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Figure 5.2.1: The area under a constant
velocity funcƟon corresponds to distance
traveled.
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5.2 The Definite Integral

5.2 The Definite Integral
We start with an easy problem. An object travels in a straight line at a constant
velocity of 5Ō/s for 10 seconds. How far away from its starƟng point is the ob-
ject?

We approach this problemwith the familiar “Distance= Rate× Time” equa-
Ɵon. In this case, Distance = 5Ō/s× 10s= 50 feet.

It is interesƟng to note that this soluƟon of 50 feet can be represented graph-
ically. Consider Figure 5.2.1, where the constant velocity of 5Ō/s is graphed on
the axes. Shading the area under the line from t = 0 to t = 10 gives a rectangle
with an area of 50 square units; when one considers the units of the axes, we
can say this area represents 50 Ō.

Now consider a slightly harder situaƟon (and not parƟcularly realisƟc): an
object travels in a straight line with a constant velocity of 5Ō/s for 10 seconds,
then instantly reverses course at a rate of 2Ō/s for 4 seconds. (Since the object
is traveling in the opposite direcƟon when reversing course, we say the velocity
is a constant−2Ō/s.) How far away from the starƟng point is the object – what
is its displacement?

Here we use “Distance= Rate1 × Time1 + Rate2 × Time2,” which is

Distance = 5 · 10+ (−2) · 4 = 42 Ō.

Hence the object is 42 feet from its starƟng locaƟon.
We can again depict this situaƟon graphically. In Figure 5.2.2 we have the

velociƟes graphed as straight lines on [0, 10] and [10, 14], respecƟvely. The dis-
placement of the object is

“Area above the t–axis − Area below the t–axis,”

which is easy to calculate as 50− 8 = 42 feet.
Now consider a more difficult problem.

Example 5.2.1 Finding posiƟon using velocity
The velocity of an object moving straight up/down under the acceleraƟon of
gravity is given as v(t) = −32t+48, where Ɵme t is given in seconds and velocity
is in Ō/s. When t = 0, the object had a height of 0 Ō.

1. What was the iniƟal velocity of the object?

2. What was the maximum height of the object?

3. What was the height of the object at Ɵme t = 2?

SÊ½çã®ÊÄ It is straighƞorward to find the iniƟal velocity; at Ɵme t = 0,
v(0) = −32 · 0+ 48 = 48 Ō/s.

Notes:
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Figure 5.2.3: A graph of v(t) = −32t +
48; the shaded areas help determine dis-
placement.

Chapter 5 IntegraƟon

To answer quesƟons about the height of the object, we need to find the
object’s posiƟon funcƟon s(t). This is an iniƟal value problem, which we studied
in the previous secƟon. We are told the iniƟal height is 0, i.e., s(0) = 0. We
know s ′(t) = v(t) = −32t+ 48. To find s, we find the indefinite integral of v(t):∫

v(t) dt =
∫
(−32t+ 48) dt = −16t2 + 48t+ C = s(t).

Since s(0) = 0, we conclude that C = 0 and s(t) = −16t2 + 48t.
To find the maximum height of the object, we need to find the maximum of

s. Recalling our work finding extreme values, we find the criƟcal points of s by
seƫng its derivaƟve equal to 0 and solving for t:

s ′(t) = −32t+ 48 = 0 ⇒ t = 48/32 = 1.5s.

(NoƟce how we ended up just finding when the velocity was 0Ō/s!) The first
derivaƟve test shows this is a maximum, so the maximum height of the object
is found at

s(1.5) = −16(1.5)2 + 48(1.5) = 36Ō.

The height at Ɵme t = 2 is now straighƞorward to compute: it is s(2) = 32Ō.

While we have answered all three quesƟons, let’s look at them again graph-
ically, using the concepts of area that we explored earlier.

Figure 5.2.3 shows a graph of v(t) on axes from t = 0 to t = 3. It is again
straighƞorward to find v(0). How can we use the graph to find the maximum
height of the object?

Recall how in our previous work that the displacement of the object (in this
case, its height) was found as the area under the velocity curve, as shaded in the
figure. Moreover, the area between the curve and the t–axis that is below the
t–axis counted as “negaƟve” area. That is, it represents the object coming back
toward its starƟng posiƟon. So to find the maximum distance from the starƟng
point – the maximum height – we find the area under the velocity line that is
above the t–axis, i.e., from t = 0 to t = 1.5. This region is a triangle; its area is

Area =
1
2
Base× Height =

1
2
× 1.5s× 48Ō/s = 36Ō,

which matches our previous calculaƟon of the maximum height.
Finally, to find the height of the object at Ɵme t = 2 we calculate the total

“signed area” (where some area is negaƟve) under the velocity funcƟon from
t = 0 to t = 2. This signed area is equal to s(2), the displacement (i.e., signed
distance) from the starƟng posiƟon at t = 0 to the posiƟon at Ɵme t = 2. That
is,

Displacement = Area above the t–axis− Area below t–axis.

