
n=1

1
3n

. It is

hard to apply the Limit Comparison Test to series containing factorials, though,
as we have not learned how to apply L’Hôpital’s Rule to n!.

Example 8.3.7 Applying the Limit Comparison Test

Determine the convergence of
∞∑
n=1

√
n+ 3

n2 − n+ 1
.

SÊ½çã®ÊÄ We naïvely aƩempt to apply the rule of thumb given above
and note that the dominant term in the expression of the series is 1/n2. Knowing

that
∞∑
n=1

1
n2

converges, we aƩempt to apply the Limit Comparison Test:

lim
n→∞

(
√
n+ 3)/(n2 − n+ 1)

1/n2
= lim

n→∞

n2(
√
n+ 3)

n2 − n+ 1
= ∞ (Apply L’Hôpital’s Rule).

Theorem 8.3.3 part (3) only applies when
∞∑
n=1

bn diverges; in our case, it con-

verges. UlƟmately, our test has not revealed anything about the convergence
of our series.

The problem is that we chose a poor series with which to compare. Since
the numerator and denominator of the terms of the series are both algebraic
funcƟons, we should have compared our series to the dominant term of the
numerator divided by the dominant term of the denominator.

The dominant term of the numerator is n1/2 and the dominant term of the
denominator is n2. Thus we should compare the terms of the given series to
n1/2/n2 = 1/n3/2:

lim
n→∞

(
√
n+ 3)/(n2 − n+ 1)

1/n3/2
= lim

n→∞

n3/2(
√
n+ 3)

n2 − n+ 1
= 1 (Apply L’Hôpital’s Rule).

Since the p-series
∞∑
n=1

1
n3/2

converges, we conclude that
∞∑
n=1

√
n+ 3

n2 − n+ 1
con-

verges as well.

We menƟoned earlier that the Integral Test did not work well with series
containing factorial terms. The next secƟon introduces the RaƟo Test, which
does handle such series well. We also introduce the Root Test, which is good for
series where each term is raised to a power.

Notes:
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Exercises 8.3
Terms and Concepts
1. In order to apply the Integral Test to a sequence {an}, the

funcƟon a(n) = an must be , and .

2. T/F: The Integral Test can be used to determine the sum of
a convergent series.

3. What test(s) in this secƟon do not work well with factori-
als?

4. Suppose
∞∑
n=0

an is convergent, and there are sequences

{bn} and {cn} such that 0 ≤ bn ≤ an ≤ cn for all n. What

can be said about the series
∞∑
n=0

bn and
∞∑
n=0

cn?

Problems
In Exercises 5 – 12, use the Integral Test to determine the con-
vergence of the given series.

5.
∞∑
n=1

1
2n

6.
∞∑
n=1

1
n4

7.
∞∑
n=1

n
n2 + 1

8.
∞∑
n=2

1
n ln n

9.
∞∑
n=1

1
n2 + 1

10.
∞∑
n=2

1
n(ln n)2

11.
∞∑
n=1

n
2n

12.
∞∑
n=1

ln n
n3

In Exercises 13 – 22, use the Direct Comparison Test to deter-
mine the convergence of the given series; state what series is
used for comparison.

13.
∞∑
n=1

1
n2 + 3n− 5

14.
∞∑
n=1

1
4n + n2 − n

15.
∞∑
n=1

ln n
n

16.
∞∑
n=1

1
n! + n

17.
∞∑
n=2

1√
n2 − 1

18.
∞∑
n=5

1√
n− 2

19.
∞∑
n=1

n2 + n+ 1
n3 − 5

20.
∞∑
n=1

2n

5n + 10

21.
∞∑
n=2

n
n2 − 1

22.
∞∑
n=2

1
n2 ln n

In Exercises 23 – 32, use the Limit Comparison Test to deter-
mine the convergence of the given series; state what series is
used for comparison.

23.
∞∑
n=1

1
n2 − 3n+ 5

24.
∞∑
n=1

1
4n − n2

25.
∞∑
n=4

ln n
n− 3

26.
∞∑
n=1

1√
n2 + n

27.
∞∑
n=1

1
n+

√
n

28.
∞∑
n=1

n− 10
n2 + 10n+ 10

29.
∞∑
n=1

sin
(
1/n
)
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30.
∞∑
n=1

n+ 5
n3 − 5

31.
∞∑
n=1

√
n+ 3

n2 + 17

32.
∞∑
n=1

1√
n+ 100

In Exercises 33 – 40, determine the convergence of the given
series. State the test used; more than one test may be appro-
priate.

33.
∞∑
n=1

n2

2n

34.
∞∑
n=1

1
(2n+ 5)3

35.
∞∑
n=1

n!
10n

36.
∞∑
n=1

ln n
n!

37.
∞∑
n=1

1
3n + n

38.
∞∑
n=1

n− 2
10n+ 5

39.
∞∑
n=1

3n

n3

40.
∞∑
n=1

cos(1/n)√
n

41. Given that
∞∑
n=1

an converges, state which of the following

series converges, may converge, or does not converge.

(a)
∞∑
n=1

an
n

(b)
∞∑
n=1

anan+1

(c)
∞∑
n=1

(an)2

(d)
∞∑
n=1

nan

(e)
∞∑
n=1

1
an
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Note: Theorem 8.2.5 allows us to apply
the RaƟo Test to series where {an} is pos-
iƟve for all but a finite number of terms.

8.4 RaƟo and Root Tests

8.4 RaƟo and Root Tests

The nth–Term Test of Theorem 8.2.4 states that in order for a series
∞∑
n=1

an to

converge, lim
n→∞

an = 0. That is, the terms of {an} must get very small. Not
only must the terms approach 0, they must approach 0 “fast enough”: while

lim
n→∞

1/n = 0, the Harmonic Series
∞∑
n=1

1
n
diverges as the terms of {1/n} do not

approach 0 “fast enough.”
The comparison tests of the previous secƟondetermine convergenceby com-

paring terms of a series to terms of another series whose convergence is known.
This secƟon introduces the RaƟo and Root Tests, which determine convergence
by analyzing the terms of a series to see if they approach 0 “fast enough.”

RaƟo Test

Theorem 8.4.1 RaƟo Test

Let {an} be a posiƟve sequence where lim
n→∞

an+1

an
= L.

1. If L < 1, then
∞∑
n=1

an converges.

2. If L > 1 or L = ∞, then
∞∑
n=1

an diverges.

3. If L = 1, the RaƟo Test is inconclusive.

The principle of the RaƟo Test is this: if lim
n→∞

an+1

an
= L < 1, then for large n,

each term of {an} is significantly smaller than its previous term which is enough
to ensure convergence.

Example 8.4.1 Applying the RaƟo Test
Use the RaƟo Test to determine the convergence of the following series:

1.
∞∑
n=1

2n

n!
2.

∞∑
n=1

3n

n3
3.

∞∑
n=1

1
n2 + 1

.

Notes:
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Chapter 8 Sequences and Series

SÊ½çã®ÊÄ

1.
∞∑
n=1

2n

n!
:

lim
n→∞

2n+1/(n+ 1)!
2n/n!

= lim
n→∞

2n+1n!
2n(n+ 1)!

= lim
n→∞

2
n+ 1

= 0.

Since the limit is 0 < 1, by the RaƟo Test
∞∑
n=1

2n

n!
converges.

2.
∞∑
n=1

3n

n3
:

lim
n→∞

3n+1/(n+ 1)3

3n/n3
= lim

n→∞

3n+1n3

3n(n+ 1)3

= lim
n→∞

3n3

(n+ 1)3

= 3.

Since the limit is 3 > 1, by the RaƟo Test
∞∑
n=1

3n

n3
diverges.

3.
∞∑
n=1

1
n2 + 1

:

lim
n→∞

1/
(
(n+ 1)2 + 1

)
1/(n2 + 1)

= lim
n→∞

n2 + 1
(n+ 1)2 + 1

= 1.

Since the limit is 1, the RaƟo Test is inconclusive. We can easily show this
series converges using the Direct or Limit Comparison Tests, with each

comparing to the series
∞∑
n=1

1
n2

.
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8.4 RaƟo and Root Tests

The RaƟo Test is not effecƟve when the terms of a series only contain al-
gebraic funcƟons (e.g., polynomials). It is most effecƟve when the terms con-
tain some factorials or exponenƟals. The previous example also reinforces our
developing intuiƟon: factorials dominate exponenƟals, which dominate alge-
braic funcƟons, which dominate logarithmic funcƟons. In Part 1 of the example,
the factorial in the denominator dominated the exponenƟal in the numerator,
causing the series to converge. In Part 2, the exponenƟal in the numerator dom-
inated the algebraic funcƟon in the denominator, causing the series to diverge.

While we have used factorials in previous secƟons, we have not explored
them closely and one is likely to not yet have a strong intuiƟve sense for how
they behave. The following example gives more pracƟce with factorials.

Example 8.4.2 Applying the RaƟo Test

Determine the convergence of
∞∑
n=1

n!n!
(2n)!

.

SÊ½çã®ÊÄ Before we begin, be sure to note the difference between
(2n)! and 2n!. When n = 4, the former is 8! = 8 · 7 · . . . · 2 · 1 = 40, 320,
whereas the laƩer is 2(4 · 3 · 2 · 1) = 48.

Applying the RaƟo Test:

lim
n→∞

(n+ 1)!(n+ 1)!/
(
2(n+ 1)

)
!

n!n!/(2n)!
= lim

n→∞

(n+ 1)!(n+ 1)!(2n)!
n!n!(2n+ 2)!

NoƟng that (2n+ 2)! = (2n+ 2) · (2n+ 1) · (2n)!, we have

= lim
n→∞

(n+ 1)(n+ 1)
(2n+ 2)(2n+ 1)

= 1/4.

Since the limit is 1/4 < 1, by the RaƟo Test we conclude
∞∑
n=1

n!n!
(2n)!

converges.

Root Test

The final test we introduce is the Root Test, which works parƟcularly well on
series where each term is raised to a power, and does not work well with terms
containing factorials.
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Note: Theorem 8.2.5 allows us to apply
the Root Test to series where {an} is pos-
iƟve for all but a finite number of terms.

Chapter 8 Sequences and Series

Theorem 8.4.2 Root Test

Let {an} be a posiƟve sequence, and let lim
n→∞

(an)1/n = L.

1. If L < 1, then
∞∑
n=1

an converges.

2. If L > 1 or L = ∞, then
∞∑
n=1

an diverges.

3. If L = 1, the Root Test is inconclusive.

Example 8.4.3 Applying the Root Test
Determine the convergence of the following series using the Root Test:

1.
∞∑
n=1

(
3n+ 1
5n− 2

)n

2.
∞∑
n=1

n4

(ln n)n
3.

∞∑
n=1

2n

n2
.

SÊ½çã®ÊÄ

1. lim
n→∞

((
3n+ 1
5n− 2

)n)1/n

= lim
n→∞

3n+ 1
5n− 2

=
3
5
.

Since the limit is less than 1, we conclude the series converges. Note: it is
difficult to apply the RaƟo Test to this series.

2. lim
n→∞

(
n4

(ln n)n

)1/n

= lim
n→∞

(
n1/n

)4
ln n

.

As n grows, the numerator approaches 1 (apply L’Hôpital’s Rule) and the
denominator grows to infinity. Thus

lim
n→∞

(
n1/n

)4
ln n

= 0.

Since the limit is less than 1, we conclude the series converges.

3. lim
n→∞

(
2n

n2

)1/n

= lim
n→∞

2(
n1/n

)2 = 2.

Since this is greater than 1, we conclude the series diverges.

Each of the tests we have encountered so far has required that we analyze
series from posiƟve sequences. The next secƟon relaxes this restricƟon by con-
sidering alternaƟng series, where the underlying sequence has terms that alter-
nate between being posiƟve and negaƟve.
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Exercises 8.4
Terms and Concepts

1. The RaƟo Test is not effecƟvewhen the terms of a sequence
only contain funcƟons.

2. The RaƟo Test is most effecƟve when the terms of a se-
quence contains and/or funcƟons.

3. What three convergence tests do not work well with terms
containing factorials?

4. The Root Test works parƟcularly well on series where each
term is to a .

Problems

In Exercises 5 – 14, determine the convergence of the given
series using the RaƟo Test. If the RaƟo Test is inconclusive,
state so and determine convergence with another test.

5.
∞∑
n=0

2n
n!

6.
∞∑
n=0

5n − 3n
4n

7.
∞∑
n=0

n!10n

(2n)!

8.
∞∑
n=1

5n + n4

7n + n2

9.
∞∑
n=1

1
n

10.
∞∑
n=1

1
3n3 + 7

11.
∞∑
n=1

10 · 5n

7n − 3

12.
∞∑
n=1

n ·
(
3
5

)n

13.
∞∑
n=1

2 · 4 · 6 · 8 · · · 2n
3 · 6 · 9 · 12 · · · 3n

14.
∞∑
n=1

n!
5 · 10 · 15 · · · (5n)

In Exercises 15 – 24, determine the convergence of the given
series using the Root Test. If the Root Test is inconclusive,
state so and determine convergence with another test.

15.
∞∑
n=1

(
2n+ 5
3n+ 11

)n

16.
∞∑
n=1

(
.9n2 − n− 3
n2 + n+ 3

)n

17.
∞∑
n=1

2nn2

3n

18.
∞∑
n=1

1
nn

19.
∞∑
n=1

3n

n22n+1

20.
∞∑
n=1

4n+7

7n

21.
∞∑
n=1

(
n2 − n
n2 + n

)n

22.
∞∑
n=1

(
1
n
− 1

n2

)n

23.
∞∑
n=1

1(
ln n
)n

24.
∞∑
n=1

n2(
ln n
)n

In Exercises 25 – 34, determine the convergence of the given
series. State the test used; more than one test may be appro-
priate.

25.
∞∑
n=1

n2 + 4n− 2
n3 + 4n2 − 3n+ 7

26.
∞∑
n=1

n44n

n!

27.
∞∑
n=1

n2

3n + n

28.
∞∑
n=1

3n

nn

29.
∞∑
n=1

n√
n2 + 4n+ 1
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30.
∞∑
n=1

n!n!n!
(3n)!

31.
∞∑
n=1

1
ln n

32.
∞∑
n=1

(
n+ 2
n+ 1

)n

33.
∞∑
n=1

n3(
ln n
)n

34.
∞∑
n=1

(
1
n
− 1

n+ 2

)
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8.5 AlternaƟng Series and Absolute Convergence

8.5 AlternaƟng Series and Absolute Convergence

All of the series convergence tests we have used require that the underlying
sequence {an} be a posiƟve sequence. (We can relax this with Theorem 8.2.5
and state that there must be an N > 0 such that an > 0 for all n > N; that is,
{an} is posiƟve for all but a finite number of values of n.)

In this secƟon we explore series whose summaƟon includes negaƟve terms.
We start with a very specific form of series, where the terms of the summaƟon
alternate between being posiƟve and negaƟve.

DefiniƟon 8.5.1 AlternaƟng Series

Let {an} be a posiƟve sequence. An alternaƟng series is a series of either
the form

∞∑
n=1

(−1)nan or
∞∑
n=1

(−1)n+1an.

Recall the termsofHarmonic Series come from theHarmonic Sequence {an} =
{1/n}. An important alternaƟng series is the AlternaƟng Harmonic Series:

∞∑
n=1

(−1)n+1 1
n
= 1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+ · · ·

Geometric Series can also be alternaƟng series when r < 0. For instance, if
r = −1/2, the geometric series is

∞∑
n=0

(
−1
2

)n

= 1− 1
2
+

1
4
− 1

8
+

1
16

− 1
32

+ · · ·

Theorem 8.2.1 states that geometric series converge when |r| < 1 and gives

the sum:
∞∑
n=0

rn =
1

1− r
. When r = −1/2 as above, we find

∞∑
n=0

(
−1
2

)n

=
1

1− (−1/2)
=

1
3/2

=
2
3
.

Apowerful convergence theoremexists for other alternaƟng series thatmeet
a few condiƟons.

Notes:
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Figure 8.5.1: IllustraƟng convergence
with the AlternaƟng Series Test.

Chapter 8 Sequences and Series

Theorem 8.5.1 AlternaƟng Series Test

Let {an} be a posiƟve, decreasing sequence where lim
n→∞

an = 0. Then

∞∑
n=1

(−1)nan and
∞∑
n=1

(−1)n+1an

converge.

The basic idea behind Theorem 8.5.1 is illustrated in Figure 8.5.1. A posiƟve,
decreasing sequence {an} is shown along with the parƟal sums

Sn =
n∑

i=1
(−1)i+1ai = a1 − a2 + a3 − a4 + · · ·+ (−1)n+1an.

Because{an} is decreasing, the amount bywhich Sn bounces up/downdecreases.
Moreover, the odd terms of Sn form a decreasing, bounded sequence, while the
even terms of Sn form an increasing, bounded sequence. Since bounded, mono-
tonic sequences converge (see Theorem 8.1.5) and the terms of {an} approach
0, one can show the odd and even terms of Sn converge to the same common
limit L, the sum of the series.

Example 8.5.1 Applying the AlternaƟng Series Test
Determine if the AlternaƟng Series Test applies to each of the following series.

1.
∞∑
n=1

(−1)n+1 1
n

2.
∞∑
n=1

(−1)n
ln n
n

3.
∞∑
n=1

(−1)n+1 | sin n|
n2

SÊ½çã®ÊÄ

1. This is the AlternaƟng Harmonic Series as seen previously. The underlying
sequence is {an} = {1/n}, which is posiƟve, decreasing, and approaches
0 as n → ∞. Therefore we can apply the AlternaƟng Series Test and
conclude this series converges.
While the test does not state what the series converges to, we will see

later that
∞∑
n=1

(−1)n+1 1
n
= ln 2.

2. The underlying sequence is {an} = {ln n/n}. This is posiƟve and ap-
proaches 0 as n → ∞ (use L’Hôpital’s Rule). However, the sequence is not
decreasing for all n. It is straighƞorward to compute a1 = 0, a2 ≈ 0.347,

Notes:
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8.5 AlternaƟng Series and Absolute Convergence

a3 ≈ 0.366, and a4 ≈ 0.347: the sequence is increasing for at least the
first 3 terms.

We do not immediately conclude that we cannot apply the AlternaƟng
Series Test. Rather, consider the long–term behavior of {an}. TreaƟng
an = a(n) as a conƟnuous funcƟon of n defined on [1,∞), we can take
its derivaƟve:

a ′(n) =
1− ln n

n2
.

The derivaƟve is negaƟve for all n ≥ 3 (actually, for all n > e), mean-
ing a(n) = an is decreasing on [3,∞). We can apply the AlternaƟng
Series Test to the series when we start with n = 3 and conclude that
∞∑
n=3

(−1)n
ln n
n

converges; adding the terms with n = 1 and n = 2 do not

change the convergence (i.e., we apply Theorem 8.2.5).

The important lesson here is that as before, if a series fails to meet the
criteria of the AlternaƟng Series Test on only a finite number of terms, we
can sƟll apply the test.

3. The underlying sequence is {an} = | sin n|/n2. This sequence is posiƟve
and approaches 0 as n → ∞. However, it is not a decreasing sequence;
the value of | sin n| oscillates between 0 and 1 as n → ∞. We cannot
remove a finite number of terms to make {an} decreasing, therefore we
cannot apply the AlternaƟng Series Test.

Keep in mind that this does not mean we conclude the series diverges;
in fact, it does converge. We are just unable to conclude this based on
Theorem 8.5.1.

Key Idea 8.2.1 gives the sum of some important series. Two of these are

∞∑
n=1

1
n2

=
π2

6
≈ 1.64493 and

∞∑
n=1

(−1)n+1

n2
=

π2

12
≈ 0.82247.

These two series converge to their sums at different rates. To be accurate to
two places aŌer the decimal, we need 202 terms of the first series though only
13 of the second. To get 3 places of accuracy, we need 1069 terms of the first
series though only 33 of the second. Why is it that the second series converges
so much faster than the first?

While there are many factors involved when studying rates of convergence,
the alternaƟng structure of an alternaƟng series gives us a powerful tool when
approximaƟng the sum of a convergent series.

Notes:
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Chapter 8 Sequences and Series

Theorem 8.5.2 The AlternaƟng Series ApproximaƟon Theorem

Let {an} be a sequence that saƟsfies the hypotheses of the AlternaƟng
Series Test, and let Sn and L be the nth parƟal sums and sum, respecƟvely,

of either
∞∑
n=1

(−1)nan or
∞∑
n=1

(−1)n+1an. Then

1. |Sn − L| < an+1, and

2. L is between Sn and Sn+1.

Part 1 of Theorem 8.5.2 states that the nth parƟal sum of a convergent al-
ternaƟng series will be within an+1 of its total sum. Consider the alternaƟng

series we looked at before the statement of the theorem,
∞∑
n=1

(−1)n+1

n2
. Since

a14 = 1/142 ≈ 0.0051, we know that S13 is within 0.0051 of the total sum.
Moreover, Part 2 of the theorem states that since S13 ≈ 0.8252 and S14 ≈

0.8201, we know the sum L lies between 0.8201 and 0.8252. One use of this is
the knowledge that S14 is accurate to two places aŌer the decimal.

Some alternaƟng series converge slowly. In Example 8.5.1 we determined

the series
∞∑
n=1

(−1)n+1 ln n
n

converged. With n = 1001, we find ln n/n ≈ 0.0069,

meaning that S1000 ≈ 0.1633 is accurate to one, maybe two, places aŌer the
decimal. Since S1001 ≈ 0.1564, we know the sum L is 0.1564 ≤ L ≤ 0.1633.

Example 8.5.2 ApproximaƟng the sum of convergent alternaƟng series
Approximate the sum of the following series, accurate to within 0.001.

1.
∞∑
n=1

(−1)n+1 1
n3

2.
∞∑
n=1

(−1)n+1 ln n
n

.

SÊ½çã®ÊÄ

1. Using Theorem 8.5.2, we want to find n where 1/n3 ≤ 0.001:

1
n3

≤ 0.001 =
1

1000
n3 ≥ 1000

n ≥ 3
√
1000

n ≥ 10.

