5: INTEGRATION

We have spent considerable time considering the derivatives of a function and
their applications. In the following chapters, we are going to starting thinking
in “the other direction.” That is, given a function f(x), we are going to consider
functions F(x) such that F'(x) = f(x). There are numerous reasons this will
prove to be useful: these functions will help us compute area, volume, mass,
force, pressure, work, and much more.

5.1 Antiderivatives and Indefinite Integration

Given a function y = f(x), a differential equation is one that incorporates y, x,
and the derivatives of y. For instance, a simple differential equation is:

y' = 2x.

Solving a differential equation amounts to finding a function y that satisfies
the given equation. Take a moment and consider that equation; can you find a
function y such thaty’ = 2x?

Can you find another?

And yet another?

Hopefully one was able to come up with at least one solution: y = x*. “Find-
ing another” may have seemed impossible until one realizes that a function like
y = x> + 1 also has a derivative of 2x. Once that discovery is made, finding “yet
another” is not difficult; the function y = x?> + 123,456, 789 also has a deriva-
tive of 2x. The differential equation y’ = 2x has many solutions. This leads us
to some definitions.

Definition 5.1.1 Antiderivatives and Indefinite Integrals

Let a function f(x) be given. An antiderivative of f(x) is a function F(x)
such that F’'(x) = f(x).

The set of all antiderivatives of f(x) is the indefinite integral of f, denoted

by
/ f(x) dx.

Make a note about our definition: we refer to an antiderivative of f, as op-
posed to the antiderivative of f, since there is always an infinite number of them.
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We often use upper-case letters to denote antiderivatives.

Knowing one antiderivative of f allows us to find infinitely more, simply by
adding a constant. Not only does this give us more antiderivatives, it gives us all
of them.

Theorem 5.1.1 Antiderivative Forms

Let F(x) and G(x) be antiderivatives of f(x) on an interval /. Then there
exists a constant C such that, on /,

Given a function f defined on an interval / and one of its antiderivatives F,
we know all antiderivatives of f on I have the form F(x) + C for some constant
C. Using Definition 5.1.1, we can say that

Let’s analyze this indefinite integral notation.

Integration Differential ~ Constant of
symbol of x integration

/ |
\/f(x) dx = FT(X) +C
f

One

Integrand antiderivative

Figure 5.1.1: Understanding the indefinite integral notation.

Figure 5.1.1 shows the typical notation of the indefinite integral. The inte-
gration symbol, f, is in reality an “elongated S,” representing “take the sum.”
We will later see how sums and antiderivatives are related.

The function we want to find an antiderivative of is called the integrand. It
contains the differential of the variable we are integrating with respect to. The f
symbol and the differential dx are not “bookends” with a function sandwiched in
between; rather, the symbol f means “find all antiderivatives of what follows,”
and the function f(x) and dx are multiplied together; the dx does not “just sit
there.”

Let’s practice using this notation.

Notes:
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Example 5.1.1 Evaluating indefinite integrals

Evaluate/sinxdx.

SOLUTION We are asked to find all functions F(x) such that F'(x) =
sin x. Some thought will lead us to one solution: F(x) = — cos x, because 2 (— cos x) =
sinx.

The indefinite integral of sin x is thus — cos x, plus a constant of integration.
So:

/sinxdx: —cosx + C.

A commonly asked question is “What happened to the dx?” The unenlight-
ened response is “Don’t worry about it. It just goes away.” A full understanding
includes the following.

This process of antidifferentiation is really solving a differential question. The

integral
/ sinx dx

presents us with a differential, dy = sin x dx. Itis asking: “What is y?” We found
lots of solutions, all of the formy = — cosx + C.
Letting dy = sin x dx, rewrite

/sinxdx as /dy.

This is asking: “What functions have a differential of the form dy?” The answer
is “Functions of the form y + C, where Cis a constant.” What is y? We have lots
of choices, all differing by a constant; the simplest choice is y = — cos x.

Understanding all of this is more important later as we try to find antideriva-
tives of more complicated functions. In this section, we will simply explore the
rules of indefinite integration, and one can succeed for now with answering
“What happened to the dx?” with “It went away.”

Let’s practice once more before stating integration rules.

Example 5.1.2 Evaluating indefinite integrals
Evaluate /(3x2 + 4x + 5) dx.

SOLUTION We seek a function F(x) whose derivative is 3x* + 4x + 5.
When taking derivatives, we can consider functions term—by—term, so we can
likely do that here.

What functions have a derivative of 3x*? Some thought will lead us to a
cubic, specifically x> 4+ C;, where C; is a constant.

Notes:
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What functions have a derivative of 4x? Here the x term is raised to the first
power, so we likely seek a quadratic. Some thought should lead us to 2x? + G,
where G, is a constant.

Finally, what functions have a derivative of 5? Functions of the form 5x + C;,
where C; is a constant.