Notes:
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5.2 The Definite Integral

The regions are triangles, and we find

Displacement =
1
2
(1.5s)(48Ō/s)− 1

2
(.5s)(16Ō/s) = 32Ō.

This also matches our previous calculaƟon of the height at t = 2.
NoƟce howweanswered each quesƟon in this example in twoways. Our first

methodwas tomanipulate equaƟons using our understanding of anƟderivaƟves
and derivaƟves. Our second method was geometric: we answered quesƟons
looking at a graph and finding the areas of certain regions of this graph.

The above example does not prove a relaƟonship between area under a ve-
locity funcƟon and displacement, but it does imply a relaƟonship exists. SecƟon
5.4 will fully establish fact that the area under a velocity funcƟon is displace-
ment.

Given a graph of a funcƟon y = f(x), we will find that there is great use in
compuƟng the area between the curve y = f(x) and the x-axis. Because of this,
we need to define some terms.

DefiniƟon 5.2.1 The Definite Integral, Total Signed Area

Let y = f(x) be defined on a closed interval [a, b]. The total signed area
from x = a to x = b under f is:
(area under f and above the x–axis on [a, b])− (area above f and under

the x–axis on [a, b]).

The definite integral of f on [a, b] is the total signed area of f on [a, b],
denoted ∫ b

a
f(x) dx,

where a and b are the bounds of integraƟon.

By our definiƟon, the definite integral gives the “signed area under f.” We
usually drop the word “signed” when talking about the definite integral, and
simply say the definite integral gives “the area under f ” or, more commonly,
“the area under the curve.”

The previous secƟon introduced the indefinite integral, which related to an-
ƟderivaƟves. We have now defined the definite integral, which relates to areas
under a funcƟon. The two are very much related, as we’ll see when we learn
the Fundamental Theorem of Calculus in SecƟon 5.4. Recall that earlier we said
that the “

∫
” symbol was an “elongated S” that represented finding a “sum.” In

the context of the definite integral, this notaƟon makes a bit more sense, as we
are adding up areas under the funcƟon f.

Notes:
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Figure 5.2.5: A graph of 5f in Example
5.2.2. (Yes, it looks just like the graph of
f in Figure 5.2.4, just with a different y-
scale.)

Chapter 5 IntegraƟon

We pracƟce using this notaƟon.

Example 5.2.2 EvaluaƟng definite integrals
Consider the funcƟon f given in Figure 5.2.4.

Find:

1.
∫ 3

0
f(x) dx

2.
∫ 5

3
f(x) dx

3.
∫ 5

0
f(x) dx

4.
∫ 3

0
5f(x) dx

5.
∫ 1

1
f(x) dx

SÊ½çã®ÊÄ

1.
∫ 3
0 f(x) dx is the area under f on the interval [0, 3]. This region is a triangle,
so the area is

∫ 3
0 f(x) dx = 1

2 (3)(1) = 1.5.

2.
∫ 5
3 f(x) dx represents the area of the triangle found under the x–axis on
[3, 5]. The area is 1

2 (2)(1) = 1; since it is found under the x–axis, this is
“negaƟve area.” Therefore

∫ 5
3 f(x) dx = −1.

3.
∫ 5
0 f(x) dx is the total signed area under fon [0, 5]. This is 1.5+(−1) = 0.5.

4.
∫ 3
0 5f(x) dx is the area under 5f on [0, 3]. This is sketched in Figure 5.2.5.
Again, the region is a triangle, with height 5 Ɵmes that of the height of the
original triangle. Thus the area is

∫ 3
0 5f(x) dx = 1

2 (15)(1) = 7.5.

5.
∫ 1
1 f(x) dx is the area under f on the “interval” [1, 1]. This describes a line
segment, not a region; it has no width. Therefore the area is 0.

This example illustrates some of the properƟes of the definite integral, given
here.