Notes:
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8.5 AlternaƟng Series and Absolute Convergence

Let L be the sum of this series. By Part 1 of the theorem, |S9 − L| < a10 =
1/1000. We can compute S9 = 0.902116, which our theorem states is
within 0.001 of the total sum.
We can use Part 2 of the theorem to obtain an even more accurate result.
Aswe know the 10th termof the series is−1/1000, we can easily compute
S10 = 0.901116. Part 2 of the theorem states that L is between S9 and S10,
so 0.901116 < L < 0.902116.

2. We want to find n where ln(n)/n < 0.001. We start by solving ln(n)/n =
0.001 for n. This cannot be solved algebraically, so we will use Newton’s
Method to approximate a soluƟon.
Let f(x) = ln(x)/x− 0.001; we want to know where f(x) = 0. We make a
guess that xmust be “large,” so our iniƟal guess will be x1 = 1000. Recall
how Newton’s Method works: given an approximate soluƟon xn, our next
approximaƟon xn+1 is given by

xn+1 = xn −
f(xn)
f ′(xn)

.

We find f ′(x) =
(
1− ln(x)

)
/x2. This gives

x2 = 1000− ln(1000)/1000− 0.001(
1− ln(1000)

)
/10002

= 2000.

Using a computer, we find that Newton’s Method seems to converge to a
soluƟon x = 9118.01 aŌer 8 iteraƟons. Taking the next integer higher, we
have n = 9119, where ln(9119)/9119 = 0.000999903 < 0.001.
Again using a computer, we find S9118 = −0.160369. Part 1 of the theo-
rem states that this is within 0.001 of the actual sum L. Already knowing
the 9,119th term,we can compute S9119 = −0.159369,meaning−0.159369 <
L < −0.160369.

NoƟce how the first series converged quite quickly, where we needed only 10
terms to reach the desired accuracy, whereas the second series took over 9,000
terms.

One of the famous results of mathemaƟcs is that the Harmonic Series,
∞∑
n=1

1
n

diverges, yet the AlternaƟng Harmonic Series,
∞∑
n=1

(−1)n+1 1
n
, converges. The

Notes:
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Note: In DefiniƟon 8.5.2,
∞∑
n=1

an is not

necessarily an alternaƟng series; it just
may have some negaƟve terms.

Chapter 8 Sequences and Series

noƟon that alternaƟng the signs of the terms in a series can make a series con-
verge leads us to the following definiƟons.

DefiniƟon 8.5.2 Absolute and CondiƟonal Convergence

1. A series
∞∑
n=1

an converges absolutely if
∞∑
n=1

|an| converges.

2. A series
∞∑
n=1

an converges condiƟonally if
∞∑
n=1

an converges but

∞∑
n=1

|an| diverges.

Thus we say the AlternaƟng Harmonic Series converges condiƟonally.

Example 8.5.3 Determining absolute and condiƟonal convergence.
Determine if the following series converge absolutely, condiƟonally, or diverge.

1.
∞∑
n=1

(−1)n
n+ 3

n2 + 2n+ 5
2.

∞∑
n=1

(−1)n
n2 + 2n+ 5

2n
3.

∞∑
n=3

(−1)n
3n− 3
5n− 10

SÊ½çã®ÊÄ

1. We can show the series
∞∑
n=1

∣∣∣∣(−1)n
n+ 3

n2 + 2n+ 5

∣∣∣∣ = ∞∑
n=1

n+ 3
n2 + 2n+ 5

diverges using the Limit Comparison Test, comparing with 1/n.

The series
∞∑
n=1

(−1)n
n+ 3

n2 + 2n+ 5
converges using the AlternaƟng Series

Test; we conclude it converges condiƟonally.

2. We can show the series
∞∑
n=1

∣∣∣∣(−1)n
n2 + 2n+ 5

2n

∣∣∣∣ = ∞∑
n=1

n2 + 2n+ 5
2n

converges using the RaƟo Test.

Notes:
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8.5 AlternaƟng Series and Absolute Convergence

Therefore we conclude
∞∑
n=1

(−1)n
n2 + 2n+ 5

2n
converges absolutely.

3. The series
∞∑
n=3

∣∣∣∣(−1)n
3n− 3
5n− 10

∣∣∣∣ = ∞∑
n=3

3n− 3
5n− 10

diverges using the nth Term Test, so it does not converge absolutely.

The series
∞∑
n=3

(−1)n
3n− 3
5n− 10

fails the condiƟons of the AlternaƟng Series

Test as (3n− 3)/(5n− 10) does not approach 0 as n → ∞. We can state
further that this series diverges; as n → ∞, the series effecƟvely adds and
subtracts 3/5 over and over. This causes the sequence of parƟal sums to
oscillate and not converge.

Therefore the series
∞∑
n=1

(−1)n
3n− 3
5n− 10

diverges.

Knowing that a series converges absolutely allows us to make two impor-
tant statements, given in the following theorem. The first is that absolute con-

vergence is “stronger” than regular convergence. That is, just because
∞∑
n=1

an

converges, we cannot conclude that
∞∑
n=1

|an| will converge, but knowing a series

converges absolutely tells us that
∞∑
n=1

an will converge.

One reason this is important is that our convergence tests all require that the
underlying sequence of terms be posiƟve. By taking the absolute value of the
terms of a series where not all terms are posiƟve, we are oŌen able to apply an
appropriate test and determine absolute convergence. This, in turn, determines
that the series we are given also converges.

The second statement relates to rearrangements of series. When dealing
with a finite set of numbers, the sum of the numbers does not depend on the
order which they are added. (So 1+2+3 = 3+1+2.) Onemay be surprised to
find out that when dealing with an infinite set of numbers, the same statement
does not always hold true: some infinite lists of numbers may be rearranged in
different orders to achieve different sums. The theorem states that the terms of
an absolutely convergent series can be rearranged in any way without affecƟng
the sum.

Notes:
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Chapter 8 Sequences and Series

Theorem 8.5.3 Absolute Convergence Theorem

Let
∞∑
n=1

an be a series that converges absolutely.

1.
∞∑
n=1

an converges.

2. Let {bn} be any rearrangement of the sequence {an}. Then

∞∑
n=1

bn =
∞∑
n=1

an.

In Example 8.5.3, we determined the series in part 2 converges absolutely.
Theorem 8.5.3 tells us the series converges (which we could also determine us-
ing the AlternaƟng Series Test).

The theorem states that rearranging the terms of an absolutely convergent
series does not affect its sum. This implies that perhaps the sum of a condiƟon-
ally convergent series can change based on the arrangement of terms. Indeed,
it can. The Riemann Rearrangement Theorem (named aŌer Bernhard Riemann)
states that any condiƟonally convergent series can have its terms rearranged so
that the sum is any desired value, including∞!

As an example, consider the AlternaƟng Harmonic Series once more. We
have stated that

∞∑
n=1

(−1)n+1 1
n
= 1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+

1
7
· · · = ln 2,

(see Key Idea 8.2.1 or Example 8.5.1).

Consider the rearrangement where every posiƟve term is followed by two
negaƟve terms:

1− 1
2
− 1

4
+

1
3
− 1

6
− 1

8
+

1
5
− 1

10
− 1

12
· · ·

(Convince yourself that these are exactly the same numbers as appear in the
AlternaƟng Harmonic Series, just in a different order.) Now group some terms
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8.5 AlternaƟng Series and Absolute Convergence

and simplify:(
1− 1

2

)
− 1

4
+

(
1
3
− 1

6

)
− 1

8
+

(
1
5
− 1

10

)
− 1

12
+ · · · =

1
2
− 1

4
+

1
6
− 1

8
+

1
10

− 1
12

+ · · · =

1
2

(
1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+ · · ·

)
=

1
2
ln 2.

By rearranging the terms of the series, we have arrived at a different sum!
(One could try to argue that the AlternaƟng Harmonic Series does not actually
converge to ln 2, because rearranging the terms of the series shouldn’t change
the sum. However, the AlternaƟng Series Test proves this series converges to
L, for some number L, and if the rearrangement does not change the sum, then
L = L/2, implying L = 0. But the AlternaƟng Series ApproximaƟon Theorem
quickly shows that L > 0. The only conclusion is that the rearrangement did
change the sum.) This is an incredible result.

We end here our study of tests to determine convergence. The end of this
text contains a table summarizing the tests that one may find useful.

While series are worthy of study in and of themselves, our ulƟmate goal
within calculus is the study of Power Series, which we will consider in the next
secƟon. We will use power series to create funcƟons where the output is the
result of an infinite summaƟon.
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Exercises 8.5
Terms and Concepts

1. Why is
∞∑
n=1

sin n not an alternaƟng series?

2. A series
∞∑
n=1

(−1)nan converges when {an} is ,

and lim
n→∞

an = .

3. Give an example of a series where
∞∑
n=0

an converges but

∞∑
n=0

|an| does not.

4. The sum of a convergent series can be changed by
rearranging the order of its terms.

Problems

In Exercises 5 – 20, an alternaƟng series
∞∑
n=i

an is given.

(a) Determine if the series converges or diverges.

(b) Determine if
∞∑
n=0

|an| converges or diverges.

(c) If
∞∑
n=0

an converges, determine if the convergence is

condiƟonal or absolute.

5.
∞∑
n=1

(−1)n+1

n2

6.
∞∑
n=1

(−1)n+1
√
n!

7.
∞∑
n=0

(−1)n n+ 5
3n− 5

8.
∞∑
n=1

(−1)n 2
n

n2

9.
∞∑
n=0

(−1)n+1 3n+ 5
n2 − 3n+ 1

10.
∞∑
n=1

(−1)n

ln n+ 1

11.
∞∑
n=2

(−1)n n
ln n

12.
∞∑
n=1

(−1)n+1

1+ 3+ 5+ · · ·+ (2n− 1)

13.
∞∑
n=1

cos
(
πn
)

14.
∞∑
n=2

sin
(
(n+ 1/2)π

)
n ln n

15.
∞∑
n=0

(
−2
3

)n

16.
∞∑
n=0

(−e)−n

17.
∞∑
n=0

(−1)nn2

n!

18.
∞∑
n=0

(−1)n2−n2

19.
∞∑
n=1

(−1)n√
n

20.
∞∑
n=1

(−1000)n

n!

Let Sn be the nth parƟal sum of a series. In Exercises 21 – 24, a
convergent alternaƟng series is given and a value of n. Com-
pute Sn and Sn+1 and use these values to find bounds on the
sum of the series.

21.
∞∑
n=1

(−1)n

ln(n+ 1)
, n = 5

22.
∞∑
n=1

(−1)n+1

n4
, n = 4

23.
∞∑
n=0

(−1)n

n!
, n = 6

24.
∞∑
n=0

(
−1
2

)n

, n = 9

In Exercises 25 – 28, a convergent alternaƟng series is given
alongwith its sum and a value of ε. Use Theorem 8.5.2 to find
n such that the nth parƟal sum of the series is within ε of the
sum of the series.

25.
∞∑
n=1

(−1)n+1

n4
=

7π4

720
, ε = 0.001
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26.
∞∑
n=0

(−1)n

n!
=

1
e
, ε = 0.0001

27.
∞∑
n=0

(−1)n

2n+ 1
=

π

4
, ε = 0.001

28.
∞∑
n=0

(−1)n

(2n)!
= cos 1, ε = 10−8
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8.6 Power Series
So far, our study of series has examined the quesƟon of “Is the sum of these
infinite terms finite?,” i.e., “Does the series converge?” We now approach series
from a different perspecƟve: as a funcƟon. Given a value of x, we evaluate f(x)
by finding the sum of a parƟcular series that depends on x (assuming the series
converges). We start this new approach to series with a definiƟon.

DefiniƟon 8.6.1 Power Series

Let {an} be a sequence, let x be a variable, and let c be a real number.

1. The power series in x is the series

∞∑
n=0

anxn = a0 + a1x+ a2x2 + a3x3 + . . .

2. The power series in x centered at c is the series
∞∑
n=0

an(x− c)n = a0 + a1(x− c) + a2(x− c)2 + a3(x− c)3 + . . .

Example 8.6.1 Examples of power series
Write out the first five terms of the following power series:

1.
∞∑
n=0

xn 2.
∞∑
n=1

(−1)n+1 (x+ 1)n

n
3.

∞∑
n=0

(−1)n+1 (x− π)2n

(2n)!
.

SÊ½çã®ÊÄ

1. One of the convenƟons we adopt is that x0 = 1 regardless of the value of
x. Therefore

∞∑
n=0

xn = 1+ x+ x2 + x3 + x4 + . . .

This is a geometric series in x.

2. This series is centered at c = −1. Note how this series starts with n = 1.
We could rewrite this series starƟng at n = 0 with the understanding that
a0 = 0, and hence the first term is 0.
∞∑
n=1

(−1)n+1 (x+ 1)n

n
= (x+1)− (x+ 1)2

2
+
(x+ 1)3

3
− (x+ 1)4

4
+
(x+ 1)5

5
. . .

Notes:
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8.6 Power Series

3. This series is centered at c = π. Recall that 0! = 1.

∞∑
n=0

(−1)n+1 (x− π)2n

(2n)!
= −1+

(x− π)2

2
− (x− π)4

24
+
(x− π)6

6!
− (x− π)8

8!
. . .

We introduced power series as a type of funcƟon, where a value of x is given
and the sum of a series is returned. Of course, not every series converges. For

instance, in part 1 of Example 8.6.1, we recognized the series
∞∑
n=0

xn as a geo-

metric series in x. Theorem 8.2.1 states that this series converges only when
|x| < 1.

This raises the quesƟon: “For what values of xwill a given power series con-
verge?,” which leads us to a theorem and definiƟon.

Theorem 8.6.1 Convergence of Power Series

Let a power series
∞∑
n=0

an(x− c)n be given. Then one of the following is

true:

1. The series converges only at x = c.

2. There is an R > 0 such that the series converges for all x in
(c− R, c+ R) and diverges for all x < c− R and x > c+ R.

3. The series converges for all x.

The value of R is important when understanding a power series, hence it is
given a name in the following definiƟon. Also, note that part 2 of Theorem 8.6.1
makes a statement about the interval (c− R, c+ R), but the not the endpoints
of that interval. A series may/may not converge at these endpoints.

Notes:
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Chapter 8 Sequences and Series

DefiniƟon 8.6.2 Radius and Interval of Convergence

1. The number R given in Theorem 8.6.1 is the radius of convergence
of a given series. When a series converges for only x = c, we say
the radius of convergence is 0, i.e., R = 0. When a series converges
for all x, we say the series has an infinite radius of convergence, i.e.,
R = ∞.

2. The interval of convergence is the set of all values of x for which
the series converges.

To find the values of x for which a given series converges, wewill use the con-
vergence tests we studied previously (especially the RaƟo Test). However, the
tests all required that the terms of a series be posiƟve. The following theorem
gives us a work–around to this problem.

Theorem 8.6.2 The Radius of Convergence of a Series and Absolute
Convergence

The series
∞∑
n=0

an(x − c)n and
∞∑
n=0

∣∣an(x − c)n
∣∣ have the same radius of

convergence R.

Theorem 8.6.2 allows us to find the radius of convergence R of a series by
applying the RaƟo Test (or any applicable test) to the absolute value of the terms
of the series. We pracƟce this in the following example.

Example 8.6.2 Determining the radius and interval of convergence.
Find the radius and interval of convergence for each of the following series:

1.
∞∑
n=0

xn

n!
2.

∞∑
n=1

(−1)n+1 xn

n
3.

∞∑
n=0

2n(x− 3)n 4.
∞∑
n=0

n!xn

SÊ½çã®ÊÄ

Notes:
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8.6 Power Series

1. We apply the RaƟo Test to the series
∞∑
n=0

∣∣∣∣xnn!
∣∣∣∣:

lim
n→∞

∣∣xn+1/(n+ 1)!
∣∣∣∣xn/n!∣∣ = lim

n→∞

∣∣∣∣xn+1

xn
· n!
(n+ 1)!

∣∣∣∣
= lim

n→∞

∣∣∣∣ x
n+ 1

∣∣∣∣
= 0 for all x.

The RaƟo Test shows us that regardless of the choice of x, the series con-
verges. Therefore the radius of convergence is R = ∞, and the interval of
convergence is (−∞,∞).

2. We apply the RaƟo Test to the series
∞∑
n=1

∣∣∣∣(−1)n+1 xn

n

∣∣∣∣ = ∞∑
n=1

∣∣∣∣xnn
∣∣∣∣:

lim
n→∞

∣∣xn+1/(n+ 1)
∣∣∣∣xn/n∣∣ = lim

n→∞

∣∣∣∣xn+1

xn
· n
n+ 1

∣∣∣∣
= lim

n→∞
|x| n

n+ 1
= |x|.

The RaƟo Test states a series converges if the limit of |an+1/an| = L < 1.
We found the limit above to be |x|; therefore, the power series converges
when |x| < 1, or when x is in (−1, 1). Thus the radius of convergence is
R = 1.

To determine the interval of convergence, we need to check the endpoints
of (−1, 1). When x = −1, we have the opposite of the Harmonic Series:

∞∑
n=1

(−1)n+1 (−1)n

n
=

∞∑
n=1

−1
n

= −∞.

The series diverges when x = −1.

When x = 1, we have the series
∞∑
n=1

(−1)n+1 (1)n

n
, which is the AlternaƟng

Harmonic Series, which converges. Therefore the interval of convergence
is (−1, 1].

Notes:
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3. We apply the RaƟo Test to the series
∞∑
n=0

∣∣2n(x− 3)n
∣∣:

lim
n→∞

∣∣2n+1(x− 3)n+1
∣∣∣∣2n(x− 3)n

∣∣ = lim
n→∞

∣∣∣∣2n+1

2n
· (x− 3)n+1

(x− 3)n

∣∣∣∣
= lim

n→∞

∣∣2(x− 3)
∣∣.

According to the RaƟo Test, the series convergeswhen
∣∣2(x−3)

∣∣ < 1 =⇒∣∣x− 3
∣∣ < 1/2. The series is centered at 3, and xmust be within 1/2 of 3

in order for the series to converge. Therefore the radius of convergence
is R = 1/2, and we know that the series converges absolutely for all x in
(3− 1/2, 3+ 1/2) = (2.5, 3.5).
We check for convergence at the endpoints to find the interval of conver-
gence. When x = 2.5, we have:

∞∑
n=0

2n(2.5− 3)n =
∞∑
n=0

2n(−1/2)n

=

∞∑
n=0

(−1)n,

which diverges. A similar process shows that the series also diverges at
x = 3.5. Therefore the interval of convergence is (2.5, 3.5).

4. We apply the RaƟo Test to
∞∑
n=0

∣∣n!xn∣∣:
lim

n→∞

∣∣(n+ 1)!xn+1
∣∣∣∣n!xn∣∣ = lim

n→∞

∣∣(n+ 1)x
∣∣

= ∞ for all x, except x = 0.

The RaƟo Test shows that the series diverges for all x except x = 0. There-
fore the radius of convergence is R = 0.

We can use a power series to define a funcƟon:

f(x) =
∞∑
n=0

anxn

where the domain of f is a subset of the interval of convergence of the power
series. One can apply calculus techniques to such funcƟons; in parƟcular, we
can find derivaƟves and anƟderivaƟves.

Notes:

464



8.6 Power Series

Theorem 8.6.3 DerivaƟves and Indefinite Integrals of Power Series
FuncƟons

Let f(x) =
∞∑
n=0

an(x − c)n be a funcƟon defined by a power series, with

radius of convergence R.

1. f(x) is conƟnuous and differenƟable on (c− R, c+ R).

2. f ′(x) =
∞∑
n=1

an · n · (x− c)n−1, with radius of convergence R.

3.
∫

f(x) dx = C+
∞∑
n=0

an
(x− c)n+1

n+ 1
, with radius of convergence R.

A few notes about Theorem 8.6.3:

1. The theorem states that differenƟaƟon and integraƟon do not change the
radius of convergence. It does not state anything about the interval of
convergence. They are not always the same.

2. NoƟce how the summaƟon for f ′(x) starts with n = 1. This is because the
constant term a0 of f(x) goes to 0.

3. DifferenƟaƟon and integraƟon are simply calculated term–by–term using
the Power Rules.

Example 8.6.3 DerivaƟves and indefinite integrals of power series

Let f(x) =
∞∑
n=0

xn. Find f ′(x) and F(x) =
∫

f(x) dx, along with their respecƟve

intervals of convergence.

SÊ½çã®ÊÄ We find the derivaƟve and indefinite integral of f(x), follow-
ing Theorem 8.6.3.

1. f ′(x) =
∞∑
n=1

nxn−1 = 1+ 2x+ 3x2 + 4x3 + · · · .

In Example 8.6.1, we recognized that
∞∑
n=0

xn is a geometric series in x. We

know that such a geometric series converges when |x| < 1; that is, the
interval of convergence is (−1, 1).

Notes:
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Chapter 8 Sequences and Series

To determine the interval of convergence of f ′(x), we consider the end-
points of (−1, 1):

f ′(−1) = 1− 2+ 3− 4+ · · · , which diverges.

f ′(1) = 1+ 2+ 3+ 4+ · · · , which diverges.

Therefore, the interval of convergence of f ′(x) is (−1, 1).

2. F(x) =
∫

f(x) dx = C+
∞∑
n=0

xn+1

n+ 1
= C+ x+

x2

2
+

x3

3
+ · · ·

To find the interval of convergence of F(x), we again consider the end-
points of (−1, 1):

F(−1) = C− 1+ 1/2− 1/3+ 1/4+ · · ·

The value of C is irrelevant; noƟce that the rest of the series is an Alter-
naƟng Series that whose terms converge to 0. By the AlternaƟng Series
Test, this series converges. (In fact, we can recognize that the terms of the
series aŌer C are the opposite of the AlternaƟng Harmonic Series. We can
thus say that F(−1) = C− ln 2.)

F(1) = C+ 1+ 1/2+ 1/3+ 1/4+ · · ·

NoƟce that this summaƟon is C + the Harmonic Series, which diverges.
Since F converges for x = −1 and diverges for x = 1, the interval of
convergence of F(x) is [−1, 1).