Our answer appears to be
/(3X2+4x+5)dx:x3+C1—|—2x2+C2+5x+C3.

We do not need three separate constants of integration; combine them as one
constant, giving the final answer of

/(3x2+4x+5)dx:x3+2xz+5x+C.

It is easy to verify our answer; take the derivative of x> + 2x3 + 5x + C and
see we indeed get 3x% + 4x + 5.

This final step of “verifying our answer” is important both practically and
theoretically. In general, taking derivatives is easier than finding antiderivatives
so checking our work is easy and vital as we learn.

We also see that taking the derivative of our answer returns the function in
the integrand. Thus we can say that:

a ( [ 19 dx) — 1.

Differentiation “undoes” the work done by antidifferentiation.

Theorem 2.7.3 gave a list of the derivatives of common functions we had
learned at that point. We restate part of that list here to stress the relationship
between derivatives and antiderivatives. This list will also be useful as a glossary
of common antiderivatives as we learn.

Notes:
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Theorem 5.1.2 Derivatives and Antiderivatives

Common Differentiation Rules Common Indefinite Integral Rules

1 Z(cf(x) =c-f'(x) 1. [c-f(x)dx=c- [f(x)dx
2. L(f(x) £g(x)) = 2. [ (f(x) £g(x)) dx =
f'(x) £ d'(x) [ f(x) dx £ [ g(x) dx
3. £(¢)=0 3. fodx=C
4. Z(x) =1 4. [ldx= [dx=x+C
5. L (x") =n-x""1 5. [Xdx= 55X 4 C £ -1
6. Z(sinx) = cosx 6. [cosxdx=sinx+C
7. Z(cosx) = —sinx 7. [sinxdx= —cosx+C
8. Z(tanx) = sec’x 8. [sec?xdx=tanx+C
9. Z(cscx) = —cscxcotx 9. [cescxcotxdx = —cscx+ C
10. 4 (secx) = secxtanx 10. [secxtanxdx = secx + C
11. Z(cotx) = —csc®x 11. [esc?xdx = —cotx+ C
12. L(e) = ¢ 12. [e*dx=e"+C
13. Z(a*) =Ina-a* 13. [a¥dx=1L-a"+C
14. Z(Inx) =1 14. [Ldx=In|x|+C

We highlight a few important points from Theorem 5.1.2:

* Rule #1 states [ ¢ - f(x) dx = c- [ f(x) dx. This is the Constant Multiple
Rule: we can temporarily ignore constants when finding antiderivatives,
just as we did when computing derivatives (i.e., d% (3x2) is just as easy to
compute as & (x?)). An example:

/5cosxdx:5~/cosxdx:5-(sinx—|—C)=55inx—|—C.

In the last step we can consider the constant as also being multiplied by

Notes:
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5, but “5 times a constant” is still a constant, so we just write “C”.

¢ Rule #2 is the Sum/Difference Rule: we can split integrals apart when the
integrand contains terms that are added/subtracted, as we did in Example
5.1.2. So:

/(3x2+4x+5)dx:/3x2dx+/4xdx+/5dx
:3/x2dx+4/xdx+/5dx
1

:3-}x3+4~7x2+5x+c
3 2

=x*4+ 2% +5x+C

In practice we generally do not write out all these steps, but we demon-
strate them here for completeness.

¢ Rule #5 is the Power Rule of indefinite integration. There are two impor-
tant things to keep in mind:

1. Notice the restriction that n # —1. This is important: f% dx #
“2x% + C”; rather, see Rule #14.

2. We are presenting antidifferentiation as the “inverse operation” of
differentiation. Here is a useful quote to remember:

“Inverse operations do the opposite things in the opposite
order.”

When taking a derivative using the Power Rule, we first multiply by
the power, then second subtract 1 from the power. To find the an-
tiderivative, do the opposite things in the opposite order: first add
one to the power, then second divide by the power.

¢ Note that Rule #14 incorporates the absolute value of x. The exercises will
work the reader through why this is the case; for now, know the absolute
value is important and cannot be ignored.

Initial Value Problems

In Section 2.3 we saw that the derivative of a position function gave a velocity
function, and the derivative of a velocity function describes acceleration. We
can now go “the other way:” the antiderivative of an acceleration function gives
a velocity function, etc. While there is just one derivative of a given function,
there are infinitely many antiderivatives. Therefore we cannot ask “What is the
velocity of an object whose acceleration is —32ft/s%?”, since there is more than
one answer.

Notes:
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We can find the answer if we provide more information with the question,
as done in the following example. Often the additional information comes in the
form of an initial value, a value of the function that one knows beforehand.

Example 5.1.3 Solving initial value problems
The acceleration due to gravity of a falling object is —32 ft/s?. At timet = 3,
a falling object had a velocity of —10 ft/s. Find the equation of the object’s

velocity.