Notes:
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5.2 The Definite Integral

Theorem 5.2.1 ProperƟes of the Definite Integral

Let f and g be defined on a closed interval I that contains the values a, b
and c, and let k be a constant. The following hold:

1.
∫ a

a
f(x) dx = 0

2.
∫ b

a
f(x) dx+

∫ c

b
f(x) dx =

∫ c

a
f(x) dx

3.
∫ b

a
f(x) dx = −

∫ a

b
f(x) dx

4.
∫ b

a

(
f(x)± g(x)

)
dx =

∫ b

a
f(x) dx±

∫ b

a
g(x) dx

5.
∫ b

a
k · f(x) dx = k ·

∫ b

a
f(x) dx

We give a brief jusƟficaƟon of Theorem 5.2.1 here.

1. As demonstrated in Example 5.2.2, there is no “area under the curve”
when the region has no width; hence this definite integral is 0.

2. This states that total area is the sum of the areas of subregions. It is easily
considered when we let a < b < c. We can break the interval [a, c] into
two subintervals, [a, b] and [b, c]. The total area over [a, c] is the area over
[a, b] plus the area over [b, c].
It is important to note that this sƟll holds true even if a < b < c is not
true. We discuss this in the next point.

3. This property can be viewed a merely a convenƟon to make other proper-
Ɵesworkwell. (Later wewill see how this property has a jusƟficaƟon all its
own, not necessarily in support of other properƟes.) Suppose b < a < c.
The discussion from the previous point clearly jusƟfies∫ a

b
f(x) dx+

∫ c

a
f(x) dx =

∫ c

b
f(x) dx. (5.1)

However, we sƟll claim that, as originally stated,∫ b

a
f(x) dx+

∫ c

b
f(x) dx =

∫ c

a
f(x) dx. (5.2)

Notes:
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Chapter 5 IntegraƟon

How do EquaƟons (5.1) and (5.2) relate? Start with EquaƟon (5.1):∫ a

b
f(x) dx+

∫ c

a
f(x) dx =

∫ c

b
f(x) dx∫ c

a
f(x) dx = −

∫ a

b
f(x) dx+

∫ c

b
f(x) dx

Property (3) jusƟfies changing the sign and switching the bounds of inte-

graƟon on the −
∫ a

b
f(x) dx term; when this is done, EquaƟons (5.1) and

(5.2) are equivalent.
The conclusion is this: by adopƟng the convenƟon of Property (3), Prop-
erty (2) holds no maƩer the order of a, b and c. Again, in the next secƟon
we will see another jusƟficaƟon for this property.

4,5. Each of these may be non–intuiƟve. Property (5) states that when one
scales a funcƟon by, for instance, 7, the area of the enclosed region also
is scaled by a factor of 7. Both ProperƟes (4) and (5) can be proved using
geometry. The details are not complicated but are not discussed here.

Example 5.2.3 EvaluaƟng definite integrals using Theorem 5.2.1.
Consider the graph of a funcƟon f(x) shown in Figure 5.2.6. Answer the follow-
ing:

1. Which value is greater:
∫ b

a
f(x) dx or

∫ c

b
f(x) dx?

2. Is
∫ c

a
f(x) dx greater or less than 0?

3. Which value is greater:
∫ b

a
f(x) dx or

∫ b

c
f(x) dx?

SÊ½çã®ÊÄ

1.
∫ b
a f(x) dx has a posiƟve value (since the area is above the x–axis) whereas∫ c
b f(x) dx has a negaƟve value. Hence

∫ b
a f(x) dx is bigger.

2.
∫ c
a f(x) dx is the total signed area under f between x = a and x = c. Since
the region below the x–axis looks to be larger than the region above, we
conclude that the definite integral has a value less than 0.

3. Note how the second integral has the bounds “reversed.” Therefore
∫ b
c f(x)dx

represents a posiƟve number, greater than the area described by the first
definite integral. Hence

∫ b
c f(x) dx is greater.

Notes:
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Figure 5.2.8: A graph of a velocity in Ex-
ample 5.2.5.

5.2 The Definite Integral

The area definiƟon of the definite integral allows us to use geometry to com-
pute the definite integral of some simple funcƟons.

Example 5.2.4 EvaluaƟng definite integrals using geometry
Evaluate the following definite integrals:

1.
∫ 5

−2
(2x− 4) dx 2.

∫ 3

−3

√
9− x2 dx.

SÊ½çã®ÊÄ

1. It is useful to sketch the funcƟon in the integrand, as shown in Figure
5.2.7(a). We see we need to compute the areas of two regions, which
we have labeled R1 and R2. Both are triangles, so the area computaƟon is
straighƞorward:

R1 :
1
2
(4)(8) = 16 R2 :

1
2
(3)6 = 9.