The previous example showed how to take the derivaƟve and indefinite in-
tegral of a power series without moƟvaƟon for why we care about such opera-
Ɵons. Wemay care for the sheer mathemaƟcal enjoyment “that we can”, which
is moƟvaƟon enough for many. However, we would be remiss to not recognize
that we can learn a great deal from taking derivaƟves and indefinite integrals.

Recall that f(x) =

∞∑
n=0

xn in Example 8.6.3 is a geometric series. According

to Theorem 8.2.1, this series converges to 1/(1− x) when |x| < 1. Thus we can
say

f(x) =
∞∑
n=0

xn =
1

1− x
, on (−1, 1).

IntegraƟng the power series, (as done in Example 8.6.3,) we find

F(x) = C1 +
∞∑
n=0

xn+1

n+ 1
, (8.4)

Notes:
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8.6 Power Series

while integraƟng the funcƟon f(x) = 1/(1− x) gives

F(x) = − ln |1− x|+ C2. (8.5)

EquaƟng EquaƟons (8.4) and (8.5), we have

F(x) = C1 +
∞∑
n=0

xn+1

n+ 1
= − ln |1− x|+ C2.

Leƫng x = 0, we have F(0) = C1 = C2. This implies that we can drop the
constants and conclude

∞∑
n=0

xn+1

n+ 1
= − ln |1− x|.

We established in Example 8.6.3 that the series on the leŌ converges at x = −1;
subsƟtuƟng x = −1 on both sides of the above equality gives

−1+
1
2
− 1

3
+

1
4
− 1

5
+ · · · = − ln 2.

On the leŌ we have the opposite of the AlternaƟng Harmonic Series; on the
right, we have− ln 2. We conclude that

1− 1
2
+

1
3
− 1

4
+ · · · = ln 2.

Important: We stated in Key Idea 8.2.1 (in SecƟon 8.2) that the AlternaƟng Har-
monic Series converges to ln 2, and referred to this fact again in Example 8.5.1
of SecƟon 8.5. However, we never gave an argument for why this was the case.
The work above finally shows how we conclude that the AlternaƟng Harmonic
Series converges to ln 2.

We use this type of analysis in the next example.

Example 8.6.4 Analyzing power series funcƟons

Let f(x) =
∞∑
n=0

xn

n!
. Find f ′(x) and

∫
f(x) dx, and use these to analyze the behav-

ior of f(x).

SÊ½çã®ÊÄ We start by making two notes: first, in Example 8.6.2, we
found the interval of convergence of this power series is (−∞,∞). Second, we
will find it useful later to have a few terms of the series wriƩen out:

∞∑
n=0

xn

n!
= 1+ x+

x2

2
+

x3

6
+

x4

24
+ · · · (8.6)

Notes:
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We now find the derivaƟve:

f ′(x) =
∞∑
n=1

n
xn−1

n!

=

∞∑
n=1

xn−1

(n− 1)!
= 1+ x+

x2

2!
+ · · · .

Since the series starts at n = 1 and each term refers to (n− 1), we can re-index
the series starƟng with n = 0:

=

∞∑
n=0

xn

n!

= f(x).

We found the derivaƟve of f(x) is f(x). The only funcƟons for which this is true
are of the form y = cex for some constant c. As f(0) = 1 (see EquaƟon (8.6)), c
must be 1. Therefore we conclude that

f(x) =
∞∑
n=0

xn

n!
= ex

for all x.
We can also find

∫
f(x) dx:

∫
f(x) dx = C+

∞∑
n=0

xn+1

n!(n+ 1)

= C+
∞∑
n=0

xn+1

(n+ 1)!

We write out a few terms of this last series:

C+
∞∑
n=0

xn+1

(n+ 1)!
= C+ x+

x2

2
+

x3

6
+

x4

24
+ · · ·

The integral of f(x) differs from f(x) only by a constant, again indicaƟng that
f(x) = ex.

Example 8.6.4 and the work following Example 8.6.3 established relaƟon-
ships between a power series funcƟon and “regular” funcƟons that we have
dealt with in the past. In general, given a power series funcƟon, it is difficult (if

Notes:
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not impossible) to express the funcƟon in terms of elementary funcƟons. We
chose examples where things worked out nicely.

In this secƟon’s last example, we show how to solve a simple differenƟal
equaƟon with a power series.

Example 8.6.5 Solving a differenƟal equaƟon with a power series.
Give the first 4 terms of the power series soluƟon to y ′ = 2y, where y(0) = 1.

SÊ½çã®ÊÄ The differenƟal equaƟon y ′ = 2y describes a funcƟon y =
f(x) where the derivaƟve of y is twice y and y(0) = 1. This is a rather simple
differenƟal equaƟon; with a bit of thought one should realize that if y = Ce2x,
then y ′ = 2Ce2x, and hence y ′ = 2y. By leƫng C = 1 we saƟsfy the iniƟal
condiƟon of y(0) = 1.

Let’s ignore the fact that we already know the soluƟon and find a power
series funcƟon that saƟsfies the equaƟon. The soluƟon we seek will have the
form

f(x) =
∞∑
n=0

anxn = a0 + a1x+ a2x2 + a3x3 + · · ·

for unknown coefficients an. We can find f ′(x) using Theorem 8.6.3:

f ′(x) =
∞∑
n=1

an · n · xn−1 = a1 + 2a2x+ 3a3x2 + 4a4x3 · · · .

Since f ′(x) = 2f(x), we have

a1 + 2a2x+ 3a3x2 + 4a4x3 · · · = 2
(
a0 + a1x+ a2x2 + a3x3 + · · ·

)
= 2a0 + 2a1x+ 2a2x2 + 2a3x3 + · · ·

The coefficients of like powers of xmust be equal, so we find that

a1 = 2a0, 2a2 = 2a1, 3a3 = 2a2, 4a4 = 2a3, etc.

The iniƟal condiƟon y(0) = f(0) = 1 indicates that a0 = 1; with this, we can
find the values of the other coefficients:

a0 = 1 and a1 = 2a0 ⇒ a1 = 2;
a1 = 2 and 2a2 = 2a1 ⇒ a2 = 4/2 = 2;
a2 = 2 and 3a3 = 2a2 ⇒ a3 = 8/(2 · 3) = 4/3;

a3 = 4/3 and 4a4 = 2a3 ⇒ a4 = 16/(2 · 3 · 4) = 2/3.

Thus the first 5 terms of the power series soluƟon to the differenƟal equaƟon
y ′ = 2y is

f(x) = 1+ 2x+ 2x2 +
4
3
x3 +

2
3
x4 + · · ·

Notes:
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In SecƟon 8.8, as we study Taylor Series, we will learn how to recognize this se-
ries as describing y = e2x.

Our last example illustrates that it can be difficult to recognize an elementary
funcƟon by its power series expansion. It is far easier to start with a known func-
Ɵon, expressed in terms of elementary funcƟons, and represent it as a power
series funcƟon. One may wonder why we would bother doing so, as the laƩer
funcƟon probably seems more complicated. In the next two secƟons, we show
both how to do this and why such a process can be beneficial.

Notes:
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Exercises 8.6
Terms and Concepts
1. We adopt the convenƟon that x0 = , regardless of the

value of x.

2. What is the difference between the radius of convergence
and the interval of convergence?

3. If the radius of convergence of
∞∑
n=0

anxn is 5, what is the ra-

dius of convergence of
∞∑
n=1

n · anxn−1?

4. If the radius of convergence of
∞∑
n=0

anxn is 5, what is the ra-

dius of convergence of
∞∑
n=0

(−1)nanxn?

Problems
In Exercises 5 – 8, write out the sum of the first 5 terms of the
given power series.

5.
∞∑
n=0

2nxn

6.
∞∑
n=1

1
n2

xn

7.
∞∑
n=0

1
n!
xn

8.
∞∑
n=0

(−1)n

(2n)!
x2n

In Exercises 9 – 24, a power series is given.
(a) Find the radius of convergence.
(b) Find the interval of convergence.

9.
∞∑
n=0

(−1)n+1

n!
xn

10.
∞∑
n=0

nxn

11.
∞∑
n=1

(−1)n(x− 3)n

n

12.
∞∑
n=0

(x+ 4)n

n!

13.
∞∑
n=0

xn

2n

14.
∞∑
n=0

(−1)n(x− 5)n

10n

15.
∞∑
n=0

5n(x− 1)n

16.
∞∑
n=0

(−2)nxn

17.
∞∑
n=0

√
nxn

18.
∞∑
n=0

n
3n

xn

19.
∞∑
n=0

3n

n!
(x− 5)n

20.
∞∑
n=0

(−1)nn!(x− 10)n

21.
∞∑
n=1

xn

n2

22.
∞∑
n=1

(x+ 2)n

n3

23.
∞∑
n=0

n!
( x
10

)n

24.
∞∑
n=0

n2
(
x+ 4
4

)n

In Exercises 25 – 30, a funcƟon f(x) =
∞∑
n=0

anxn is given.

(a) Give a power series for f ′(x) and its interval of conver-
gence.

(b) Give a power series for
∫
f(x) dx and its interval of con-

vergence.

25.
∞∑
n=0

nxn

26.
∞∑
n=1

xn

n

27.
∞∑
n=0

( x
2

)n
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28.
∞∑
n=0

(−3x)n

29.
∞∑
n=0

(−1)nx2n

(2n)!

30.
∞∑
n=0

(−1)nxn

n!

In Exercises 31 – 36, give the first 5 terms of the series that is
a soluƟon to the given differenƟal equaƟon.

31. y ′ = 3y, y(0) = 1

32. y ′ = 5y, y(0) = 5

33. y ′ = y2, y(0) = 1

34. y ′ = y+ 1, y(0) = 1

35. y ′′ = −y, y(0) = 0, y ′(0) = 1

36. y ′′ = 2y, y(0) = 1, y ′(0) = 1
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y = f(x)

.

y = p1(x)

.

−4

.

−2

.

2

.

4

. −5.

5

.

x

.

y

f(0) = 2 f ′′′(0) = −1
f ′(0) = 1 f (4)(0) = −12
f ′′(0) = 2 f (5)(0) = −19

Figure 8.7.1: Ploƫng y = f(x) and a table
of derivaƟves of f evaluated at 0.
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y = p2(x)

.

y = p4(x)

.
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Figure 8.7.2: Ploƫng f, p2 and p4.
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y = p13(x)

.
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y

Figure 8.7.3: Ploƫng f and p13.

8.7 Taylor Polynomials

8.7 Taylor Polynomials
Consider a funcƟon y = f(x) and a point

(
c, f(c)

)
. The derivaƟve, f ′(c), gives

the instantaneous rate of change of f at x = c. Of all lines that pass through the
point

(
c, f(c)

)
, the line that best approximates f at this point is the tangent line;

that is, the line whose slope (rate of change) is f ′(c).
In Figure 8.7.1, we see a funcƟon y = f(x) graphed. The table below the

graph shows that f(0) = 2 and f ′(0) = 1; therefore, the tangent line to f at
x = 0 is p1(x) = 1(x−0)+2 = x+2. The tangent line is also given in the figure.
Note that “near” x = 0, p1(x) ≈ f(x); that is, the tangent line approximates f
well.

One shortcoming of this approximaƟon is that the tangent line only matches
the slope of f; it does not, for instance, match the concavity of f. We can find a
polynomial, p2(x), that doesmatch the concavitywithoutmuchdifficulty, though.
The table in Figure 8.7.1 gives the following informaƟon:

f(0) = 2 f ′(0) = 1 f ′′(0) = 2.

Therefore, we want our polynomial p2(x) to have these same properƟes. That
is, we need

p2(0) = 2 p′2(0) = 1 p′′2 (0) = 2.

This is simply an iniƟal–value problem. We can solve this using the tech-
niques first described in SecƟon 5.1. To keep p2(x) as simple as possible, we’ll
assume that not only p′′2 (0) = 2, but that p′′2 (x) = 2. That is, the second deriva-
Ɵve of p2 is constant.

If p′′2 (x) = 2, then p′2(x) = 2x + C for some constant C. Since we have
determined that p′2(0) = 1, we find that C = 1 and so p′2(x) = 2x + 1. Finally,
we can compute p2(x) = x2+x+C. Using our iniƟal values, we know p2(0) = 2
so C = 2.We conclude that p2(x) = x2 + x+ 2. This funcƟon is ploƩed with f in
Figure 8.7.2.

We can repeat this approximaƟon process by creaƟng polynomials of higher
degree that matchmore of the derivaƟves of f at x = 0. In general, a polynomial
of degree n can be created to match the first n derivaƟves of f. Figure 8.7.2 also
shows p4(x) = −x4/2−x3/6+x2+x+2, whose first four derivaƟves at 0match
those of f. (Using the table in Figure 8.7.1, start with p(4)4 (x) = −12 and solve
the related iniƟal–value problem.)

As we use more and more derivaƟves, our polynomial approximaƟon to f
gets beƩer and beƩer. In this example, the interval on which the approximaƟon
is “good” gets bigger and bigger. Figure 8.7.3 shows p13(x); we can visually affirm
that this polynomial approximates f very well on [−2, 3]. (The polynomial p13(x)
is not parƟcularly “nice”. It is

16901x13

6227020800
+

13x12

1209600
−

1321x11

39916800
−

779x10

1814400
−

359x9

362880
+

x8

240
+

139x7

5040
+

11x6

360
−

19x5

120
−

x4

2
−

x3

6
+x2+x+2.)

Notes:
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f(x) = ex ⇒ f(0) = 1
f ′(x) = ex ⇒ f ′(0) = 1
f ′′(x) = ex ⇒ f ′′(0) = 1
...

...
f (n)(x) = ex ⇒ f (n)(0) = 1

Figure 8.7.4: The derivaƟves of f(x) = ex

evaluated at x = 0.

Chapter 8 Sequences and Series

Thepolynomialswehave created are examples of Taylor polynomials, named
aŌer the BriƟsh mathemaƟcian Brook Taylor who made important discoveries
about such funcƟons. While we created the above Taylor polynomials by solving
iniƟal–value problems, it can be shown that Taylor polynomials follow a general
paƩern that make their formaƟon much more direct. This is described in the
following definiƟon.

DefiniƟon 8.7.1 Taylor Polynomial, Maclaurin Polynomial

Let f be a funcƟon whose first n derivaƟves exist at x = c.

1. The Taylor polynomial of degree n of f at x = c is

pn(x) = f(c)+f ′(c)(x−c)+
f ′′(c)
2!

(x−c)2+
f ′′′(c)
3!

(x−c)3+· · ·+ f (n)(c)
n!

(x−c)n.

2. A special case of the Taylor polynomial is theMaclaurin polynomial, where c =
0. That is, theMaclaurin polynomial of degree n of f is

pn(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + · · ·+ f (n)(0)
n!

xn.

We will pracƟce creaƟng Taylor and Maclaurin polynomials in the following
examples.

Example 8.7.1 Finding and using Maclaurin polynomials

1. Find the nth Maclaurin polynomial for f(x) = ex.

2. Use p5(x) to approximate the value of e.

SÊ½çã®ÊÄ

1. We start with creaƟng a table of the derivaƟves of ex evaluated at x = 0.
In this parƟcular case, this is relaƟvely simple, as shown in Figure 8.7.4.
By the definiƟon of the Maclaurin series, we have

pn(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + · · ·+ f (n)(0)
n!

xn

= 1+ x+
1
2
x2 +

1
6
x3 +

1
24

x4 + · · ·+ 1
n!
xn.

Notes:
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.....y = p5(x).
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Figure 8.7.5: A plot of f(x) = ex and its
5th degree Maclaurin polynomial p5(x).

f(x) = ln x ⇒ f(1) = 0
f ′(x) = 1/x ⇒ f ′(1) = 1
f ′′(x) = −1/x2 ⇒ f ′′(1) = −1
f ′′′(x) = 2/x3 ⇒ f ′′′(1) = 2
f (4)(x) = −6/x4 ⇒ f (4)(1) = −6
...

...
f (n)(x) = ⇒ f (n)(1) =
(−1)n+1(n− 1)!

xn
(−1)n+1(n− 1)!

Figure 8.7.6: DerivaƟves of ln x evaluated
at x = 1.

8.7 Taylor Polynomials

2. Using our answer from part 1, we have

p5 = 1+ x+
1
2
x2 +

1
6
x3 +

1
24

x4 +
1

120
x5.

To approximate the value of e, note that e = e1 = f(1) ≈ p5(1). It is very
straighƞorward to evaluate p5(1):

p5(1) = 1+ 1+
1
2
+

1
6
+

1
24

+
1

120
=

163
60

≈ 2.71667.

A plot of f(x) = ex and p5(x) is given in Figure 8.7.5.

Example 8.7.2 Finding and using Taylor polynomials

1. Find the nth Taylor polynomial of y = ln x at x = 1.

2. Use p6(x) to approximate the value of ln 1.5.

3. Use p6(x) to approximate the value of ln 2.

SÊ½çã®ÊÄ

1. We begin by creaƟng a table of derivaƟves of ln x evaluated at x = 1.
While this is not as straighƞorward as it was in the previous example, a
paƩern does emerge, as shown in Figure 8.7.6.
Using DefiniƟon 8.7.1, we have

pn(x) = f(c) + f ′(c)(x− c) + f ′′(c)
2!

(x− c)2 + f ′′′(c)
3!

(x− c)3 + · · ·+ f (n)(c)
n!

(x− c)n

= 0+ (x− 1)− 1
2
(x− 1)2 + 1

3
(x− 1)3 − 1

4
(x− 1)4 + · · ·+ (−1)n+1

n
(x− 1)n.

Note how the coefficients of the (x− 1) terms turn out to be “nice.”

2. We can compute p6(x) using our work above:

p6(x) = (x−1)− 1
2
(x−1)2+

1
3
(x−1)3− 1

4
(x−1)4+

1
5
(x−1)5− 1

6
(x−1)6.

Since p6(x) approximates ln x well near x = 1, we approximate ln 1.5 ≈
p6(1.5):

Notes:
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y = ln x
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y = p6(x)
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Figure 8.7.7: A plot of y = ln x and its 6th
degree Taylor polynomial at x = 1.
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y = ln x

.

y = p20(x)

.
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Figure 8.7.8: A plot of y = ln x and its 20th
degree Taylor polynomial at x = 1.

Chapter 8 Sequences and Series

p6(1.5) = (1.5− 1)− 1
2
(1.5− 1)2 +

1
3
(1.5− 1)3 − 1

4
(1.5− 1)4 + · · ·

· · ·+ 1
5
(1.5− 1)5 − 1

6
(1.5− 1)6

=
259
640

≈ 0.404688.

This is a good approximaƟon as a calculator shows that ln 1.5 ≈ 0.4055.
Figure 8.7.7 plots y = ln x with y = p6(x). We can see that ln 1.5 ≈
p6(1.5).

3. We approximate ln 2 with p6(2):

p6(2) = (2− 1)− 1
2
(2− 1)2 +

1
3
(2− 1)3 − 1

4
(2− 1)4 + · · ·

· · ·+ 1
5
(2− 1)5 − 1

6
(2− 1)6

= 1− 1
2
+

1
3
− 1

4
+

1
5
− 1

6

=
37
60

≈ 0.616667.

This approximaƟon is not terribly impressive: a handheld calculator shows
that ln 2 ≈ 0.693147. The graph in Figure 8.7.7 shows that p6(x) provides
less accurate approximaƟons of ln x as x gets close to 0 or 2.
Surprisingly enough, even the 20th degree Taylor polynomial fails to ap-
proximate ln x for x > 2, as shown in Figure 8.7.8. We’ll soon discuss why
this is.

Taylor polynomials are used to approximate funcƟons f(x) in mainly two sit-
uaƟons:

1. When f(x) is known, but perhaps “hard” to compute directly. For instance,
we can define y = cos x as either the raƟo of sides of a right triangle
(“adjacent over hypotenuse”) or with the unit circle. However, neither of
these provides a convenient way of compuƟng cos 2. A Taylor polynomial
of sufficiently high degree can provide a reasonablemethod of compuƟng
such values using only operaƟons usually hard–wired into a computer (+,
−,× and÷).

Notes:
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Note: Even though Taylor polynomials
could be used in calculators and com-
puters to calculate values of trigonomet-
ric funcƟons, in pracƟce they generally
aren’t. Other more efficient and accurate
methods have been developed, such as
the CORDIC algorithm.

8.7 Taylor Polynomials

2. When f(x) is not known, but informaƟon about its derivaƟves is known.
This occurs more oŌen than one might think, especially in the study of
differenƟal equaƟons.

In both situaƟons, a criƟcal piece of informaƟon to have is “How good is my
approximaƟon?” If we use a Taylor polynomial to compute cos 2, how do we
know how accurate the approximaƟon is?

We had the same problem when studying Numerical IntegraƟon. Theorem
5.5.1 provided bounds on the error when using, say, Simpson’s Rule to approx-
imate a definite integral. These bounds allowed us to determine that, for in-
stance, using 10 subintervals provided an approximaƟon within ±.01 of the ex-
act value. The following theorem gives similar bounds for Taylor (and hence
Maclaurin) polynomials.

Theorem 8.7.1 Taylor’s Theorem

1. Let f be a funcƟon whose n+ 1th derivaƟve exists on an interval I and let c be in I.
Then, for each x in I, there exists zx between x and c such that

f(x) = f(c) + f ′(c)(x− c) +
f ′′(c)
2!

(x− c)2 + · · ·+ f (n)(c)
n!

(x− c)n + Rn(x),

where Rn(x) =
f (n+1)(zx)
(n+ 1)!

(x− c)(n+1).

2.
∣∣Rn(x)∣∣ ≤ max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!
∣∣(x− c)(n+1)∣∣, where z is in I.

The first part of Taylor’s Theorem states that f(x) = pn(x) + Rn(x), where
pn(x) is the nth order Taylor polynomial and Rn(x) is the remainder, or error, in
the Taylor approximaƟon. The second part gives bounds on how big that error
can be. If the (n + 1)th derivaƟve is large on I, the error may be large; if x is far
from c, the error may also be large. However, the (n+ 1)! term in the denomi-
nator tends to ensure that the error gets smaller as n increases.

The following example computes error esƟmates for the approximaƟons of
ln 1.5 and ln 2 made in Example 8.7.2.