SOLUTION We want to know a velocity function, v(t). We know two
things:

* The acceleration, i.e., v/(t) = —32, and

* the velocity at a specific time, i.e., v(3) = —10.

Using the first piece of information, we know that v(t) is an antiderivative of
v’(t) = —32. So we begin by finding the indefinite integral of —32:

/(—32) dt = =32t + C = v(t).
Now we use the fact that v(3) = —10 to find C:
v(t) = =32t +C

v(3) = —10
~32(3)+C=-10
C=86

Thus v(t) = —32t + 86. We can use this equation to understand the motion
of the object: when t = 0, the object had a velocity of v(0) = 86 ft/s. Since the
velocity is positive, the object was moving upward.

When did the object begin moving down? Immediately after v(t) = 0:

43
—32t+86 =0 = t:1—6z2.695.

Recognize that we are able to determine quite a bit about the path of the object
knowing just its acceleration and its velocity at a single point in time.

Example 5.1.4 Solving initial value problems
Find f(t), given that f”/(t) = cost, f/(0) = 3 and f(0) = 5.

SOLUTION We start by finding f’(t), which is an antiderivative of f”(t):

/f”(t) dt:/costdt:sint+C:f/(t)-

Notes:
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So f'(t) = sint + C for the correct value of C. We are given that f/(0) = 3,
so:
f[(0)=3 = sin0+C=3 = C(=3.

Using the initial value, we have found f'(t) = sint + 3.
We now find f(t) by integrating again.

/f /smt+3)d t = —cost+3t+C.

We are given that f(0) = 5, so

—cos0+3(0)+C=5
-1+C=5
C=6

Thus f(t) = — cost + 3t + 6.

This section introduced antiderivatives and the indefinite integral. We found
they are needed when finding a function given information about its deriva-
tive(s). For instance, we found a velocity function given an acceleration func-
tion.

In the next section, we will see how position and velocity are unexpectedly
related by the areas of certain regions on a graph of the velocity function. Then,
in Section 5.4, we will see how areas and antiderivatives are closely tied together.
This connection is incredibly important, as indicated by the name of the theorem
that describes it: The Fundamental Theorem of Calculus.

Notes:
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Exercises 5.1

Terms and Concepts

1.

. The derivative of a position function is a

Define the term “antiderivative” in your own words.

. Is it more accurate to refer to “the” antiderivative of f(x) or

“an” antiderivative of f(x)?

. Use your own words to define the indefinite integral of

fx).

. Fill in the blanks: “Inverse operations do the

things in the order.”

. What is an “initial value problem”?

func-
tion.

. The antiderivative of an acceleration functionis a

function.

. If F(x) is an antiderivative of f(x), and G(x) is an antideriva-

tive of g(x), give an antiderivative of f(x) + g(x).

Problems

In Exercises 9 — 27, evaluate the given indefinite integral.

9.

10.

11.

12.

13.

14

15.

16

17.

18.

/3x3dx
/xsdx
/(1Ox2—2)dx
[

/lds

[ b
[2a
./%dx
/sec29d0
/sin9d0

19.

20.

21.

22

23.

24

25.

26.

27.

28

/(secxtanx + cscx cot x) dx

/Se(’ do
/3f dt
i
2
/(2t+ 3)% dt
. /(t2 +3)(£ — 2t) dt
/sza dx
/e” dx
/adx

. This problem investigates why Theorem 5.1.2 states that
1
/fdx: In|x| + C.
X

(a) What is the domain of y = Inx?

(b) Find dix(ln x).

(c) What is the domain of y = In(—x)?
(d) Find £ (In(—x)).

(e) You should find that 1/x has two types of antideriva-
tives, depending on whether x > O orx < 0. In

1
one expression, give a formula for / 5 dx that takes

these different domains into account, and explain
your answer.

In Exercises 29 — 39, find f(x) described by the given initial
value problem.

29. f'(x) = sinxand f(0) = 2

30. f'(x) = 5¢* and f(0) = 10

31. f'(x) = 4x® —3x*and f(—1) = 9

32. f'(x) = sec?xand f(/4) = 5

33. f/(x) =7"andf(2) =1

34. f"(x) =5andf'(0) =7,f(0) =3

35. f"(x) = 7xand f'(1) = —1,(1) = 10
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36. f”(x) = 5¢" and f'(0) = 3,(0) = 5 Review

37. f"(0) =sinfandf'(m) = 2,f(r) = 4 40. Use information gained from the first and second deriva-
1
tives to sketch = .
38. f”(x) = 24x* + 2 — cosxand f'(0) = 5, f(0) = 0 ves to sketeh flx) = 5=
39. f"(x) =0andf'(1) =3,f(1) =1 41. Giveny = x*e* cosx, find dy.
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