Region R1 lies under the x–axis, hence it is counted as negaƟve area (we
can think of the triangle’s height as being “−8”), so∫ 5

−2
(2x− 4) dx = −16+ 9 = −7.

2. Recognize that the integrand of this definite integral describes a half circle,
as sketched in Figure 5.2.7(b), with radius 3. Thus the area is:∫ 3

−3

√
9− x2 dx =

1
2
πr2 =

9
2
π.

Example 5.2.5 Understanding moƟon given velocity
Consider the graph of a velocity funcƟon of an object moving in a straight line,
given in Figure 5.2.8, where the numbers in the given regions gives the area of
that region. Assume that the definite integral of a velocity funcƟon gives dis-
placement. Find the maximum speed of the object and its maximum displace-
ment from its starƟng posiƟon.

SÊ½çã®ÊÄ Since the graph gives velocity, finding the maximum speed
is simple: it looks to be 15Ō/s.

At Ɵme t = 0, the displacement is 0; the object is at its starƟng posiƟon. At
Ɵme t = a, the object has moved backward 11 feet. Between Ɵmes t = a and

Notes:
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ometric shape.

Chapter 5 IntegraƟon

t = b, the object moves forward 38 feet, bringing it into a posiƟon 27 feet for-
ward of its starƟng posiƟon. From t = b to t = c the object is moving backwards
again, hence its maximum displacement is 27 feet from its starƟng posiƟon.

In our examples, we have either found the areas of regions that have nice
geometric shapes (such as rectangles, triangles and circles) or the areas were
given to us. Consider Figure 5.2.9, where a region below y = x2 is shaded. What
is its area? The funcƟon y = x2 is relaƟvely simple, yet the shape it defines has
an area that is not simple to find geometrically.

In the next secƟon we will explore how to find the areas of such regions.

Notes:
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Exercises 5.2
Terms and Concepts

1. What is “total signed area”?

2. What is “displacement”?

3. What is
∫ 3

3
sin x dx?

4. Give a single definite integral that has the same value as∫ 1

0
(2x+ 3) dx+

∫ 2

1
(2x+ 3) dx.

Problems

In Exercises 5 – 10, a graph of a funcƟon f(x) is given. Using
the geometry of the graph, evaluate the definite integrals.

5.

.....

y = −2x + 4

.

2

.

4

. −4.

−2

.

2

.

4

.

x

.

y

(a)
∫ 1

0
(−2x+ 4) dx

(b)
∫ 2

0
(−2x+ 4) dx

(c)
∫ 3

0
(−2x+ 4) dx

(d)
∫ 3

1
(−2x+ 4) dx

(e)
∫ 4

2
(−2x+ 4) dx

(f)
∫ 1

0
(−6x+ 12) dx

6.

.....

y = f(x)

.

1

.

2

.

3

.

4

.

5

.−2.

−1

.

1

.

2

.

x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 3

0
f(x) dx

(c)
∫ 5

0
f(x) dx

(d)
∫ 5

2
f(x) dx

(e)
∫ 3

5
f(x) dx

(f)
∫ 3

0
−2f(x) dx

7.

.....

y = f(x)

. 1. 2. 3. 4.

2

.

4

.
x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

2
2f(x) dx

(d)
∫ 1

0
4x dx

(e)
∫ 3

2
(2x− 4) dx

(f)
∫ 3

2
(4x− 8) dx

8.

.....

y = x − 1

.

1

.

2

.

3

.

4

.
−1

.

1

.

2

.

3

.

x

.

y

(a)
∫ 1

0
(x− 1) dx

(b)
∫ 2

0
(x− 1) dx

(c)
∫ 3

0
(x− 1) dx

(d)
∫ 3

2
(x− 1) dx

(e)
∫ 4

1
(x− 1) dx

(f)
∫ 4

1

(
(x− 1) + 1

)
dx

9.

.....

f(x) =
√

4 − (x − 2)2

. 1. 2. 3. 4.

1

.

2

.

3

.
x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

0
f(x) dx

(d)
∫ 4

0
5f(x) dx
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10.

f(x) = 3

5 10

1

2

3

x

y

(a)
∫ 5

0
f(x) dx

(b)
∫ 7

3
f(x) dx

(c)
∫ 0

0
f(x) dx

(d)
∫ b

a
f(x) dx, where

0 ≤ a ≤ b ≤ 10

In Exercises 11 – 14, a graph of a funcƟon f(x) is given; the
numbers inside the shaded regions give the area of that re-
gion. Evaluate the definite integrals using this area informa-
Ɵon.