Example 8.7.3 Finding error bounds of a Taylor polynomial
Use Theorem 8.7.1 to find error bounds when approximaƟng ln 1.5 and ln 2 with
p6(x), the Taylor polynomial of degree 6 of f(x) = ln x at x = 1, as calculated in
Example 8.7.2.

Notes:
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SÊ½çã®ÊÄ

1. We start with the approximaƟon of ln 1.5 with p6(1.5). The theorem ref-
erences an open interval I that contains both x and c. The smaller the
interval we use the beƩer; it will give us a more accurate (and smaller!)
approximaƟon of the error. We let I = (0.9, 1.6), as this interval contains
both c = 1 and x = 1.5.
The theorem references max

∣∣f (n+1)(z)
∣∣. In our situaƟon, this is asking

“How big can the 7th derivaƟve of y = ln x be on the interval (0.9, 1.6)?”
The seventh derivaƟve is y = −6!/x7. The largest value it aƩains on I is
about 1506. Thus we can bound the error as:∣∣R6(1.5)∣∣ ≤ max

∣∣f (7)(z)∣∣
7!

∣∣(1.5− 1)7
∣∣

≤ 1506
5040

· 1
27

≈ 0.0023.

We computed p6(1.5) = 0.404688; using a calculator, we find ln 1.5 ≈
0.405465, so the actual error is about 0.000778, which is less than our
bound of 0.0023. This affirms Taylor’s Theorem; the theorem states that
our approximaƟon would be within about 2 thousandths of the actual
value, whereas the approximaƟon was actually closer.

2. We again find an interval I that contains both c = 1 and x = 2; we choose
I = (0.9, 2.1). The maximum value of the seventh derivaƟve of f on this
interval is again about 1506 (as the largest values come near x = 0.9).
Thus ∣∣R6(2)∣∣ ≤ max

∣∣f (7)(z)∣∣
7!

∣∣(2− 1)7
∣∣

≤ 1506
5040

· 17

≈ 0.30.

This bound is not as nearly as good as before. Using the degree 6 Taylor
polynomial at x = 1 will bring us within 0.3 of the correct answer. As
p6(2) ≈ 0.61667, our error esƟmate guarantees that the actual value of
ln 2 is somewhere between 0.31667 and 0.91667. These bounds are not
parƟcularly useful.
In reality, our approximaƟon was only off by about 0.07. However, we
are approximaƟng ostensibly because we do not know the real answer. In
order to be assured that we have a good approximaƟon, we would have
to resort to using a polynomial of higher degree.

Notes:
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f(x) = cos x ⇒ f(0) = 1
f ′(x) = − sin x ⇒ f ′(0) = 0
f ′′(x) = − cos x ⇒ f ′′(0) = −1
f ′′′(x) = sin x ⇒ f ′′′(0) = 0
f (4)(x) = cos x ⇒ f (4)(0) = 1
f (5)(x) = − sin x ⇒ f (5)(0) = 0
f (6)(x) = − cos x ⇒ f (6)(0) = −1
f (7)(x) = sin x ⇒ f (7)(0) = 0
f (8)(x) = cos x ⇒ f (8)(0) = 1
f (9)(x) = − sin x ⇒ f (9)(0) = 0

Figure 8.7.9: A table of the derivaƟves of
f(x) = cos x evaluated at x = 0.
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.
.. f(x) = cos x

Figure 8.7.10: A graph of f(x) = cos x and
its degree 8 Maclaurin polynomial.

8.7 Taylor Polynomials

We pracƟce again. This Ɵme, we use Taylor’s theorem to find n that guaran-
tees our approximaƟon is within a certain amount.

Example 8.7.4 Finding sufficiently accurate Taylor polynomials
Find n such that the nth Taylor polynomial of f(x) = cos x at x = 0 approximates
cos 2 to within 0.001 of the actual answer. What is pn(2)?

SÊ½çã®ÊÄ Following Taylor’s theorem, we need bounds on the size of
the derivaƟves of f(x) = cos x. In the case of this trigonometric funcƟon, this is
easy. All derivaƟves of cosine are± sin x or± cos x. In all cases, these funcƟons
are never greater than 1 in absolute value. We want the error to be less than
0.001. To find the appropriate n, consider the following inequaliƟes:

max
∣∣f (n+1)(z)

∣∣
(n+ 1)!

∣∣(2− 0)(n+1)∣∣ ≤ 0.001

1
(n+ 1)!

· 2(n+1) ≤ 0.001

We find an n that saƟsfies this last inequality with trial–and–error. When n = 8,

we have
28+1

(8+ 1)!
≈ 0.0014; when n = 9, we have

29+1

(9+ 1)!
≈ 0.000282 <

0.001. Thus we want to approximate cos 2 with p9(2).

We now set out to compute p9(x). We again need a table of the derivaƟves
of f(x) = cos x evaluated at x = 0. A table of these values is given in Figure 8.7.9.
NoƟce how the derivaƟves, evaluated at x = 0, follow a certain paƩern. All the
odd powers of x in the Taylor polynomial will disappear as their coefficient is 0.
While our error bounds state that we need p9(x), our work shows that this will
be the same as p8(x).

Since we are forming our polynomial at x = 0, we are creaƟng a Maclaurin
polynomial, and:

p8(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + · · ·+ f (8)(0)
8!

x8

= 1− 1
2!
x2 +

1
4!
x4 − 1

6!
x6 +

1
8!
x8

We finally approximate cos 2:

cos 2 ≈ p8(2) = −131
315

≈ −0.41587.

Our error bound guarantee that this approximaƟon is within 0.001 of the correct
answer. Technology shows us that our approximaƟon is actually within about
0.0003 of the correct answer.

Figure 8.7.10 shows a graph of y = p8(x) and y = cos x. Note how well the
two funcƟons agree on about (−π, π).

Notes:
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f(x) =
√
x ⇒ f(4) = 2

f ′(x) = 1
2
√
x

⇒ f ′(4) = 1
4

f ′′(x) = −1
4x3/2

⇒ f ′′(4) = −1
32

f ′′′(x) = 3
8x5/2

⇒ f ′′′(4) = 3
256

f (4)(x) = −15
16x7/2

⇒ f (4)(4) = −15
2048

Figure 8.7.11: A table of the derivaƟves of
f(x) =

√
x evaluated at x = 4.

.....

.. y =
√
x.

y = p4(x)

.
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y

Figure 8.7.12: A graph of f(x) =
√
x and

its degree 4 Taylor polynomial at x = 4.
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Example 8.7.5 Finding and using Taylor polynomials

1. Find the degree 4 Taylor polynomial, p4(x), for f(x) =
√
x at x = 4.

2. Use p4(x) to approximate
√
3.

3. Find bounds on the error when approximaƟng
√
3 with p4(3).

SÊ½çã®ÊÄ

1. We begin by evaluaƟng the derivaƟves of f at x = 4. This is done in Figure
8.7.11. These values allow us to form the Taylor polynomial p4(x):

p4(x) = 2+
1
4
(x−4)+

−1/32
2!

(x−4)2+
3/256
3!

(x−4)3+
−15/2048

4!
(x−4)4.

2. As p4(x) ≈
√
x near x = 4, we approximate

√
3 with p4(3) = 1.73212.

3. To find a bound on the error, we need an open interval that contains x = 3
and x = 4. We set I = (2.9, 4.1). The largest value the fiŌh derivaƟve of
f(x) =

√
x takes on this interval is near x = 2.9, at about 0.0273. Thus∣∣R4(3)∣∣ ≤ 0.0273

5!
∣∣(3− 4)5

∣∣ ≈ 0.00023.

This shows our approximaƟon is accurate to at least the first 2 places aŌer
the decimal. (It turns out that our approximaƟon is actually accurate to
4 places aŌer the decimal.) A graph of f(x) =

√
x and p4(x) is given in

Figure 8.7.12. Note how the two funcƟons are nearly indisƟnguishable on
(2, 7).

Our final example gives a brief introducƟon to using Taylor polynomials to
solve differenƟal equaƟons.

Example 8.7.6 ApproximaƟng an unknown funcƟon
A funcƟon y = f(x) is unknown save for the following two facts.

1. y(0) = f(0) = 1, and

2. y ′ = y2

(This second fact says that amazingly, the derivaƟve of the funcƟon is actually
the funcƟon squared!)

Find the degree 3 Maclaurin polynomial p3(x) of y = f(x).

Notes:
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Figure 8.7.13: A graph of y = −1/(x− 1)
and y = p3(x) from Example 8.7.6.

8.7 Taylor Polynomials

SÊ½çã®ÊÄ Onemight iniƟally think that not enough informaƟon is given
to find p3(x). However, note how the second fact above actually lets us know
what y ′(0) is:

y ′ = y2 ⇒ y ′(0) = y2(0).
Since y(0) = 1, we conclude that y ′(0) = 1.

Nowwe find informaƟon about y ′′. StarƟng with y ′ = y2, take derivaƟves of
both sides, with respect to x. That means we must use implicit differenƟaƟon.

y ′ = y2

d
dx
(
y ′
)
=

d
dx
(
y2
)

y ′′ = 2y · y ′.

Now evaluate both sides at x = 0:

y ′′(0) = 2y(0) · y ′(0)
y ′′(0) = 2

We repeat this once more to find y ′′′(0). We again use implicit differenƟaƟon;
this Ɵme the Product Rule is also required.

d
dx
(
y ′′
)
=

d
dx
(
2yy ′

)
y ′′′ = 2y ′ · y ′ + 2y · y ′′.

Now evaluate both sides at x = 0:

y ′′′(0) = 2y ′(0)2 + 2y(0)y ′′(0)
y ′′′(0) = 2+ 4 = 6

In summary, we have:

y(0) = 1 y ′(0) = 1 y ′′(0) = 2 y ′′′(0) = 6.

We can now form p3(x):

p3(x) = 1+ x+
2
2!
x2 +

6
3!
x3

= 1+ x+ x2 + x3.

It turns out that the differenƟal equaƟon we started with, y ′ = y2, where
y(0) = 1, can be solved without too much difficulty: y =

1
1− x

. Figure 8.7.13
shows this funcƟon ploƩed with p3(x). Note how similar they are near x = 0.

Notes:
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Chapter 8 Sequences and Series

It is beyond the scope of this text to pursue error analysis when using Tay-
lor polynomials to approximate soluƟons to differenƟal equaƟons. This topic is
oŌen broached in introductory DifferenƟal EquaƟons courses and usually cov-
ered in depth in Numerical Analysis courses. Such an analysis is very important;
one needs to know how good their approximaƟon is. We explored this example
simply to demonstrate the usefulness of Taylor polynomials.

Most of this chapter has been devoted to the study of infinite series. This
secƟon has taken a step back from this study, focusing instead on finite summa-
Ɵon of terms. In the next secƟon, we explore Taylor Series, where we represent
a funcƟon with an infinite series.

Notes:
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Exercises 8.7
Terms and Concepts

1. What is the difference between a Taylor polynomial and a
Maclaurin polynomial?

2. T/F: In general, pn(x) approximates f(x) beƩer and beƩer
as n gets larger.

3. For some funcƟon f(x), theMaclaurin polynomial of degree
4 is p4(x) = 6+ 3x− 4x2 + 5x3 − 7x4. What is p2(x)?

4. For some funcƟon f(x), theMaclaurin polynomial of degree
4 is p4(x) = 6+ 3x− 4x2 + 5x3 − 7x4. What is f ′′′(0)?

Problems
In Exercises 5 – 12, find the Maclaurin polynomial of degree
n for the given funcƟon.

5. f(x) = e−x, n = 3

6. f(x) = sin x, n = 8

7. f(x) = x · ex, n = 5

8. f(x) = tan x, n = 6

9. f(x) = e2x, n = 4

10. f(x) = 1
1− x

, n = 4

11. f(x) = 1
1+ x

, n = 4

12. f(x) = 1
1+ x

, n = 7

In Exercises 13 – 20, find the Taylor polynomial of degree n,
at x = c, for the given funcƟon.

13. f(x) =
√
x, n = 4, c = 1

14. f(x) = ln(x+ 1), n = 4, c = 1

15. f(x) = cos x, n = 6, c = π/4

16. f(x) = sin x, n = 5, c = π/6

17. f(x) = 1
x
, n = 5, c = 2

18. f(x) = 1
x2
, n = 8, c = 1

19. f(x) = 1
x2 + 1

, n = 3, c = −1

20. f(x) = x2 cos x, n = 2, c = π

In Exercises 21 – 24, approximate the funcƟon value with the
indicated Taylor polynomial and give approximate bounds on
the error.

21. Approximate sin 0.1 with the Maclaurin polynomial of de-
gree 3.

22. Approximate cos 1 with the Maclaurin polynomial of de-
gree 4.

23. Approximate
√
10 with the Taylor polynomial of degree 2

centered at x = 9.

24. Approximate ln 1.5 with the Taylor polynomial of degree 3
centered at x = 1.

Exercises 25 – 28 ask for an n to be found such that pn(x) ap-
proximates f(x) within a certain bound of accuracy.

25. Find n such that the Maclaurin polynomial of degree n of
f(x) = ex approximates ewithin 0.0001of the actual value.

26. Find n such that the Taylor polynomial of degree n of f(x) =√
x, centered at x = 4, approximates

√
3 within 0.0001 of

the actual value.

27. Find n such that the Maclaurin polynomial of degree n of
f(x) = cos x approximates cos π/3 within 0.0001 of the ac-
tual value.

28. Find n such that the Maclaurin polynomial of degree n of
f(x) = sin x approximates cos π within 0.0001 of the actual
value.

In Exercises 29 – 34, find the nth term of the indicated Taylor
polynomial.

29. Find a formula for the nth term of theMaclaurin polynomial
for f(x) = ex.

30. Find a formula for the nth term of theMaclaurin polynomial
for f(x) = cos x.

31. Find a formula for the nth term of theMaclaurin polynomial
for f(x) = sin x.

32. Find a formula for the nth term of theMaclaurin polynomial
for f(x) = 1

1− x
.

33. Find a formula for the nth term of theMaclaurin polynomial
for f(x) = 1

1+ x
.

34. Find a formula for the nth term of the Taylor polynomial for
f(x) = ln x centered at x = 1.
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In Exercises 35 – 37, approximate the soluƟon to the given
differenƟal equaƟon with a degree 4 Maclaurin polynomial.

35. y′ = y, y(0) = 1

36. y′ = 5y, y(0) = 3

37. y′ = 2
y
, y(0) = 1
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f(x) = cos x ⇒ f(0) = 1
f ′(x) = − sin x ⇒ f ′(0) = 0
f ′′(x) = − cos x ⇒ f ′′(0) = −1
f ′′′(x) = sin x ⇒ f ′′′(0) = 0
f (4)(x) = cos x ⇒ f (4)(0) = 1
f (5)(x) = − sin x ⇒ f (5)(0) = 0
f (6)(x) = − cos x ⇒ f (6)(0) = −1
f (7)(x) = sin x ⇒ f (7)(0) = 0
f (8)(x) = cos x ⇒ f (8)(0) = 1
f (9)(x) = − sin x ⇒ f (9)(0) = 0

Figure 8.8.1: A table of the derivaƟves of
f(x) = cos x evaluated at x = 0.

8.8 Taylor Series

8.8 Taylor Series

In SecƟon 8.6, we showed how certain funcƟons can be represented by a power
series funcƟon. In SecƟon 8.7, we showed how we can approximate funcƟons
with polynomials, given that enough derivaƟve informaƟon is available. In this
secƟon we combine these concepts: if a funcƟon f(x) is infinitely differenƟable,
we show how to represent it with a power series funcƟon.

DefiniƟon 8.8.1 Taylor and Maclaurin Series

Let f(x) have derivaƟves of all orders at x = c.

1. The Taylor Series of f(x), centered at c is

∞∑
n=0

f (n)(c)
n!

(x− c)n.

2. Seƫng c = 0 gives theMaclaurin Series of f(x):

∞∑
n=0

f (n)(0)
n!

xn.

If pn(x) is the nth degree Taylor polynomial for f(x) centered at x = c, we saw
how f(x) is approximately equal to pn(x) near x = c. We also saw how increasing
the degree of the polynomial generally reduced the error.

We are now considering series, where we sum an infinite set of terms. Our
ulƟmate hope is to see the error vanish and claim a funcƟon is equal to its Taylor
series.

When creaƟng the Taylor polynomial of degree n for a funcƟon f(x) at x = c,
we needed to evaluate f, and the first n derivaƟves of f, at x = c. When creaƟng
the Taylor series of f, it helps to find a paƩern that describes the nth derivaƟve
of f at x = c. We demonstrate this in the next two examples.

Example 8.8.1 The Maclaurin series of f(x) = cos x
Find the Maclaurin series of f(x) = cos x.

SÊ½çã®ÊÄ In Example 8.7.4 we found the 8th degree Maclaurin poly-
nomial of cos x. In doing so, we created the table shown in Figure 8.8.1. No-
Ɵce how f (n)(0) = 0 when n is odd, f (n)(0) = 1 when n is divisible by 4, and
f (n)(0) = −1 when n is even but not divisible by 4. Thus the Maclaurin series

Notes:
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f(x) = ln x ⇒ f(1) = 0
f ′(x) = 1/x ⇒ f ′(1) = 1
f ′′(x) = −1/x2 ⇒ f ′′(1) = −1
f ′′′(x) = 2/x3 ⇒ f ′′′(1) = 2
f (4)(x) = −6/x4 ⇒ f (4)(1) = −6
f (5)(x) = 24/x5 ⇒ f (5)(1) = 24
...

...
f (n)(x) = ⇒ f (n)(1) =
(−1)n+1(n− 1)!

xn
(−1)n+1(n− 1)!

Figure 8.8.2: DerivaƟves of ln x evaluated
at x = 1.

Chapter 8 Sequences and Series

of cos x is
1− x2

2
+

x4

4!
− x6

6!
+

x8

8!
− · · ·

We can go further and write this as a summaƟon. Since we only need the terms
where the power of x is even, we write the power series in terms of x2n:

∞∑
n=0

(−1)n
x2n

(2n)!
.

This Maclaurin series is a special type of power series. As such, we should de-
termine its interval of convergence. Applying the RaƟo Test, we have

lim
n→∞

∣∣∣∣∣(−1)n+1 x2(n+1)(
2(n+ 1)

)
!

∣∣∣∣∣
/∣∣∣∣(−1)n

x2n

(2n)!

∣∣∣∣ = lim
n→∞

∣∣∣∣x2n+2

x2n

∣∣∣∣ (2n)!
(2n+ 2)!

= lim
n→∞

x2

(2n+ 2)(2n+ 1)
.

For any fixed x, this limit is 0. Therefore this power series has an infinite radius
of convergence, converging for all x. It is important to note what we have, and
have not, determined: we have determined the Maclaurin series for cos x along
with its interval of convergence. We have not shown that cos x is equal to this
power series.

Example 8.8.2 The Taylor series of f(x) = ln x at x = 1
Find the Taylor series of f(x) = ln x centered at x = 1.

SÊ½çã®ÊÄ Figure 8.8.2 shows the nth derivaƟve of ln x evaluated at x =
1 for n = 0, . . . , 5, along with an expression for the nth term:

f (n)(1) = (−1)n+1(n− 1)! for n ≥ 1.

Remember that this is what disƟnguishes Taylor series from Taylor polynomials;
we are very interested in finding a paƩern for the nth term, not just finding a
finite set of coefficients for a polynomial. Since f(1) = ln 1 = 0, we skip the
first term and start the summaƟon with n = 1, giving the Taylor series for ln x,
centered at x = 1, as

∞∑
n=1

(−1)n+1(n− 1)!
1
n!
(x− 1)n =

∞∑
n=1

(−1)n+1 (x− 1)n

n
.

We now determine the interval of convergence, using the RaƟo Test.

lim
n→∞

∣∣∣∣(−1)n+2 (x− 1)n+1

n+ 1

∣∣∣∣
/∣∣∣∣(−1)n+1 (x− 1)n

n

∣∣∣∣ = lim
n→∞

∣∣∣∣ (x− 1)n+1

(x− 1)n

∣∣∣∣ n
n+ 1

=
∣∣(x− 1)

∣∣.

Notes:
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Note: It can be shown that ln x is equal to
this Taylor series on (0, 2]. From the work
in Example 8.8.2, this jusƟfies our previ-
ous declaraƟon that the AlternaƟng Har-
monic Series converges to ln 2.

8.8 Taylor Series

By the RaƟo Test, we have convergence when
∣∣(x − 1)

∣∣ < 1: the radius of con-
vergence is 1, and we have convergence on (0, 2). We now check the endpoints.

At x = 0, the series is

∞∑
n=1

(−1)n+1 (−1)n

n
= −

∞∑
n=1

1
n
,

which diverges (it is the Harmonic Series Ɵmes (−1).)
At x = 2, the series is

∞∑
n=1

(−1)n+1 (1)n

n
=

∞∑
n=1

(−1)n+1 1
n
,

the AlternaƟng Harmonic Series, which converges.
We have found the Taylor series of ln x centered at x = 1, and have deter-

mined the series converges on (0, 2]. We cannot (yet) say that ln x is equal to
this Taylor series on (0, 2].

It is important to note that DefiniƟon 8.8.1 defines a Taylor series given a
funcƟon f(x), but makes no claim about their equality. We will find that “most
of the Ɵme” they are equal, but we need to consider the condiƟons that allow
us to conclude this.

Theorem 8.7.1 states that the error between a funcƟon f(x) and its nth–
degree Taylor polynomial pn(x) is Rn(x), where

∣∣Rn(x)∣∣ ≤ max
∣∣ f (n+1)(z)

∣∣
(n+ 1)!

∣∣(x− c)(n+1)∣∣.
If Rn(x) goes to 0 for each x in an interval I as n approaches infinity, we con-

clude that the funcƟon is equal to its Taylor series expansion.

Theorem 8.8.1 FuncƟon and Taylor Series Equality

Let f(x) have derivaƟves of all orders at x = c, let Rn(x) be as stated in
Theorem 8.7.1, and let I be an interval on which the Taylor series of f(x)
converges. If lim

n→∞
Rn(x) = 0 for all x in I, then

f(x) =
∞∑
n=0

f (n)(c)
n!

(x− c)n on I.