11.

.....

y = f(x)

.

59

.

11

.

21

.

1

.

2

.

3

.−100.

−50

.

50

.

x

.

y

(a)
∫ 1

0
f(x) dx

(b)
∫ 2

0
f(x) dx

(c)
∫ 3

0
f(x) dx

(d)
∫ 2

1
−3f(x) dx

12.

.....

f(x) = sin(πx/2)

.

4/π

.

4/π

.

1

.

2

.

3

.

4

.

−1

.

1

.

x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

0
f(x) dx

(d)
∫ 1

0
f(x) dx

13.

f(x) = 3x2 − 3

4 4

4−2 −1 1 2

−5

5

10

x

y

(a)
∫ −1

−2
f(x) dx

(b)
∫ 2

1
f(x) dx

(c)
∫ 1

−1
f(x) dx

(d)
∫ 1

0
f(x) dx

14.

.....

f(x) = x2

. 1/3. 7/3.
1

.
2

.

1

.

2

.

3

.

4

. x.

y

(a)
∫ 2

0
5x2 dx

(b)
∫ 2

0
(x2 + 3) dx

(c)
∫ 3

1
(x− 1)2 dx

(d)
∫ 4

2

(
(x− 2)2 + 5

)
dx

In Exercises 15 – 16, a graph of the velocity funcƟon of an ob-
ject moving in a straight line is given. Answer the quesƟons
based on that graph.

15.

.....

1

.

2

.

3

.−1.

1

.

2

.

t (s)

.

y (Ō/s)

(a) What is the object’s maximum velocity?
(b) What is the object’s maximum displacement?
(c) What is the object’s total displacement on [0, 3]?

16.

..... 1. 2. 3. 4. 5.

1

.

2

.

3

.
t (s)

.

y (Ō/s)

(a) What is the object’s maximum velocity?
(b) What is the object’s maximum displacement?
(c) What is the object’s total displacement on [0, 5]?
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17. An object is thrown straight up with a velocity, in Ō/s, given
by v(t) = −32t + 64, where t is in seconds, from a height
of 48 feet.

(a) What is the object’s maximum velocity?
(b) What is the object’s maximum displacement?
(c) When does the maximum displacement occur?
(d) When will the object reach a height of 0? (Hint: find

when the displacement is−48Ō.)

18. An object is thrown straight up with a velocity, in Ō/s, given
by v(t) = −32t + 96, where t is in seconds, from a height
of 64 feet.

(a) What is the object’s iniƟal velocity?
(b) When is the object’s displacement 0?
(c) How long does it take for the object to return to its

iniƟal height?
(d) When will the object reach a height of 210 feet?

In Exercises 19 – 22, let

•
∫ 2

0
f(x) dx = 5,

•
∫ 3

0
f(x) dx = 7,

•
∫ 2

0
g(x) dx = −3, and

•
∫ 3

2
g(x) dx = 5.

Use these values to evaluate the given definite integrals.

19.
∫ 2

0

(
f(x) + g(x)

)
dx

20.
∫ 3

0

(
f(x)− g(x)

)
dx

21.
∫ 3

2

(
3f(x) + 2g(x)

)
dx

22. Find nonzero values for a and b such that∫ 3

0

(
af(x) + bg(x)

)
dx = 0

In Exercises 23 – 26, let

•
∫ 3

0
s(t) dt = 10,

•
∫ 5

3
s(t) dt = 8,

•
∫ 5

3
r(t) dt = −1, and

•
∫ 5

0
r(t) dt = 11.

Use these values to evaluate the given definite integrals.

23.
∫ 3

0

(
s(t) + r(t)

)
dt

24.
∫ 0

5

(
s(t)− r(t)

)
dt

25.
∫ 3

3

(
πs(t)− 7r(t)

)
dt

26. Find nonzero values for a and b such that∫ 5

0

(
ar(t) + bs(t)

)
dt = 0

Review
In Exercises 27 – 30, evaluate the given indefinite integral.

27.
∫ (

x3 − 2x2 + 7x− 9
)
dx

28.
∫ (

sin x− cos x+ sec2 x
)
dx

29.
∫ ( 3√t+ 1

t2
+ 2t

)
dt

30.
∫ (

1
x
− csc x cot x

)
dx
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