Notes:
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We demonstrate the use of this theorem in an example.

Example 8.8.3 Establishing equality of a funcƟon and its Taylor series
Show that f(x) = cos x is equal to itsMaclaurin series, as found in Example 8.8.1,
for all x.

SÊ½çã®ÊÄ Given a value x, the magnitude of the error term Rn(x) is
bounded by ∣∣Rn(x)∣∣ ≤ max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!
∣∣xn+1∣∣.

Since all derivaƟves of cos x are± sin xor± cos x, whosemagnitudes are bounded
by 1, we can state ∣∣Rn(x)∣∣ ≤ 1

(n+ 1)!
∣∣xn+1∣∣

which implies

− |xn+1|
(n+ 1)!

≤ Rn(x) ≤
|xn+1|
(n+ 1)!

. (8.7)

For any x, lim
n→∞

xn+1

(n+ 1)!
= 0. Applying the Squeeze Theorem to EquaƟon (8.7),

we conclude that lim
n→∞

Rn(x) = 0 for all x, and hence

cos x =
∞∑
n=0

(−1)n
x2n

(2n)!
for all x.

It is natural to assume that a funcƟon is equal to its Taylor series on the series’
interval of convergence, but this is not always the case. In order to properly
establish equality, one must use Theorem 8.8.1. This is a bit disappoinƟng, as
we developed beauƟful techniques for determining the interval of convergence
of a power series, and proving that Rn(x) → 0 can be difficult. For instance, it
is not a simple task to show that ln x equals its Taylor series on (0, 2] as found
in Example 8.8.2; in the Exercises, the reader is only asked to show equality on
(1, 2), which is simpler.

There is good news. A funcƟon f(x) that is equal to its Taylor series, centered
at any point the domain of f(x), is said to be an analyƟc funcƟon, and most, if
not all, funcƟons that we encounter within this course are analyƟc funcƟons.
Generally speaking, any funcƟon that one creates with elementary funcƟons
(polynomials, exponenƟals, trigonometric funcƟons, etc.) that is not piecewise
defined is probably analyƟc. Formost funcƟons, we assume the funcƟon is equal
to its Taylor series on the series’ interval of convergence and only use Theorem
8.8.1 when we suspect something may not work as expected.

Notes:
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8.8 Taylor Series

We develop the Taylor series for one more important funcƟon, then give a
table of the Taylor series for a number of common funcƟons.

Example 8.8.4 The Binomial Series
Find the Maclaurin series of f(x) = (1+ x)k, k ̸= 0.

SÊ½çã®ÊÄ When k is a posiƟve integer, the Maclaurin series is finite.
For instance, when k = 4, we have

f(x) = (1+ x)4 = 1+ 4x+ 6x2 + 4x3 + x4.

The coefficients of x when k is a posiƟve integer are known as the binomial co-
efficients, giving the series we are developing its name.

When k = 1/2, we have f(x) =
√
1+ x. Knowing a series representaƟon of

this funcƟon would give a useful way of approximaƟng
√
1.3, for instance.

To develop the Maclaurin series for f(x) = (1 + x)k for any value of k ̸= 0,
we consider the derivaƟves of f evaluated at x = 0:

f(x) = (1+ x)k f(0) = 1

f ′(x) = k(1+ x)k−1 f ′(0) = k

f ′′(x) = k(k− 1)(1+ x)k−2 f ′′(0) = k(k− 1)

f ′′′(x) = k(k− 1)(k− 2)(1+ x)k−3 f ′′′(0) = k(k− 1)(k− 2)
...

...

f (n)(x) = k(k− 1) · · ·
(
k− (n− 1)

)
(1+ x)k−n f (n)(0) = k(k− 1) · · ·

(
k− (n− 1)

)
Thus the Maclaurin series for f(x) = (1+ x)k is

1+kx+
k(k− 1)

2!
x2+

k(k− 1)(k− 2)
3!

x3+. . .+
k(k− 1) · · ·

(
k− (n− 1)

)
n!

xn+. . .

It is important to determine the interval of convergence of this series. With

an =
k(k− 1) · · ·

(
k− (n− 1)

)
n!

xn,

we apply the RaƟo Test:

lim
n→∞

|an+1|
|an|

= lim
n→∞

∣∣∣∣k(k− 1) · · · (k− n)
(n+ 1)!

xn+1
∣∣∣∣
/∣∣∣∣∣k(k− 1) · · ·

(
k− (n− 1)

)
n!

xn
∣∣∣∣∣

= lim
n→∞

∣∣∣∣ k− n
n+ 1

x
∣∣∣∣

= |x|.

Notes:
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The series converges absolutely when the limit of the RaƟo Test is less than
1; therefore, we have absolute convergence when |x| < 1.

While outside the scope of this text, the interval of convergence depends
on the value of k. When k > 0, the interval of convergence is [−1, 1]. When
−1 < k < 0, the interval of convergence is [−1, 1). If k ≤ −1, the interval of
convergence is (−1, 1).

We learned that Taylor polynomials offer a way of approximaƟng a “difficult
to compute” funcƟon with a polynomial. Taylor series offer a way of exactly
represenƟng a funcƟon with a series. One probably can see the use of a good
approximaƟon; is there any use of represenƟng a funcƟon exactly as a series?

Whilewe should not overlook themathemaƟcal beauty of Taylor series (which
is reason enough to study them), there are pracƟcal uses as well. They provide
a valuable tool for solving a variety of problems, including problems relaƟng to
integraƟon and differenƟal equaƟons.

In Key Idea 8.8.1 (on the following page) we give a table of the Taylor series
of a number of common funcƟons. We then give a theorem about the “algebra
of power series,” that is, how we can combine power series to create power
series of new funcƟons. This allows us to find the Taylor series of funcƟons like
f(x) = ex cos x by knowing the Taylor series of ex and cos x.

Before we invesƟgate combining funcƟons, consider the Taylor series for the
arctangent funcƟon (see Key Idea 8.8.1). Knowing that tan−1(1) = π/4, we can
use this series to approximate the value of π:

π

4
= tan−1(1) = 1− 1

3
+

1
5
− 1

7
+

1
9
− · · ·

π = 4
(
1− 1

3
+

1
5
− 1

7
+

1
9
− · · ·

)
Unfortunately, this parƟcular expansion of π converges very slowly. The first

100 terms approximate π as 3.13159, which is not parƟcularly good.

Notes:
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8.8 Taylor Series

Key Idea 8.8.1 Important Taylor Series Expansions

FuncƟon and Series First Few Terms Interval of
Convergence

ex =
∞∑
n=0

xn

n!
1+ x+

x2

2!
+

x3

3!
+ · · · (−∞,∞)

sin x =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
x− x3

3!
+

x5

5!
− x7

7!
+ · · · (−∞,∞)

cos x =
∞∑
n=0

(−1)n
x2n

(2n)!
1− x2

2!
+

x4

4!
− x6

6!
+ · · · (−∞,∞)

ln x =
∞∑
n=1

(−1)n+1 (x− 1)n

n
(x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · · (0, 2]

1
1− x

=

∞∑
n=0

xn 1+ x+ x2 + x3 + · · · (−1, 1)

(1+ x)k =
∞∑
n=0

k(k− 1) · · ·
(
k− (n− 1)

)
n!

xn 1+ kx+
k(k− 1)

2!
x2 + · · · (−1, 1)a

tan−1 x =
∞∑
n=0

(−1)n
x2n+1

2n+ 1
x− x3

3
+

x5

5
− x7

7
+ · · · [−1, 1]

aConvergence at x = ±1 depends on the value of k.

Theorem 8.8.2 Algebra of Power Series

Let f(x) =
∞∑
n=0

anxn and g(x) =
∞∑
n=0

bnxn converge absolutely for |x| < R, and let h(x) be conƟnuous.

1. f(x)± g(x) =
∞∑
n=0

(an ± bn)xn for |x| < R.

2. f(x)g(x) =

( ∞∑
n=0

anxn
)( ∞∑

n=0
bnxn

)
=

∞∑
n=0

(
a0bn + a1bn−1 + . . . anb0

)
xn for |x| < R.

3. f
(
h(x)

)
=

∞∑
n=0

an
(
h(x)

)n for |h(x)| < R.

Notes:
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Example 8.8.5 Combining Taylor series
Write out the first 3 terms of the Taylor Series for f(x) = ex cos x using Key Idea
8.8.1 and Theorem 8.8.2.

SÊ½çã®ÊÄ Key Idea 8.8.1 informs us that

ex = 1+ x+
x2

2!
+

x3

3!
+ · · · and cos x = 1− x2

2!
+

x4

4!
+ · · · .

Applying Theorem 8.8.2, we find that

ex cos x =
(
1+ x+

x2

2!
+

x3

3!
+ · · ·

)(
1− x2

2!
+

x4

4!
+ · · ·

)
.

Distribute the right hand expression across the leŌ:

= 1
(
1− x2

2!
+

x4

4!
+ · · ·

)
+ x

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x2

2!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x3

3!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x4

4!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+ · · ·

Distribute again and collect like terms.

= 1+ x− x3

3
− x4

6
− x5

30
+

x7

630
+ · · ·

While this process is a bit tedious, it is much faster than evaluaƟng all the nec-
essary derivaƟves of ex cos x and compuƟng the Taylor series directly.

Because the series for ex and cos x both converge on (−∞,∞), so does the
series expansion for ex cos x.

Example 8.8.6 CreaƟng new Taylor series
Use Theorem 8.8.2 to create series for y = sin(x2) and y = ln(

√
x).

SÊ½çã®ÊÄ Given that

sin x =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ · · · ,

we simply subsƟtute x2 for x in the series, giving

sin(x2) =
∞∑
n=0

(−1)n
(x2)2n+1

(2n+ 1)!
= x2 − x6

3!
+

x10

5!
− x14

7!
· · · .

Notes:
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Note: In Example 8.8.6, one could cre-
ate a series for ln(

√
x) by simply recogniz-

ing that ln(
√
x) = ln(x1/2) = 1/2 ln x,

and hence mulƟplying the Taylor series
for ln x by 1/2. This example was cho-
sen to demonstrate other aspects of se-
ries, such as the fact that the interval of
convergence changes.

8.8 Taylor Series

Since the Taylor series for sin x has an infinite radius of convergence, so does the
Taylor series for sin(x2).

The Taylor expansion for ln x given in Key Idea 8.8.1 is centered at x = 1, so
we will center the series for ln(

√
x) at x = 1 as well. With

ln x =
∞∑
n=1

(−1)n+1 (x− 1)n

n
= (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · · ,

we subsƟtute
√
x for x to obtain

ln(
√
x) =

∞∑
n=1

(−1)n+1 (
√
x− 1)n

n
= (

√
x−1)− (

√
x− 1)2

2
+

(
√
x− 1)3

3
−· · · .

While this is not strictly a power series, it is a series that allows us to study the
funcƟon ln(

√
x). Since the interval of convergence of ln x is (0, 2], and the range

of
√
x on (0, 4] is (0, 2], the interval of convergence of this series expansion of

ln(
√
x) is (0, 4].

Example 8.8.7 Using Taylor series to evaluate definite integrals

Use the Taylor series of e−x2 to evaluate
∫ 1

0
e−x2 dx.

SÊ½çã®ÊÄ We learned, when studying Numerical IntegraƟon, that e−x2

does not have an anƟderivaƟve expressible in terms of elementary funcƟons.
This means any definite integral of this funcƟon must have its value approxi-
mated, and not computed exactly.

We can quickly write out the Taylor series for e−x2 using the Taylor series of
ex:

ex =
∞∑
n=0

xn

n!
= 1+ x+

x2

2!
+

x3

3!
+ · · ·

and so

e−x2 =

∞∑
n=0

(−x2)n

n!

=

∞∑
n=0

(−1)n
x2n

n!

= 1− x2 +
x4

2!
− x6

3!
+ · · · .

Notes:
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Chapter 8 Sequences and Series

We use Theorem 8.6.3 to integrate:∫
e−x2 dx = C+ x− x3

3
+

x5

5 · 2!
− x7

7 · 3!
+ · · ·+ (−1)n

x2n+1

(2n+ 1)n!
+ · · ·

This is the anƟderivaƟve of e−x2 ; while we can write it out as a series, we can-
not write it out in terms of elementary funcƟons. We can evaluate the definite

integral
∫ 1

0
e−x2 dx using this anƟderivaƟve; subsƟtuƟng 1 and 0 for x and sub-

tracƟng gives ∫ 1

0
e−x2 dx = 1− 1

3
+

1
5 · 2!

− 1
7 · 3!

+
1

9 · 4!
· · · .

Summing the 5 terms shown above give the approximaƟon of 0.74749. Since
this is an alternaƟng series, we can use the AlternaƟng Series ApproximaƟon
Theorem, (Theorem 8.5.2), to determine how accurate this approximaƟon is.
The next term of the series is 1/(11 · 5!) ≈ 0.00075758. Thus we know our
approximaƟon is within 0.00075758 of the actual value of the integral. This is
arguably much less work than using Simpson’s Rule to approximate the value of
the integral.

Example 8.8.8 Using Taylor series to solve differenƟal equaƟons
Solve the differenƟal equaƟon y ′ = 2y in terms of a power series, and use the
theory of Taylor series to recognize the soluƟon in terms of an elementary func-
Ɵon.

SÊ½çã®ÊÄ We found the first 5 terms of the power series soluƟon to
this differenƟal equaƟon in Example 8.6.5 in SecƟon 8.6. These are:

a0 = 1, a1 = 2, a2 =
4
2
= 2, a3 =

8
2 · 3

=
4
3
, a4 =

16
2 · 3 · 4

=
2
3
.

We include the “unsimplified” expressions for the coefficients found in Example
8.6.5 as we are looking for a paƩern. It can be shown that an = 2n/n!. Thus the
soluƟon, wriƩen as a power series, is

y =
∞∑
n=0

2n

n!
xn =

∞∑
n=0

(2x)n

n!
.

Using Key Idea 8.8.1 and Theorem 8.8.2, we recognize f(x) = e2x:

ex =
∞∑
n=0

xn

n!
⇒ e2x =

∞∑
n=0

(2x)n

n!
.

Notes:
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8.8 Taylor Series

Finding a paƩern in the coefficients that match the series expansion of a
known funcƟon, such as those shown in Key Idea 8.8.1, can be difficult. What if
the coefficients in the previous example were given in their reduced form; how
could we sƟll recover the funcƟon y = e2x?

Suppose that all we know is that

a0 = 1, a1 = 2, a2 = 2, a3 =
4
3
, a4 =

2
3
.

DefiniƟon 8.8.1 states that each term of the Taylor expansion of a funcƟon in-
cludes an n!. This allows us to say that

a2 = 2 =
b2
2!
, a3 =

4
3
=

b3
3!
, and a4 =

2
3
=

b4
4!

for some values b2, b3 and b4. Solving for these values, we see that b2 = 4,
b3 = 8 and b4 = 16. That is, we are recovering the paƩern we had previously
seen, allowing us to write

f(x) =
∞∑
n=0

anxn =
∞∑
n=0

bn
n!
xn

= 1+ 2x+
4
2!
x2 +

8
3!
x3 +

16
4!

x4 + · · ·

From here it is easier to recognize that the series is describing an exponenƟal
funcƟon.

There are simpler, more direct ways of solving the differenƟal equaƟon y ′ =
2y. We applied power series techniques to this equaƟon to demonstrate its uƟl-
ity, and went on to show how someƟmes we are able to recover the soluƟon in
terms of elementary funcƟons using the theory of Taylor series. Most differen-
Ɵal equaƟons faced in real scienƟfic and engineering situaƟons are much more
complicated than this one, but power series can offer a valuable tool in finding,
or at least approximaƟng, the soluƟon.

This chapter introduced sequences, which are ordered lists of numbers, fol-
lowed by series, wherein we add up the terms of a sequence. We quickly saw
that such sums do not always add up to “infinity,” but rather converge. We stud-
ied tests for convergence, then ended the chapter with a formal way of defining
funcƟons based on series. Such “series–defined funcƟons” are a valuable tool
in solving a number of different problems throughout science and engineering.

Coming in the next chapters are new ways of defining curves in the plane
apart from using funcƟons of the form y = f(x). Curves created by these new
methods can be beauƟful, useful, and important.

Notes:
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Exercises 8.8
Terms and Concepts

1. What is the difference between a Taylor polynomial and a
Taylor series?

2. What theoremmustwe use to show that a funcƟon is equal
to its Taylor series?

Problems
Key Idea 8.8.1 gives the nth term of the Taylor series of com-
mon funcƟons. In Exercises 3 – 6, verify the formula given in
the Key Idea by finding the first few terms of the Taylor series
of the given funcƟon and idenƟfying a paƩern.

3. f(x) = ex; c = 0

4. f(x) = sin x; c = 0

5. f(x) = 1/(1− x); c = 0

6. f(x) = tan−1 x; c = 0

In Exercises 7 – 12, find a formula for the nth term of the Tay-
lor series of f(x), centered at c, by finding the coefficients of
the first few powers of x and looking for a paƩern. (The for-
mulas for several of these are found in Key Idea 8.8.1; show
work verifying these formula.)

7. f(x) = cos x; c = π/2

8. f(x) = 1/x; c = 1

9. f(x) = e−x; c = 0

10. f(x) = ln(1+ x); c = 0

11. f(x) = x/(x+ 1); c = 1

12. f(x) = sin x; c = π/4

In Exercises 13 – 16, show that the Taylor series for f(x), as
given in Key Idea 8.8.1, is equal to f(x) by applying Theorem
8.8.1; that is, show lim

n→∞
Rn(x) = 0.

13. f(x) = ex

14. f(x) = sin x

15. f(x) = ln x (show equality only on (1, 2))

16. f(x) = 1/(1− x) (show equality only on (−1, 0))

In Exercises 17 – 20, use the Taylor series given in Key Idea
8.8.1 to verify the given idenƟty.

17. cos(−x) = cos x

18. sin(−x) = − sin x

19. d
dx

(
sin x

)
= cos x

20. d
dx

(
cos x

)
= − sin x

In Exercises 21 – 24, write out the first 5 terms of the Binomial
series with the given k-value.

21. k = 1/2

22. k = −1/2

23. k = 1/3

24. k = 4

In Exercises 25 – 30, use the Taylor series given in Key Idea
8.8.1 to create the Taylor series of the given funcƟons.

25. f(x) = cos
(
x2
)

26. f(x) = e−x

27. f(x) = sin
(
2x+ 3

)
28. f(x) = tan−1 (x/2)
29. f(x) = ex sin x (only find the first 4 terms)

30. f(x) = (1+ x)1/2 cos x (only find the first 4 terms)

In Exercises 31 – 32, approximate the value of the given def-
inite integral by using the first 4 nonzero terms of the inte-
grand’s Taylor series.

31.
∫ √

π

0
sin
(
x2
)
dx

32.
∫ π2/4

0
cos
(√

x
)
dx
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A: SÊ½çã®ÊÄÝ TÊ S�½��ã�� PÙÊ�½�ÃÝ
Chapter 5
SecƟon 5.1

1. Answers will vary.

3. Answers will vary.

5. Answers will vary.

7. velocity

9. 3/4x4 + C

11. 10/3x3 − 2x+ C

13. s+ C

15. −3/(t) + C

17. tan θ + C

19. sec x− csc x+ C

21. 3t/ ln 3+ C

23. 4/3t3 + 6t2 + 9t+ C

25. x6/6+ C

27. ax+ C

29. − cos x+ 3

31. x4 − x3 + 7

33. 7x/ ln 7+ 1− 49/ ln 7

35. 7x3
6 − 9x

2 + 40
3

37. θ − sin(θ)− π + 4

39. 3x− 2

41. dy = (2xex cos x+ x2ex cos x− x2ex sin x)dx

SecƟon 5.2

1. Answers will vary.

3. 0

5. (a) 3
(b) 4
(c) 3
(d) 0
(e) −4
(f) 9

7. (a) 4
(b) 2
(c) 4
(d) 2
(e) 1
(f) 2

9. (a) π

(b) π

(c) 2π
(d) 10π

11. (a) −59
(b) −48

(c) −27
(d) −33

13. (a) 4
(b) 4
(c) −4
(d) −2

15. (a) 2Ō/s
(b) 2Ō
(c) 1.5Ō

17. (a) 64Ō/s
(b) 64Ō
(c) t = 2
(d) t = 2+

√
7 ≈ 4.65 seconds

19. 2

21. 16

23. 24

25. −7

27. 1/4x4 − 2/3x3 + 7/2x2 − 9x+ C

29. 3/4t4/3 − 1/t+ 2t/ ln 2+ C

SecƟon 5.3

1. limits

3. Rectangles.

5. 22 + 32 + 42 = 29

7. 0− 1+ 0+ 1+ 0 = 0

9. 1+ 1/2+ 1/3+ 1/4+ 1/5 = 137/60

11. 1/2+ 1/6+ 1/12+ 1/20 = 4/5

13. Answers may vary;
∑5

i=1 3i

15. Answers may vary;
∑4

i=1
i

i+1

17. 5 · 10 = 50

19. 1045

21. −8525

23. 5050

25. 155

27. 24

29. 19

31. π/3+ π/(2
√
3) ≈ 1.954

33. 0.388584

35. (a) Exact expressions will vary; (1+n)2

4n2 .
(b) 121/400, 10201/40000, 1002001/4000000
(c) 1/4

37. (a) 8.
(b) 8, 8, 8
(c) 8

39. (a) Exact expressions will vary; 100− 200/n.
(b) 80, 98, 499/5
(c) 100



41. F(x) = 5 tan x+ 4

43. G(t) = 4/6t6 − 5/4t4 + 8t+ 9

45. G(t) = sin t− cos t− 78

SecƟon 5.4

1. Answers will vary.

3. T

5. 20

7. 0

9. 1

11. (5− 1/5)/ ln 5

13. −4

15. 16/3

17. 45/4

19. 1/2

21. 1/2

23. 1/4

25. 8

27. 0

29. ExplanaƟons will vary. A sketch will help.

31. c = 2/
√
3

33. c = ln(e− 1) ≈ 0.54

35. 2/π

37. 2

39. 16

41. −300Ō

43. 30Ō

45. −1Ō

47. −64Ō/s

49. 2Ō/s

51. 27/2

53. 9/2

55. F′(x) = (3x2 + 1) 1
x3+x

57. F′(x) = 2x(x2 + 2)− (x+ 2)

SecƟon 5.5

1. F

3. They are superseded by the Trapezoidal Rule; it takes an equal
amount of work and is generally more accurate.

5. (a) 3/4

(b) 2/3

(c) 2/3

7. (a) 1
4 (1+

√
2)π ≈ 1.896

(b) 1
6 (1+ 2

√
2)π ≈ 2.005

(c) 2

9. (a) 38.5781

(b) 147/4 ≈ 36.75

(c) 147/4 ≈ 36.75

11. (a) 0
(b) 0
(c) 0

13. Trapezoidal Rule: 0.9006
Simpson’s Rule: 0.90452

15. Trapezoidal Rule: 13.9604
Simpson’s Rule: 13.9066

17. Trapezoidal Rule: 1.1703
Simpson’s Rule: 1.1873

19. Trapezoidal Rule: 1.0803
Simpson’s Rule: 1.077

21. (a) n = 161 (using max
(
f ′′(x)

)
= 1)

(b) n = 12 (using max
(
f (4)(x)

)
= 1)

23. (a) n = 1004 (using max
(
f ′′(x)

)
= 39)

(b) n = 62 (using max
(
f (4)(x)

)
= 800)

25. (a) Area is 30.8667 cm2.
(b) Area is 308, 667 yd2.

Chapter 6
SecƟon 6.1

1. Chain Rule.

3. 1
8 (x

3 − 5)8 + C

5. 1
18
(
x2 + 1

)9
+ C

7. 1
2 ln |2x+ 7|+ C

9. 2
3 (x+ 3)3/2 − 6(x+ 3)1/2 + C = 2

3 (x− 6)
√
x+ 3+ C

11. 2e
√

x + C

13. − 1
2x2 − 1

x + C

15. sin3(x)
3 + C

17. − 1
6 sin(3− 6x) + C

19. 1
2 ln | sec(2x) + tan(2x)|+ C

21. sin(x2)
2 + C

23. The key is to rewrite cot x as cos x/ sin x, and let u = sin x.

25. 1
3 e

3x−1 + C

27. 1
2 e

(x−1)2 + C

29. ln
(
ex + 1

)
+ C

31. 27x
ln 27 + C

33. 1
2 ln

2(x) + C

35. 3
2 (ln x)

2 + C

37. x2
2 + 3x+ ln |x|+ C

39. x3
3 − x2

2 + x− 2 ln |x+ 1|+ C

41. 3
2 x

2 − 8x+ 15 ln |x+ 1|+ C

43.
√
7 tan−1

(
x√
7

)
+ C

45. 14 sin−1
(

x√
5

)
+ C

47. 5
4 sec

−1(|x|/4) + C

49.
tan−1

(
x−1√

7

)
√

7
+ C

A.2



51. 3 sin−1 ( x−4
5
)
+ C

53. − 1
3(x3+3)

+ C

55. −
√
1− x2 + C

57. − 2
3 cos

3
2 (x) + C

59. ln |x− 5|+ C

61. 3x2
2 + ln

∣∣x2 + 3x+ 5
∣∣− 5x+ C

63. 3 ln
∣∣3x2 + 9x+ 7

∣∣+ C

65. 1
18 tan

−1
(

x2
9

)
+ C

67. sec−1(|2x|) + C

69. 3
2 ln
∣∣x2 − 2x+ 10

∣∣+ 1
3 tan

−1 ( x−1
3
)
+ C

71. 15
2 ln

∣∣x2 − 10x+ 32
∣∣+ x+

41 tan−1
(

x−5√
7

)
√

7
+ C

73. x2
2 + 3 ln

∣∣x2 + 4x+ 9
∣∣− 4x+

24 tan−1
(

x+2√
5

)
√

5
+ C

75. tan−1(sin(x)) + C

77. 3
√
x2 − 2x− 6+ C

79. − ln 2

81. 2/3

83. (1− e)/2

85. π/2

SecƟon 6.2

1. T

3. Determining which funcƟons in the integrand to set equal to “u”
and which to set equal to “dv”.

5. sin x− x cos x+ C

7. −x2 cos x+ 2x sin x+ 2 cos x+ C

9. 1/2ex2 + C

11. − 1
2 xe

−2x − e−2x

4 + C

13. 1/5e2x(sin x+ 2 cos x) + C

15. 1/10e5x(sin(5x) + cos(5x)) + C

17.
√
1− x2 + x sin−1(x) + C

19. 1
2 x

2 tan−1(x)− x
2 + 1

2 tan
−1(x) + C

21. 1
2 x

2 ln |x| − x2
4 + C

23. − x2
4 + 1

2 x
2 ln |x− 1| − x

2 − 1
2 ln |x− 1|+ C

25. 1
3 x

3 ln |x| − x3
9 + C

27. 2(x+ 1) + (x+ 1) (ln(x+ 1))2 − 2(x+ 1) ln(x+ 1) + C

29. ln | sin(x)| − x cot(x) + C

31. 1
3 (x

2 − 2)3/2 + C

33. x sec x− ln | sec x+ tan x|+ C

35. 1/2x
(
sin(ln x)− cos(ln x)

)
+ C

37. 2 sin
(√

x
)
− 2

√
x cos

(√
x
)
+ C

39. 2
√
xe

√
x − 2e

√
x + C

41. π

43. 0

45. 1/2

47. 3
4e2 − 5

4e4

49. 1/5
(
eπ + e−π

)
SecƟon 6.3

1. F

3. F

5. − 1
5 cos

5(x) + C

7. 1
5 cos

5 x− 1
3 cos

3 x+ C

9. 1
11 sin

11 x− 2
9 sin

9 x+ 1
7 sin

7 x+ C

11. x
8 − 1

32 sin(4x) + C

13. 1
2
(
− 1

8 cos(8x)−
1
2 cos(2x)

)
+ C

15. 1
2
( 1
4 sin(4x)−

1
10 sin(10x)

)
+ C

17. 1
2
(
sin(x) + 1

3 sin(3x)
)
+ C

19. tan5(x)
5 + C

21. tan6(x)
6 +

tan4(x)
4 + C

23. sec5(x)
5 − sec3(x)

3 + C

25. 1
3 tan

3 x− tan x+ x+ C

27. 1
2 (sec x tan x− ln | sec x+ tan x|) + C

29. 2
5

31. 32/315

33. 2/3

35. 16/15

SecƟon 6.4

1. backwards

3. (a) tan2 θ + 1 = sec2 θ
(b) 9 sec2 θ.

5. 1
2

(
x
√
x2 + 1+ ln |

√
x2 + 1+ x|

)
+ C

7. 1
2

(
sin−1 x+ x

√
1− x2

)
+ C

9. 1
2 x
√
x2 − 1− 1

2 ln |x+
√
x2 − 1|+ C

11. x
√

x2 + 1/4+ 1
4 ln |2

√
x2 + 1/4+ 2x|+ C =

1
2 x
√
4x2 + 1+ 1

4 ln |
√
4x2 + 1+ 2x|+ C

13. 4
(

1
2 x
√

x2 − 1/16− 1
32 ln |4x+ 4

√
x2 − 1/16|

)
+ C =

1
2 x
√
16x2 − 1− 1

8 ln |4x+
√
16x2 − 1|+ C

15. 3 sin−1
(

x√
7

)
+ C (Trig. Subst. is not needed)

17.
√
x2 − 11−

√
11 sec−1(x/

√
11) + C

19.
√
x2 − 3+ C (Trig. Subst. is not needed)

21. − 1√
x2+9

+ C (Trig. Subst. is not needed)

23. 1
18

x+2
x2+4x+13 + 1

54 tan
−1 ( x+2

2
)
+ C

25. 1
7

(
−
√

5−x2
x − sin−1(x/

√
5)
)

+ C

27. π/2

29. 2
√
2+ 2 ln(1+

√
2)

31. 9 sin−1(1/3) +
√
8 Note: the new lower bound is

θ = sin−1(−1/3) and the new upper bound is θ = sin−1(1/3).
The final answer comes with recognizing that
sin−1(−1/3) = − sin−1(1/3) and that
cos
(
sin−1(1/3)

)
= cos

(
sin−1(−1/3)

)
=

√
8/3. A.3



SecƟon 6.5

1. raƟonal

3. A
x + B

x−3

5. A
x−

√
7
+ B

x+
√

7

7. 3 ln |x− 2|+ 4 ln |x+ 5|+ C

9. 1
3 (ln |x+ 2| − ln |x− 2|) + C

11. ln |x+ 5| − 2
x+5 + C

13. 5
x+1 + 7 ln |x|+ 2 ln |x+ 1|+ C

15. − 1
5 ln |5x− 1|+ 2

3 ln |3x− 1|+ 3
7 ln |7 x+ 3|+ C

17. x2
2 + x+ 125

9 ln |x− 5|+ 64
9 ln |x+ 4| − 35

2 + C

19. 1
6

(
− ln

∣∣x2 + 2x+ 3
∣∣+ 2 ln |x| −

√
2 tan−1

(
x+1√

2

))
+ C

21. ln
∣∣3x2 + 5x− 1

∣∣+ 2 ln |x+ 1|+ C

23. 9
10 ln

∣∣x2 + 9
∣∣+ 1

5 ln |x+ 1| − 4
15 tan

−1 ( x
3
)
+ C

25. 3
(
ln
∣∣x2 − 2x+ 11

∣∣+ ln |x− 9|
)
+ 3

√
2
5 tan

−1
(

x−1√
10

)
+ C

27. ln(2000/243) ≈ 2.108

29. −π/4+ tan−1 3− ln(11/9) ≈ 0.263

SecƟon 6.6

1. Because cosh x is always posiƟve.

3. coth2 x− csch2 x =
(
ex + e−x

ex − e−x

)2
−
(

2
ex − e−x

)2

=
(e2x + 2+ e−2x)− (4)

e2x − 2+ e−2x

=
e2x − 2+ e−2x

e2x − 2+ e−2x

= 1

5. cosh2 x =
(
ex + e−x

2

)2

=
e2x + 2+ e−2x

4

=
1
2
(e2x + e−2x) + 2

2

=
1
2

(
e2x + e−2x

2
+ 1
)

=
cosh 2x+ 1

2
.

7.
d
dx

[sech x] =
d
dx

[
2

ex + e−x

]
=

−2(ex − e−x)

(ex + e−x)2

= −
2(ex − e−x)

(ex + e−x)(ex + e−x)

= −
2

ex + e−x ·
ex − e−x

ex + e−x

= − sech x tanh x

9.
∫

tanh x dx =
∫ sinh x

cosh x
dx

Let u = cosh x; du = (sinh x)dx

=

∫ 1
u
du

= ln |u|+ C
= ln(cosh x) + C.

11. 2 cosh 2x

13. 2x sec2(x2)

15. sinh2 x+ cosh2 x

17. −2x
(x2)

√
1−x4

19. 4x√
4x4−1

21. − csc x

23. y = x

25. y = 9
25 (x+ ln 3)− 4

5

27. y = x

29. 1/2 ln(cosh(2x)) + C

31. 1/2 sinh2 x+ C or 1/2 cosh2 x+ C

33. x cosh(x)− sinh(x) + C

35. cosh−1 x/3+ C = ln
(
x+

√
x2 − 9

)
+ C

37. cosh−1(x2/2) + C = ln(x2 +
√
x4 − 4) + C

39. 1
16 tan

−1(x/2) + 1
32 ln |x− 2|+ 1

32 ln |x+ 2|+ C

41. tan−1(ex) + C

43. x tanh−1 x+ 1/2 ln |x2 − 1|+ C

45. 0

47. 2

SecƟon 6.7

1. 0/0,∞/∞, 0 · ∞,∞−∞, 00, 1∞,∞0

3. F

5. derivaƟves; limits

7. Answers will vary.

9. 3

11. −1

13. 5

15. 2/3

17. ∞

19. 0

21. 0

23. ∞

25. 0

27. −2

29. 0

31. 0

33. ∞

35. ∞

37. 0

39. 1

41. 1

43. 1

45. 1

47. 1

49. 2
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51. −∞

53. 0

SecƟon 6.8

1. The interval of integraƟon is finite, and the integrand is
conƟnuous on that interval.

3. converges; could also state< 10.

5. p > 1

7. e5/2

9. 1/3

11. 1/ ln 2

13. diverges

15. 1

17. diverges

19. diverges

21. diverges

23. 1

25. 0

27. −1/4

29. diverges

31. 1

33. 1/2

35. diverges; Limit Comparison Test with 1/x.

37. diverges; Limit Comparison Test with 1/x.

39. converges; Direct Comparison Test with e−x.

41. converges; Direct Comparison Test with 1/(x2 − 1).

43. converges; Direct Comparison Test with 1/ex.

Chapter 7
SecƟon 7.1

1. T

3. Answers will vary.

5. 4π + π2 ≈ 22.436

7. π

9. 1/2

11. 1/ ln 4

13. 4.5

15. 2− π/2

17. 1/6

19. All enclosed regions have the same area, with regions being the
reflecƟon of adjacent regions. One region is formed on
[π/4, 5π/4], with area 2

√
2.

21. 1

23. 9/2

25. 1/12(9− 2
√
2) ≈ 0.514

27. 1

29. 4

31. 219,000 Ō2

SecƟon 7.2

1. T

3. Recall that “dx” does not just “sit there;” it is mulƟplied by A(x)
and represents the thickness of a small slice of the solid.
Therefore dx has units of in, giving A(x) dx the units of in3.

5. 48π
√
3/5 units3

7. π2/4 units3

9. 9π/2 units3

11. π2 − 2π units3

13. (a) π/2
(b) 5π/6
(c) 4π/5
(d) 8π/15

15. (a) 4π/3
(b) 2π/3
(c) 4π/3
(d) π/3

17. (a) π2/2
(b) π2/2− 4π sinh−1(1)
(c) π2/2+ 4π sinh−1(1)

19. Placing the Ɵp of the cone at the origin such that the x-axis runs
through the center of the circular base, we have A(x) = πx2/4.
Thus the volume is 250π/3 units3.

21. Orient the cone such that the Ɵp is at the origin and the x-axis is
perpendicular to the base. The cross–secƟons of this cone are
right, isosceles triangles with side length 2x/5; thus the
cross–secƟonal areas are A(x) = 2x2/25, giving a volume of 80/3
units3.

SecƟon 7.3

1. T

3. F

5. 9π/2 units3

7. π2 − 2π units3

9. 48π
√
3/5 units3

11. π2/4 units3

13. (a) 4π/5
(b) 8π/15
(c) π/2
(d) 5π/6

15. (a) 4π/3
(b) π/3
(c) 4π/3
(d) 2π/3

17. (a) 2π(
√
2− 1)

(b) 2π(1−
√
2+ sinh−1(1))

SecƟon 7.4

1. T

3.
√
2

5. 4/3

7. 109/2

A.5



9. 12/5

11. − ln(2−
√
3) ≈ 1.31696

13.
∫ 1
0
√
1+ 4x2 dx

15.
∫ 1
0

√
1+ 1

4x dx

17.
∫ 1
−1

√
1+ x2

1−x2 dx

19.
∫ 2
1

√
1+ 1

x4 dx

21. 1.4790

23. Simpson’s Rule fails, as it requires one to divide by 0. However,
recognize the answer should be the same as for y = x2; why?

25. Simpson’s Rule fails.

27. 1.4058

29. 2π
∫ 1
0 2x

√
5 dx = 2π

√
5

31. 2π
∫ 1
0 x3

√
1+ 9x4 dx = π/27(10

√
10− 1)

33. 2π
∫ 1
0
√
1− x2

√
1+ x/(1− x2) dx = 4π

SecƟon 7.5

1. In SI units, it is one joule, i.e., one Newton–meter, or kg·m/s2·m.
In Imperial Units, it is Ō–lb.

3. Smaller.

5. (a) 500 Ō–lb
(b) 100− 50

√
2 ≈ 29.29 Ō–lb

7. (a) 1
2 · d · l2 Ō–lb

(b) 75 %
(c) ℓ(1−

√
2/2) ≈ 0.2929ℓ

9. (a) 756 Ō–lb
(b) 60,000 Ō–lb
(c) Yes, for the cable accounts for about 1% of the total work.

11. 575 Ō–lb

13. 0.05 J

15. 5/3 Ō–lb

17. f · d/2 J

19. 5 Ō–lb

21. (a) 52,929.6 Ō–lb
(b) 18,525.3 Ō–lb
(c) When 3.83 Ō of water have been pumped from the tank,

leaving about 2.17 Ō in the tank.

23. 212,135 Ō–lb

25. 187,214 Ō–lb

27. 4,917,150 J

SecƟon 7.6

1. Answers will vary.

3. 499.2 lb

5. 6739.2 lb

7. 3920.7 lb

9. 2496 lb

11. 602.59 lb

13. (a) 2340 lb

(b) 5625 lb

15. (a) 1597.44 lb
(b) 3840 lb

17. (a) 56.42 lb
(b) 135.62 lb

19. 5.1 Ō

Chapter 8
SecƟon 8.1

1. Answers will vary.

3. Answers will vary.

5. 2, 8
3 ,

8
3 ,

32
15 ,

64
45

7. − 1
3 ,−2,− 81

5 ,− 512
3 ,− 15625

7

9. an = 3n+ 1

11. an = 10 · 2n−1

13. 1/7

15. 0

17. diverges

19. converges to 0

21. diverges

23. converges to e

25. converges to 0

27. converges to 2

29. bounded

31. bounded

33. neither bounded above or below

35. monotonically increasing

37. never monotonic

39. Let {an} be given such that lim
n→∞

|an| = 0. By the definiƟon of
the limit of a sequence, given any ε > 0, there is am such that for
all n > m,

∣∣ |an| − 0
∣∣ < ε. Since

∣∣ |an| − 0
∣∣ = |an − 0|, this

directly implies that for all n > m, |an − 0| < ε, meaning that
lim

n→∞
an = 0.

41. A sketch of one proof method:
Let any ε > 0 be given. Since {an} and {bn} converge, there
exists an N > 0 such that for all n ≥ N, both an and bn are within
ε/2 of L; we can conclude that they are at most ε apart from each
other. Since an ≤ cn ≤ bn, one can show that cn is within ε of L,
showing that {cn} also converges to L.

SecƟon 8.2

1. Answers will vary.

3. One sequence is the sequence of terms {an}. The other is the
sequence of nth parƟal sums, {Sn} = {

∑n
i=1 ai}.

5. F

7. (a) −1,− 1
2 ,−

5
6 ,−

7
12 ,−

47
60

(b) Plot omiƩed

9. (a) −1, 0,−1, 0,−1
(b) Plot omiƩed

11. (a) 1, 3
2 ,

5
3 ,

41
24 ,

103
60

(b) Plot omiƩed

13. (a) −0.9,−0.09,−0.819,−0.1629,−0.75339
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(b) Plot omiƩed

15. lim
n→∞

an = 3; by Theorem 8.2.4 the series diverges.

17. lim
n→∞

an = ∞; by Theorem 8.2.4 the series diverges.

19. lim
n→∞

an = 1/2; by Theorem 8.2.4 the series diverges.

21. Converges; p-series with p = 5.

23. Diverges; geometric series with r = 6/5.

25. Diverges; fails nth term test

27. F

29. Diverges; by Theorem 8.2.3 this is half the Harmonic Series, which
diverges by growing without bound. “Half of growing without
bound” is sƟll growing without bound.

31. (a) Sn =
1−(1/4)n

3/4

(b) Converges to 4/3.

33. (a) Sn =
(

n(n+1)
2

)2
(b) Diverges

35. (a) Sn = 5 1−1/2n
1/2

(b) Converges to 10.

37. (a) Sn =
1−(−1/3)n

4/3

(b) Converges to 3/4.

39. (a) With parƟal fracƟons, an = 3
2

(
1
n − 1

n+2

)
. Thus

Sn = 3
2

(
3
2 − 1

n+1 − 1
n+2

)
.

(b) Converges to 9/4

41. (a) Sn = ln
(
1/(n+ 1)

)
(b) Diverges (to−∞).

43. (a) an = 1
n(n+3) ; using parƟal fracƟons, the resulƟng

telescoping sum reduces to
Sn = 1

3

(
1+ 1

2 + 1
3 − 1

n+1 − 1
n+2 − 1

n+3

)
(b) Converges to 11/18.

45. (a) With parƟal fracƟons, an = 1
2

(
1

n−1 − 1
n+1

)
. Thus

Sn = 1
2

(
3/2− 1

n − 1
n+1

)
.

(b) Converges to 3/4.

47. (a) The nth parƟal sum of the odd series is
1+ 1

3 + 1
5 + · · ·+ 1

2n−1 . The n
th parƟal sum of the even

series is 1
2 + 1

4 + 1
6 + · · ·+ 1

2n . Each term of the even
series is less than the corresponding term of the odd
series, giving us our result.

(b) The nth parƟal sum of the odd series is
1+ 1

3 + 1
5 + · · ·+ 1

2n−1 . The n
th parƟal sum of 1 plus the

even series is 1+ 1
2 + 1

4 + · · ·+ 1
2(n−1) . Each term of the

even series is now greater than or equal to the
corresponding term of the odd series, with equality only on
the first term. This gives us the result.

(c) If the odd series converges, the work done in (a) shows the
even series converges also. (The sequence of the nth
parƟal sum of the even series is bounded and
monotonically increasing.) Likewise, (b) shows that if the
even series converges, the odd series will, too. Thus if
either series converges, the other does.
Similarly, (a) and (b) can be used to show that if either
series diverges, the other does, too.

(d) If both the even and odd series converge, then their sum
would be a convergent series. This would imply that the
Harmonic Series, their sum, is convergent. It is not. Hence
each series diverges.

SecƟon 8.3

1. conƟnuous, posiƟve and decreasing

3. The Integral Test (we do not have a conƟnuous definiƟon of n!
yet) and the Limit Comparison Test (same as above, hence we
cannot take its derivaƟve).

5. Converges

7. Diverges

9. Converges

11. Converges

13. Converges; compare to
∞∑
n=1

1
n2

, as 1/(n2 + 3n− 5) ≤ 1/n2 for

all n > 1.

15. Diverges; compare to
∞∑
n=1

1
n
, as 1/n ≤ ln n/n for all n ≥ 3.

17. Diverges; compare to
∞∑
n=1

1
n
. Since n =

√
n2 >

√
n2 − 1,

1/n ≤ 1/
√
n2 − 1 for all n ≥ 2.

19. Diverges; compare to
∞∑
n=1

1
n
:

1
n
=

n2

n3
<

n2 + n+ 1
n3

<
n2 + n+ 1
n3 − 5

,

for all n ≥ 1.

21. Diverges; compare to
∞∑
n=1

1
n
. Note that

n
n2 − 1

=
n2

n2 − 1
·
1
n
>

1
n
,

as n2
n2−1 > 1, for all n ≥ 2.

23. Converges; compare to
∞∑
n=1

1
n2

.

25. Diverges; compare to
∞∑
n=1

ln n
n

.

27. Diverges; compare to
∞∑
n=1

1
n
.

29. Diverges; compare to
∞∑
n=1

1
n
. Just as lim

n→0

sin n
n

= 1,

lim
n→∞

sin(1/n)
1/n

= 1.

31. Converges; compare to
∞∑
n=1

1
n3/2

.

33. Converges; Integral Test

35. Diverges; the nth Term Test and Direct Comparison Test can be
used.

37. Converges; the Direct Comparison Test can be used with sequence
1/3n.

39. Diverges; the nth Term Test can be used, along with the Integral
Test.

41. (a) Converges; use Direct Comparison Test as an
n < n.
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(b) Converges; since original series converges, we know
limn→∞ an = 0. Thus for large n, anan+1 < an.

(c) Converges; similar logic to part (b) so (an)2 < an.

(d) May converge; certainly nan > an but that does not mean
it does not converge.

(e) Does not converge, using logic from (b) and nth Term Test.

SecƟon 8.4

1. algebraic, or polynomial.

3. Integral Test, Limit Comparison Test, and Root Test

5. Converges

7. Converges

9. The RaƟo Test is inconclusive; the p-Series Test states it diverges.

11. Converges

13. Converges; note the summaƟon can be rewriƩen as
∞∑
n=1

2nn!
3nn!

, to

which the RaƟo Test or Geometric Series Test can be applied.

15. Converges

17. Converges

19. Diverges

21. Diverges. The Root Test is inconclusive, but the nth-Term Test
shows divergence. (The terms of the sequence approach e2, not
0, as n → ∞.)

23. Converges

25. Diverges; Limit Comparison Test with 1/n.

27. Converges; RaƟo Test or Limit Comparison Test with 1/3n.

29. Diverges; nth-Term Test or Limit Comparison Test with 1.

31. Diverges; Direct Comparison Test with 1/n

33. Converges; Root Test

SecƟon 8.5

1. The signs of the terms do not alternate; in the given series, some
terms are negaƟve and the others posiƟve, but they do not
necessarily alternate.

3. Many examples exist; one common example is an = (−1)n/n.

5. (a) converges

(b) converges (p-Series)

(c) absolute

7. (a) diverges (limit of terms is not 0)

(b) diverges

(c) n/a; diverges

9. (a) converges

(b) diverges (Limit Comparison Test with 1/n)

(c) condiƟonal

11. (a) diverges (limit of terms is not 0)

(b) diverges

(c) n/a; diverges

13. (a) diverges (terms oscillate between±1)

(b) diverges

(c) n/a; diverges

15. (a) converges

(b) converges (Geometric Series with r = 2/3)
(c) absolute

17. (a) converges
(b) converges (RaƟo Test)
(c) absolute

19. (a) converges
(b) diverges (p-Series Test with p = 1/2)
(c) condiƟonal

21. S5 = −1.1906; S6 = −0.6767;

−1.1906 ≤
∞∑
n=1

(−1)n

ln(n+ 1)
≤ −0.6767

23. S6 = 0.3681; S7 = 0.3679;

0.3681 ≤
∞∑
n=0

(−1)n

n!
≤ 0.3679

25. n = 5

27. Using the theorem, we find n = 499 guarantees the sum is within
0.001 of π/4. (Convergence is actually faster, as the sum is within
ε of π/24 when n ≥ 249.)

SecƟon 8.6

1. 1

3. 5

5. 1+ 2x+ 4x2 + 8x3 + 16x4

7. 1+ x+ x2
2 + x3

6 + x4
24

9. (a) R = ∞
(b) (−∞,∞)

11. (a) R = 1
(b) (2, 4]

13. (a) R = 2
(b) (−2, 2)

15. (a) R = 1/5
(b) (4/5, 6/5)

17. (a) R = 1
(b) (−1, 1)

19. (a) R = ∞
(b) (−∞,∞)

21. (a) R = 1
(b) [−1, 1]

23. (a) R = 0
(b) x = 0

25. (a) f ′(x) =
∞∑
n=1

n2xn−1; (−1, 1)

(b)
∫

f(x) dx = C+

∞∑
n=0

n
n+ 1

xn+1; (−1, 1)

27. (a) f ′(x) =
∞∑
n=1

n
2n

xn−1; (−2, 2)

(b)
∫

f(x) dx = C+

∞∑
n=0

1
(n+ 1)2n

xn+1; [−2, 2)

29. (a) f ′(x) =
∞∑
n=1

(−1)nx2n−1

(2n− 1)!
=

∞∑
n=0

(−1)n+1x2n+1

(2n+ 1)!
;

(−∞,∞)
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(b)
∫

f(x) dx = C+

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
; (−∞,∞)

31. 1+ 3x+ 9
2 x

2 + 9
2 x

3 + 27
8 x4

33. 1+ x+ x2 + x3 + x4

35. 0+ x+ 0x2 − 1
6 x

3 + 0x4

SecƟon 8.7

1. The Maclaurin polynomial is a special case of Taylor polynomials.
Taylor polynomials are centered at a specific x-value; when that
x-value is 0, it is a Maclauring polynomial.

3. p2(x) = 6+ 3x− 4x2.

5. p3(x) = 1− x+ 1
2 x

2 − 1
6 x

3

7. p5(x) = x+ x2 + 1
2 x

3 + 1
6 x

4 + 1
24 x

5

9. p4(x) = 2x4
3 + 4x3

3 + 2x2 + 2x+ 1

11. p4(x) = x4 − x3 + x2 − x+ 1

13. p4(x) = 1+ 1
2 (−1+x)− 1

8 (−1+x)2+ 1
16 (−1+x)3− 5

128 (−1+x)4

15. p6(x) = 1√
2
− − π

4 +x
√

2
− (− π

4 +x)2

2
√

2
+

(− π
4 +x)3

6
√

2
+

(− π
4 +x)4

24
√

2
−

(− π
4 +x)5

120
√

2
− (− π

4 +x)6

720
√

2

17. p5(x) = 1
2−

x−2
4 + 1

8 (x−2)2− 1
16 (x−2)3+ 1

32 (x−2)4− 1
64 (x−2)5

19. p3(x) = 1
2 + 1+x

2 + 1
4 (1+ x)2

21. p3(x) = x− x3
6 ; p3(0.1) = 0.09983. Error is bounded by

± 1
4! · 0.1

4 ≈ ±0.000004167.

23. p2(x) = 3+ 1
6 (−9+ x)− 1

216 (−9+ x)2; p2(10) = 3.16204.
The third derivaƟve of f(x) =

√
x is bounded on (8, 11) by 0.003.

Error is bounded by± 0.003
3! · 13 = ±0.0005.

25. The nth derivaƟve of f(x) = ex is bounded by 3 on intervals
containing 0 and 1. Thus |Rn(1)| ≤ 3

(n+1)!1
(n+1). When n = 7,

this is less than 0.0001.

27. The nth derivaƟve of f(x) = cos x is bounded by 1 on intervals
containing 0 and π/3. Thus |Rn(π/3)| ≤ 1

(n+1)! (π/3)
(n+1).

When n = 7, this is less than 0.0001. Since the Maclaurin
polynomial of cos x only uses even powers, we can actually just
use n = 6.

29. The nth term is 1
n! x

n.

31. The nth term is: when n even, 0; when n is odd, (−1)(n−1)/2

n! xn.

33. The nth term is (−1)nxn.

35. 1+ x+
1
2
x2 +

1
6
x3 +

1
24

x4

37. 1+ 2x− 2x2 + 4x3 − 10x4

SecƟon 8.8

1. A Taylor polynomial is a polynomial, containing a finite number of
terms. A Taylor series is a series, the summaƟon of an infinite
number of terms.

3. All derivaƟves of ex are ex which evaluate to 1 at x = 0.
The Taylor series starts 1+ x+ 1

2 x
2 + 1

3! x
3 + 1

4! x
4 + · · · ;

the Taylor series is
∞∑
n=0

xn

n!

5. The nth derivaƟve of 1/(1− x) is f (n)(x) = (n)!/(1− x)n+1,
which evaluates to n! at x = 0.
The Taylor series starts 1+ x+ x2 + x3 + · · · ;

the Taylor series is
∞∑
n=0

xn

7. The Taylor series starts
0− (x− π/2) + 0x2 + 1

6 (x− π/2)3 + 0x4 − 1
120 (x− π/2)5;

the Taylor series is
∞∑
n=0

(−1)n+1 (x− π/2)2n+1

(2n+ 1)!

9. f (n)(x) = (−1)ne−x; at x = 0, f (n)(0) = −1 when n is odd and
f (n)(0) = 1 when n is even.
The Taylor series starts 1− x+ 1

2 x
2 − 1

3! x
3 + · · · ;

the Taylor series is
∞∑
n=0

(−1)n
xn

n!
.

11. f (n)(x) = (−1)n+1 n!
(x+1)n+1 ; at x = 1, f (n)(1) = (−1)n+1 n!

2n+1

The Taylor series starts
1
2 + 1

4 (x− 1)− 1
8 (x− 1)2 + 1

16 (x− 1)3 · · · ;

the Taylor series is
∞∑
n=0

(−1)n+1 (x− 1)n

2n+1 .

13. Given a value x, the magnitude of the error term Rn(x) is bounded
by ∣∣Rn(x)∣∣ ≤ max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!
∣∣x(n+1)∣∣,

where z is between 0 and x.
If x > 0, then z < x and f (n+1)(z) = ez < ex. If x < 0, then
x < z < 0 and f (n+1)(z) = ez < 1. So given a fixed x value, let
M = max{ex, 1}; f (n)(z) < M. This allows us to state

∣∣Rn(x)∣∣ ≤ M
(n+ 1)!

∣∣x(n+1)∣∣.
For any x, lim

n→∞

M
(n+ 1)!

∣∣x(n+1)∣∣ = 0. Thus by the Squeeze

Theorem, we conclude that lim
n→∞

Rn(x) = 0 for all x, and hence

ex =
∞∑
n=0

xn

n!
for all x.

15. Given a value x, the magnitude of the error term Rn(x) is bounded
by ∣∣Rn(x)∣∣ ≤ max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!
∣∣(x− 1)(n+1)∣∣,

where z is between 1 and x.
Note that

∣∣f (n+1)(x)
∣∣ = n!

xn+1 .
Per the statement of the problem, we only consider the case
1 < x < 2.
If 1 < x < 2, then 1 < z < x and f (n+1)(z) = n!

zn+1 < n!. Thus∣∣Rn(x)∣∣ ≤ n!
(n+ 1)!

∣∣(x− 1)(n+1)∣∣ = (x− 1)n+1

n+ 1
<

1
n+ 1

.

Thus
lim

n→∞

∣∣Rn(x)∣∣ < lim
n→∞

1
n+ 1

= 0,

hence

ln x =
∞∑
n=1

(−1)n+1 (x− 1)n

n
on (1, 2).

17. Given cos x =
∞∑
n=0

(−1)n
x2n

(2n)!
,

cos(−x) =
∞∑
n=0

(−1)n
(−x)2n

(2n)!
=

∞∑
n=0

(−1)n
x2n

(2n)!
= cos x, as all

powers in the series are even.

A.9



19. Given sin x =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
,

d
dx
(
sin x

)
=

d
dx

( ∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

)
=

∞∑
n=0

(−1)n
(2n+ 1)x2n

(2n+ 1)!
=

∞∑
n=0

(−1)n
x2n

(2n)!
= cos x. (The

summaƟon sƟll starts at n = 0 as there was no constant term in
the expansion of sin x).

21. 1+
x
2
−

x2

8
+

x3

16
−

5x4

128

23. 1+
x
3
−

x2

9
+

5x3

81
−

10x4

243

25.
∞∑
n=0

(−1)n
(x2)2n

(2n)!
=

∞∑
n=0

(−1)n
x4n

(2n)!
.

27.
∞∑
n=0

(−1)n
(2x+ 3)2n+1

(2n+ 1)!
.

29. x+ x2 +
x3

3
−

x5

30

31.
∫ √

π

0
sin
(
x2
)
dx ≈

∫ √
π

0

(
x2 −

x6

6
+

x10

120
−

x14

5040

)
dx =

0.8877
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Index

!, 405
Absolute Convergence Theorem, 456
absolute maximum, 129
absolute minimum, 129
Absolute Value Theorem, 410
acceleraƟon, 77, 651
AlternaƟng Harmonic Series, 427, 454, 467
AlternaƟng Series Test, 450
aN, 669, 679
analyƟc funcƟon, 488
angle of elevaƟon, 656
anƟderivaƟve, 197

of vector–valued funcƟon, 646
arc length, 379, 527, 553, 648, 673
arc length parameter, 673, 675
asymptote

horizontal, 50
verƟcal, 48

aT, 669, 679
average rate of change, 635
average value of a funcƟon, 777
average value of funcƟon, 244

Binomial Series, 489
BisecƟon Method, 42
boundary point, 690
bounded sequence, 412

convergence, 413
bounded set, 690

center of mass, 791–793, 795, 822
Chain Rule, 101

mulƟvariable, 721, 724
notaƟon, 107

circle of curvature, 678
circulaƟon, 870
closed, 690
closed disk, 690
concave down, 151
concave up, 151
concavity, 151, 524

inflecƟon point, 152
test for, 152

conic secƟons, 498
degenerate, 498
ellipse, 501
hyperbola, 504
parabola, 498

connected, 865
simply, 865

conservaƟve field, 865, 866, 868

Constant MulƟple Rule
of derivaƟves, 84
of integraƟon, 201
of series, 427

constrained opƟmizaƟon, 754
conƟnuous funcƟon, 37, 696

properƟes, 40, 697
vector–valued, 638

contour lines, 684
convergence

absolute, 454, 456
AlternaƟng Series Test, 450
condiƟonal, 454
Direct Comparison Test, 437

for integraƟon, 347
Integral Test, 434
interval of, 462
Limit Comparison Test, 438

for integraƟon, 349
nth–term test, 429
of geometric series, 422
of improper int., 342, 347, 349
of monotonic sequences, 416
of p-series, 423
of power series, 461
of sequence, 408, 413
of series, 419
radius of, 462
RaƟo Comparison Test, 443
Root Comparison Test, 446

coordinates
cylindrical, 828
polar, 533
spherical, 831

criƟcal number, 131
criƟcal point, 131, 749–751
cross product

and derivaƟves, 643
applicaƟons, 605

area of parallelogram, 606
torque, 608
volume of parallelepiped, 607

definiƟon, 601
properƟes, 603, 604

curl, 853
of conservaƟve fields, 868

curvature, 675
and moƟon, 679
equaƟons for, 677
of circle, 677, 678
radius of, 678
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curve
parametrically defined, 511
rectangular equaƟon, 511
smooth, 517

curve sketching, 159
cusp, 517
cycloid, 633
cylinder, 563
cylindrical coordinates, 828

decreasing funcƟon, 142
finding intervals, 143

definite integral, 209
and subsƟtuƟon, 278
of vector–valued funcƟon, 646
properƟes, 211

del operator, 851
derivaƟve

acceleraƟon, 78
as a funcƟon, 66
at a point, 62
basic rules, 82
Chain Rule, 101, 107, 721, 724
Constant MulƟple Rule, 84
Constant Rule, 82
differenƟal, 189
direcƟonal, 729, 731, 732, 735, 736
exponenƟal funcƟons, 107
First Deriv. Test, 145
Generalized Power Rule, 102
higher order, 85

interpretaƟon, 86
hyperbolic funct., 324
implicit, 111, 726
interpretaƟon, 75
inverse funcƟon, 122
inverse hyper., 327
inverse trig., 125
logarithmic differenƟaƟon, 118
Mean Value Theorem, 138
mixed parƟal, 704
moƟon, 78
mulƟvariable differenƟability, 713, 718
normal line, 63
notaƟon, 66, 85
parametric equaƟons, 521
parƟal, 700, 708
Power Rule, 82, 95, 116
power series, 465
Product Rule, 89
QuoƟent Rule, 92
second, 85
Second Deriv. Test, 155
Sum/Difference Rule, 84
tangent line, 62
third, 85
trigonometric funcƟons, 94
vector–valued funcƟons, 639, 640, 643
velocity, 78

differenƟable, 62, 713, 718

differenƟal, 189
notaƟon, 189

Direct Comparison Test
for integraƟon, 347
for series, 437

direcƟonal derivaƟve, 729, 731, 732, 735, 736
directrix, 498, 563
Disk Method, 364
displacement, 238, 634, 648
distance

between lines, 619
between point and line, 619
between point and plane, 628
between points in space, 560
traveled, 659

divergence, 852, 853
AlternaƟng Series Test, 450
Direct Comparison Test, 437

for integraƟon, 347
Integral Test, 434
Limit Comparison Test, 438

for integraƟon, 349
nth–term test, 429
of geometric series, 422
of improper int., 342, 347, 349
of p-series, 423
of sequence, 408
of series, 419
RaƟo Comparison Test, 443
Root Comparison Test, 446

Divergence Theorem
in space, 900
in the plane, 877

dot product
and derivaƟves, 643
definiƟon, 588
properƟes, 589, 590

double integral, 770, 771
in polar, 781
properƟes, 774

eccentricity, 503, 507
elementary funcƟon, 248
ellipse

definiƟon, 501
eccentricity, 503
parametric equaƟons, 517
reflecƟve property, 504
standard equaƟon, 502

extrema
absolute, 129, 749
and First Deriv. Test, 145
and Second Deriv. Test, 155
finding, 132
relaƟve, 130, 749, 750

Extreme Value Theorem, 130, 754
extreme values, 129

factorial, 405
First DerivaƟve Test, 145



first octant, 560
floor funcƟon, 38
flow, 870, 872
fluid pressure/force, 397, 399
flux, 870, 872, 893, 894
focus, 498, 501, 504
Fubini’s Theorem, 771
funcƟon

of three variables, 687
of two variables, 683
vector–valued, 631

Fundamental Theorem of Calculus, 236, 237
and Chain Rule, 240

Fundamental Theorem of Line Integrals, 864, 866

Gabriel’s Horn, 384
Gauss’s Law, 904
Generalized Power Rule, 102
geometric series, 421, 422
gradient, 731, 732, 735, 736, 746

and level curves, 732
and level surfaces, 746

Green’s Theorem, 874

Harmonic Series, 427
Head To Tail Rule, 578
Hooke’s Law, 390
hyperbola

definiƟon, 504
eccentricity, 507
parametric equaƟons, 517
reflecƟve property, 507
standard equaƟon, 505

hyperbolic funcƟon
definiƟon, 321
derivaƟves, 324
idenƟƟes, 324
integrals, 324
inverse, 325

derivaƟve, 327
integraƟon, 327
logarithmic def., 326

implicit differenƟaƟon, 111, 726
improper integraƟon, 342, 345
incompressible vector field, 852
increasing funcƟon, 142

finding intervals, 143
indefinite integral, 197

of vector–valued funcƟon, 646
indeterminate form, 2, 49, 335, 336
inflecƟon point, 152
iniƟal point, 574
iniƟal value problem, 202
Integral Test, 434
integraƟon

arc length, 379
area, 209, 762, 763
area between curves, 241, 354
average value, 244
by parts, 283

by subsƟtuƟon, 265
definite, 209

and subsƟtuƟon, 278
properƟes, 211
Riemann Sums, 232

displacement, 238
distance traveled, 659
double, 770
fluid force, 397, 399
Fun. Thm. of Calc., 236, 237
general applicaƟon technique, 353
hyperbolic funct., 324
improper, 342, 345, 347, 349
indefinite, 197
inverse hyper., 327
iterated, 761
Mean Value Theorem, 243
mulƟple, 761
notaƟon, 198, 209, 237, 761
numerical, 248

LeŌ/Right Hand Rule, 248, 255
Simpson’s Rule, 253, 255, 256
Trapezoidal Rule, 251, 255, 256

of mulƟvariable funcƟons, 759
of power series, 465
of trig. funcƟons, 271
of trig. powers, 294, 299
of vector–valued funcƟon, 646
of vector–valued funcƟons, 646
parƟal fracƟon decomp., 314
Power Rule, 202
Sum/Difference Rule, 202
surface area, 383, 529, 554
trig. subst., 305
triple, 808, 819–821
volume

cross-secƟonal area, 362
Disk Method, 364
Shell Method, 371, 375
Washer Method, 366, 375

with cylindrical coordinates, 829
with spherical coordinates, 833
work, 387

interior point, 690
Intermediate Value Theorem, 42
interval of convergence, 462
iterated integraƟon, 761, 770, 771, 808, 819–821

changing order, 765
properƟes, 774, 814

L’Hôpital’s Rule, 332, 334
lamina, 787
LeŌ Hand Rule, 218, 223, 248
LeŌ/Right Hand Rule, 255
level curves, 684, 732
level surface, 688, 746
limit

Absolute Value Theorem, 410
at infinity, 50
definiƟon, 10



difference quoƟent, 6
does not exist, 4, 32
indeterminate form, 2, 49, 335, 336
L’Hôpital’s Rule, 332, 334
leŌ handed, 30
of infinity, 46
of mulƟvariable funcƟon, 691, 692, 698
of sequence, 408
of vector–valued funcƟons, 637
one sided, 30
properƟes, 18, 692
pseudo-definiƟon, 2
right handed, 30
Squeeze Theorem, 22

Limit Comparison Test
for integraƟon, 349
for series, 438

line integral
Fundamental Theorem, 864, 866
over scalar field, 841, 843, 859
over vector field, 860
path independent, 865, 866
properƟes over a scalar field, 846
properƟes over a vector field, 863

lines, 612
distances between, 619
equaƟons for, 614
intersecƟng, 615
parallel, 615
skew, 615

logarithmic differenƟaƟon, 118

Möbius band, 881
Maclaurin Polynomial, see Taylor Polynomial

definiƟon, 474
Maclaurin Series, see Taylor Series

definiƟon, 485
magnitude of vector, 574
mass, 787, 788, 822, 847

center of, 791, 847
maximum

absolute, 129, 749
and First Deriv. Test, 145
and Second Deriv. Test, 155
relaƟve/local, 130, 749, 752

Mean Value Theorem
of differenƟaƟon, 138
of integraƟon, 243

Midpoint Rule, 218, 223
minimum

absolute, 129, 749
and First Deriv. Test, 145, 155
relaƟve/local, 130, 749, 752

moment, 793, 795, 822
monotonic sequence, 414
mulƟple integraƟon, see iterated integraƟon
mulƟvariable funcƟon, 683, 687

conƟnuity, 696–698, 714, 719
differenƟability, 713, 714, 718, 719
domain, 683, 687

level curves, 684
level surface, 688
limit, 691, 692, 698
range, 683, 687

Newton’s Method, 168
norm, 574
normal line, 63, 521, 742
normal vector, 623
nth–term test, 429
numerical integraƟon, 248

LeŌ/Right Hand Rule, 248, 255
Simpson’s Rule, 253, 255

error bounds, 256
Trapezoidal Rule, 251, 255

error bounds, 256

octant
first, 560

one to one, 880
open, 690
open ball, 698
open disk, 690
opƟmizaƟon, 181

constrained, 754
orientable, 880
orthogonal, 592, 742

decomposiƟon, 596
orthogonal decomposiƟon of vectors, 596
orthogonal projecƟon, 594
osculaƟng circle, 678
outer unit normal vector, 900

p-series, 423
parabola

definiƟon, 498
general equaƟon, 499
reflecƟve property, 501

parallel vectors, 582
Parallelogram Law, 578
parametric equaƟons

arc length, 527
concavity, 524
definiƟon, 511
finding d2y

dx2 , 525
finding dy

dx , 521
normal line, 521
of a surface, 880
surface area, 529
tangent line, 521

parametrized surface, 880
parƟal derivaƟve, 700, 708

high order, 708
meaning, 702
mixed, 704
second derivaƟve, 704
total differenƟal, 712, 718

parƟƟon, 225
size of, 225

path independent, 865, 866



perpendicular, see orthogonal
piecewise smooth curve, 846
planes

coordinate plane, 562
distance between point and plane, 628
equaƟons of, 624
introducƟon, 562
normal vector, 623
tangent, 745

point of inflecƟon, 152
polar

coordinates, 533
funcƟon

arc length, 553
gallery of graphs, 540
surface area, 554

funcƟons, 536
area, 549
area between curves, 551
finding dy

dx , 546
graphing, 536

polar coordinates, 533
ploƫng points, 533

potenƟal funcƟon, 857, 866
Power Rule

differenƟaƟon, 82, 89, 95, 116
integraƟon, 202

power series, 460
algebra of, 491
convergence, 461
derivaƟves and integrals, 465

projecƟle moƟon, 656, 657, 670

quadric surface
definiƟon, 566
ellipsoid, 568
ellipƟc cone, 567
ellipƟc paraboloid, 567
gallery, 567–569
hyperbolic paraboloid, 569
hyperboloid of one sheet, 568
hyperboloid of two sheets, 569
sphere, 568
trace, 566

QuoƟent Rule, 92

R, 574
radius of convergence, 462
radius of curvature, 678
RaƟo Comparison Test

for series, 443
rearrangements of series, 455, 456
related rates, 174
Riemann Sum, 218, 222, 225

and definite integral, 232
Right Hand Rule, 218, 223, 248
right hand rule

of Cartesian coordinates, 560
of the cross product, 605

Rolle’s Theorem, 138

Root Comparison Test
for series, 446

saddle point, 751, 752
Second DerivaƟve Test, 155, 752
sensiƟvity analysis, 717
sequence

Absolute Value Theorem, 410
posiƟve, 437

sequences
boundedness, 412
convergent, 408, 413, 416
definiƟon, 405
divergent, 408
limit, 408
limit properƟes, 411
monotonic, 414

series
absolute convergence, 454
Absolute Convergence Theorem, 456
alternaƟng, 449

ApproximaƟon Theorem, 452
AlternaƟng Series Test, 450
Binomial, 489
condiƟonal convergence, 454
convergent, 419
definiƟon, 419
Direct Comparison Test, 437
divergent, 419
geometric, 421, 422
Integral Test, 434
interval of convergence, 462
Limit Comparison Test, 438
Maclaurin, 485
nth–term test, 429
p-series, 423
parƟal sums, 419
power, 460, 461

derivaƟves and integrals, 465
properƟes, 427
radius of convergence, 462
RaƟo Comparison Test, 443
rearrangements, 455, 456
Root Comparison Test, 446
Taylor, 485
telescoping, 424, 425

Shell Method, 371, 375
signed area, 209
signed volume, 770, 771
simple curve, 865
simply connected, 865
Simpson’s Rule, 253, 255

error bounds, 256
smooth, 642

curve, 517
surface, 880

smooth curve
piecewise, 846

speed, 651
sphere, 561



spherical coordinates, 831
Squeeze Theorem, 22
Stokes’ Theorem, 906
Sum/Difference Rule

of derivaƟves, 84
of integraƟon, 202
of series, 427

summaƟon
notaƟon, 219
properƟes, 221

surface, 880
smooth, 880

surface area, 800
of parametrized surface, 886, 887
solid of revoluƟon, 383, 529, 554

surface integral, 891
surface of revoluƟon, 564, 565

tangent line, 62, 521, 546, 641
direcƟonal, 739

tangent plane, 745
Taylor Polynomial

definiƟon, 474
Taylor’s Theorem, 477

Taylor Series
common series, 491
definiƟon, 485
equality with generaƟng funcƟon, 487

Taylor’s Theorem, 477
telescoping series, 424, 425
terminal point, 574
torque, 608
total differenƟal, 712, 718

sensiƟvity analysis, 717
total signed area, 209
trace, 566
Trapezoidal Rule, 251, 255

error bounds, 256
triple integral, 808, 819–821

properƟes, 814

unbounded sequence, 412
unbounded set, 690
unit normal vector

aN, 669
and acceleraƟon, 668, 669
and curvature, 679
definiƟon, 666
in R2, 668

unit tangent vector
and acceleraƟon, 668, 669
and curvature, 675, 679
aT, 669
definiƟon, 664
in R2, 668

unit vector, 580
properƟes, 582
standard unit vector, 584
unit normal vector, 666
unit tangent vector, 664

vector field, 850
conservaƟve, 865, 866
curl of, 853
divergence of, 852, 853
over vector field, 860
potenƟal funcƟon of, 857, 866

vector–valued funcƟon
algebra of, 632
arc length, 648
average rate of change, 635
conƟnuity, 638
definiƟon, 631
derivaƟves, 639, 640, 643
describing moƟon, 651
displacement, 634
distance traveled, 659
graphing, 631
integraƟon, 646
limits, 637
of constant length, 645, 655, 656, 665
projecƟle moƟon, 656, 657
smooth, 642
tangent line, 641

vectors, 574
algebra of, 577
algebraic properƟes, 580
component form, 575
cross product, 601, 603, 604
definiƟon, 574
dot product, 588–590
Head To Tail Rule, 578
magnitude, 574
norm, 574
normal vector, 623
orthogonal, 592
orthogonal decomposiƟon, 596
orthogonal projecƟon, 594
parallel, 582
Parallelogram Law, 578
resultant, 578
standard unit vector, 584
unit vector, 580, 582
zero vector, 578

velocity, 77, 651
volume, 770, 771, 806

Washer Method, 366, 375
work, 387, 599



DifferenƟaƟon Rules

1.
d
dx

(cx) = c

2.
d
dx

(u± v) = u′ ± v′

3.
d
dx

(u · v) = uv′ + u′v

4.
d
dx

(
u
v

)
=

vu′ − uv′

v2

5.
d
dx

(u(v)) = u′(v)v′

6.
d
dx

(c) = 0

7.
d
dx

(x) = 1

8.
d
dx

(xn) = nxn−1

9.
d
dx

(ex) = ex

10.
d
dx

(ax) = ln a · ax

11.
d
dx

(ln x) =
1
x

12.
d
dx

(loga x) =
1
ln a

·
1
x

13.
d
dx

(sin x) = cos x

14.
d
dx

(cos x) = − sin x

15.
d
dx

(csc x) = − csc x cot x

16.
d
dx

(sec x) = sec x tan x

17.
d
dx

(tan x) = sec2 x

18.
d
dx

(cot x) = − csc2 x

19.
d
dx
(
sin−1 x

)
=

1
√
1− x2

20.
d
dx
(
cos−1 x

)
=

−1
√
1− x2

21.
d
dx
(
csc−1 x

)
=

−1
|x|

√
x2 − 1

22.
d
dx
(
sec−1 x

)
=

1
|x|

√
x2 − 1

23.
d
dx
(
tan−1 x

)
=

1
1+ x2

24.
d
dx
(
cot−1 x

)
=

−1
1+ x2

25.
d
dx

(cosh x) = sinh x

26.
d
dx

(sinh x) = cosh x

27.
d
dx

(tanh x) = sech2 x

28.
d
dx

(sech x) = − sech x tanh x

29.
d
dx

(csch x) = − csch x coth x

30.
d
dx

(coth x) = − csch2 x

31.
d
dx
(
cosh−1 x

)
=

1
√
x2 − 1

32.
d
dx
(
sinh−1 x

)
=

1
√
x2 + 1

33.
d
dx
(
sech−1 x

)
=

−1
x
√
1− x2

34.
d
dx
(
csch−1 x

)
=

−1
|x|

√
1+ x2

35.
d
dx
(
tanh−1 x

)
=

1
1− x2

36.
d
dx
(
coth−1 x

)
=

1
1− x2

IntegraƟon Rules

1.
∫

c · f(x) dx = c
∫

f(x) dx

2.
∫

f(x)± g(x) dx =

∫
f(x) dx±

∫
g(x) dx

3.
∫

0 dx = C

4.
∫

1 dx = x+ C

5.
∫

xn dx =
1

n+ 1
xn+1 + C, n ̸= −1

6.
∫

ex dx = ex + C

7.
∫

ln x dx = x ln x− x+ C

8.
∫

ax dx =
1
ln a

· ax + C

9.
∫ 1

x
dx = ln |x|+ C

10.
∫

cos x dx = sin x+ C

11.
∫

sin x dx =− cos x+ C

12.
∫

tan x dx =− ln | cos x|+ C

13.
∫

sec x dx = ln | sec x+ tan x|+ C

14.
∫

csc x dx =− ln | csc x+ cot x|+ C

15.
∫

cot x dx = ln | sin x|+ C

16.
∫

sec2 x dx = tan x+ C

17.
∫

csc2 x dx =− cot x+ C

18.
∫

sec x tan x dx = sec x+ C

19.
∫

csc x cot x dx =− csc x+ C

20.
∫

cos2 x dx =
1
2
x+

1
4
sin
(
2x
)
+ C

21.
∫

sin2 x dx =
1
2
x−

1
4
sin
(
2x
)
+ C

22.
∫ 1

x2 + a2
dx =

1
a
tan−1

(
x
a

)
+ C

23.
∫ 1

√
a2 − x2

dx = sin−1
(
x
a

)
+ C

24.
∫ 1

x
√
x2 − a2

dx =
1
a
sec−1

(
|x|
a

)
+ C

25.
∫

cosh x dx = sinh x+ C

26.
∫

sinh x dx = cosh x+ C

27.
∫

tanh x dx = ln(cosh x) + C

28.
∫

coth x dx = ln | sinh x|+ C

29.
∫ 1

√
x2 − a2

dx = ln
∣∣x+√x2 − a2

∣∣+ C

30.
∫ 1

√
x2 + a2

dx = ln
∣∣x+√x2 + a2

∣∣+ C

31.
∫ 1

a2 − x2
dx =

1
2a

ln
∣∣∣∣a+ x
a− x

∣∣∣∣+ C

32.
∫ 1

x
√
a2 − x2

dx =
1
a
ln
(

x
a+

√
a2 − x2

)
+ C

33.
∫ 1

x
√
x2 + a2

dx =
1
a
ln
∣∣∣∣ x
a+

√
x2 + a2

∣∣∣∣+ C
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DefiniƟons of the Trigonometric FuncƟons

Unit Circle DefiniƟon

x

y

(x, y)

y

x

θ

sin θ = y cos θ = x

csc θ =
1
y

sec θ =
1
x

tan θ =
y
x

cot θ =
x
y

Right Triangle DefiniƟon

Adjacent

OppositeHy
pot

enu
se

θ

sin θ =
O
H

csc θ =
H
O

cos θ =
A
H

sec θ =
H
A

tan θ =
O
A

cot θ =
A
O

Common Trigonometric IdenƟƟes

Pythagorean IdenƟƟes
sin2 x+ cos2 x = 1

tan2 x+ 1 = sec2 x

1+ cot2 x = csc2 x

CofuncƟon IdenƟƟes
sin
(π
2
− x
)
= cos x

cos
(π
2
− x
)
= sin x

tan
(π
2
− x
)
= cot x

csc
(π
2
− x
)
= sec x

sec
(π
2
− x
)
= csc x

cot
(π
2
− x
)
= tan x

Double Angle Formulas
sin 2x = 2 sin x cos x

cos 2x = cos2 x− sin2 x

= 2 cos2 x− 1

= 1− 2 sin2 x

tan 2x =
2 tan x

1− tan2 x

Sum to Product Formulas

sin x+ sin y = 2 sin
(
x+ y
2

)
cos
(
x− y
2

)
sin x− sin y = 2 sin

(
x− y
2

)
cos
(
x+ y
2

)
cos x+ cos y = 2 cos

(
x+ y
2

)
cos
(
x− y
2

)
cos x− cos y = −2 sin

(
x+ y
2

)
sin
(
x− y
2

)

Power–Reducing Formulas

sin2 x =
1− cos 2x

2

cos2 x =
1+ cos 2x

2

tan2 x =
1− cos 2x
1+ cos 2x

Even/Odd IdenƟƟes
sin(−x) = − sin x

cos(−x) = cos x

tan(−x) = − tan x

csc(−x) = − csc x

sec(−x) = sec x

cot(−x) = − cot x

Product to Sum Formulas

sin x sin y =
1
2
(
cos(x− y)− cos(x+ y)

)
cos x cos y =

1
2
(
cos(x− y) + cos(x+ y)

)
sin x cos y =

1
2
(
sin(x+ y) + sin(x− y)

)

Angle Sum/Difference Formulas
sin(x± y) = sin x cos y± cos x sin y

cos(x± y) = cos x cos y∓ sin x sin y

tan(x± y) =
tan x± tan y
1∓ tan x tan y



Areas and Volumes

Triangles
h = a sin θ

Area = 1
2bh

Law of Cosines:
c2 = a2 + b2 − 2ab cos θ

b
θ

ac
h

Right Circular Cone
Volume = 1

3πr
2h

Surface Area =
πr
√
r2 + h2 + πr2

h

r

Parallelograms
Area = bh

b

h

Right Circular Cylinder
Volume = πr2h

Surface Area =
2πrh+ 2πr2

h

r

Trapezoids
Area = 1

2 (a+ b)h

b

a

h

Sphere
Volume = 4

3πr
3

Surface Area =4πr2
r

Circles
Area = πr2

Circumference = 2πr
r

General Cone
Area of Base = A

Volume = 1
3Ah

h

A

Sectors of Circles
θ in radians

Area = 1
2θr

2

s = rθ r

s

θ

General Right Cylinder
Area of Base = A

Volume = Ah
h

A



Algebra

Factors and Zeros of Polynomials
Let p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 be a polynomial. If p(a) = 0, then a is a zero of the polynomial and a soluƟon of
the equaƟon p(x) = 0. Furthermore, (x− a) is a factor of the polynomial.

Fundamental Theorem of Algebra
An nth degree polynomial has n (not necessarily disƟnct) zeros. Although all of these zeros may be imaginary, a real
polynomial of odd degree must have at least one real zero.

QuadraƟc Formula
If p(x) = ax2 + bx+ c, and 0 ≤ b2 − 4ac, then the real zeros of p are x = (−b±

√
b2 − 4ac)/2a

Special Factors
x2 − a2 = (x− a)(x+ a) x3 − a3 = (x− a)(x2 + ax+ a2)
x3 + a3 = (x+ a)(x2 − ax+ a2) x4 − a4 = (x2 − a2)(x2 + a2)
(x+ y)n = xn + nxn−1y+ n(n−1)

2! xn−2y2 + · · ·+ nxyn−1 + yn

(x− y)n = xn − nxn−1y+ n(n−1)
2! xn−2y2 − · · · ± nxyn−1 ∓ yn

Binomial Theorem
(x+ y)2 = x2 + 2xy+ y2 (x− y)2 = x2 − 2xy+ y2
(x+ y)3 = x3 + 3x2y+ 3xy2 + y3 (x− y)3 = x3 − 3x2y+ 3xy2 − y3
(x+ y)4 = x4 + 4x3y+ 6x2y2 + 4xy3 + y4 (x− y)4 = x4 − 4x3y+ 6x2y2 − 4xy3 + y4

RaƟonal Zero Theorem
If p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 has integer coefficients, then every rational zero of p is of the form x = r/s,
where r is a factor of a0 and s is a factor of an.

Factoring by Grouping
acx3 + adx2 + bcx+ bd = ax2(cs+ d) + b(cx+ d) = (ax2 + b)(cx+ d)

ArithmeƟc OperaƟons
ab+ ac = a(b+ c)

a
b
+

c
d
=

ad+ bc
bd

a+ b
c

=
a
c
+

b
c(a

b

)
( c
d

) =
(a
b

)(d
c

)
=

ad
bc

(a
b

)
c

=
a
bc

a(
b
c

) =
ac
b

a
(
b
c

)
=

ab
c

a− b
c− d

=
b− a
d− c

ab+ ac
a

= b+ c

Exponents and Radicals

a0 = 1, a ̸= 0 (ab)x = axbx axay = ax+y √
a = a1/2

ax

ay
= ax−y n

√
a = a1/n

(a
b

)x
=

ax

bx
n
√
am = am/n a−x =

1
ax

n
√
ab = n

√
a n
√
b (ax)y = axy n

√
a
b
=

n
√
a

n
√
b



AddiƟonal Formulas

SummaƟon Formulas:
n∑

i=1
c = cn

n∑
i=1

i =
n(n+ 1)

2
n∑

i=1
i2 =

n(n+ 1)(2n+ 1)
6

n∑
i=1

i3 =
(
n(n+ 1)

2

)2

Trapezoidal Rule:∫ b

a
f(x) dx ≈ ∆x

2
[
f(x1) + 2f(x2) + 2f(x3) + ...+ 2f(xn) + f(xn+1)

]
with Error ≤ (b− a)3

12n2
[
max

∣∣f ′′(x)∣∣]

Simpson’s Rule:∫ b

a
f(x) dx ≈ ∆x

3
[
f(x1) + 4f(x2) + 2f(x3) + 4f(x4) + ...+ 2f(xn−1) + 4f(xn) + f(xn+1)

]
with Error ≤ (b− a)5

180n4
[
max

∣∣f (4)(x)∣∣]

Arc Length:

L =
∫ b

a

√
1+ f ′(x)2 dx

Surface of RevoluƟon:

S = 2π
∫ b

a
f(x)
√

1+ f ′(x)2 dx

(where f(x) ≥ 0)

S = 2π
∫ b

a
x
√

1+ f ′(x)2 dx

(where a, b ≥ 0)

Work Done by a Variable Force:

W =

∫ b

a
F(x) dx

Force Exerted by a Fluid:

F =
∫ b

a
wd(y) ℓ(y) dy

Taylor Series Expansion for f(x):

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)
2!

(x− c)2 +
f ′′′(c)
3!

(x− c)3 + ...+
f (n)(c)
n!

(x− c)n

Maclaurin Series Expansion for f(x), where c = 0:

pn(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + ...+
f (n)(0)

n!
xn



Summary of Tests for Series:

Test Series CondiƟon(s) of
Convergence

CondiƟon(s) of
Divergence Comment

nth-Term
∞∑
n=1

an lim
n→∞

an ̸= 0 This test cannot be used to
show convergence.

Geometric Series
∞∑
n=0

rn |r| < 1 |r| ≥ 1 Sum =
1

1− r

Telescoping Series
∞∑
n=1

(bn − bn+a) lim
n→∞

bn = L Sum =

(
a∑

n=1
bn

)
− L

p-Series
∞∑
n=1

1
(an+ b)p

p > 1 p ≤ 1

Integral Test
∞∑
n=0

an

∫ ∞

1
a(n) dn

is convergent

∫ ∞

1
a(n) dn

is divergent

an = a(n) must be
conƟnuous

Direct Comparison
∞∑
n=0

an

∞∑
n=0

bn

converges and
0 ≤ an ≤ bn

∞∑
n=0

bn

diverges and
0 ≤ bn ≤ an

Limit Comparison
∞∑
n=0

an

∞∑
n=0

bn

converges and
lim

n→∞
an/bn ≥ 0

∞∑
n=0

bn

diverges and
lim

n→∞
an/bn > 0

Also diverges if
lim

n→∞
an/bn = ∞

RaƟo Test
∞∑
n=0

an lim
n→∞

an+1

an
< 1 lim

n→∞

an+1

an
> 1

{an}must be posiƟve
Also diverges if
lim

n→∞
an+1/an = ∞

Root Test
∞∑
n=0

an lim
n→∞

(
an
)1/n

< 1 lim
n→∞

(
an
)1/n

> 1

{an}must be posiƟve
Also diverges if

lim
n→∞

(
an
)1/n

= ∞
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