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Figure 5.3.1: A graph of f(x) = 4x − x2.
What is the area of the shaded region?
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Figure 5.3.2: ApproximaƟng
∫ 4
0 (4x −

x2) dx using rectangles. The heights of the
rectangles are determined using different
rules.

Chapter 5 IntegraƟon

5.3 Riemann Sums
In the previous secƟon we defined the definite integral of a funcƟon on [a, b] to
be the signed area between the curve and the x–axis. Some areas were simple
to compute; we ended the secƟon with a region whose area was not simple to
compute. In this secƟon we develop a technique to find such areas.

A fundamental calculus technique is to first answer a given problem with an
approximaƟon, then refine that approximaƟon to make it beƩer, then use limits
in the refining process to find the exact answer. That is what we will do here.

Consider the region given in Figure 5.3.1, which is the area under y = 4x−x2
on [0, 4]. What is the signed area of this region – i.e., what is

∫ 4
0 (4x− x2) dx?

We start by approximaƟng. We can surround the region with a rectangle
with height and width of 4 and find the area is approximately 16 square units.
This is obviously an over–approximaƟon; we are including area in the rectangle
that is not under the parabola.

We have an approximaƟon of the area, using one rectangle. How can we
refine our approximaƟon tomake it beƩer? The key to this secƟon is this answer:
use more rectangles.

Let’s use 4 rectangles with an equal width of 1. This parƟƟons the interval
[0, 4] into 4 subintervals, [0, 1], [1, 2], [2, 3] and [3, 4]. On each subinterval we
will draw a rectangle.

There are three common ways to determine the height of these rectangles:
the LeŌ Hand Rule, the Right Hand Rule, and theMidpoint Rule. The LeŌ Hand
Rule says to evaluate the funcƟon at the leŌ–hand endpoint of the subinterval
and make the rectangle that height. In Figure 5.3.2, the rectangle drawn on the
interval [2, 3] has height determined by the LeŌ Hand Rule; it has a height of
f(2). (The rectangle is labeled “LHR.”)

The Right Hand Rule says the opposite: on each subinterval, evaluate the
funcƟon at the right endpoint and make the rectangle that height. In the figure,
the rectangle drawn on [0, 1] is drawn using f(1) as its height; this rectangle is
labeled “RHR.”.

The Midpoint Rule says that on each subinterval, evaluate the funcƟon at
the midpoint and make the rectangle that height. The rectangle drawn on [1, 2]
was made using the Midpoint Rule, with a height of f(1.5). That rectangle is
labeled “MPR.”

These are the three most common rules for determining the heights of ap-
proximaƟng rectangles, but one is not forced to use one of these threemethods.
The rectangle on [3, 4] has a height of approximately f(3.53), very close to the
Midpoint Rule. It was chosen so that the area of the rectangle is exactly the area
of the region under f on [3, 4]. (Later you’ll be able to figure how to do this, too.)

The following example will approximate the value of
∫ 4
0 (4x − x2) dx using

these rules.

Notes:
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Figure 5.3.3: ApproximaƟng
∫ 4
0 (4x −

x2) dx in Example 5.3.1. In (a), the LeŌ
Hand Rule is used; in (b), the Right Hand
Rule is used; in (c), the Midpoint Rule is
used.

5.3 Riemann Sums

Example 5.3.1 Using the LeŌ Hand, Right Hand and Midpoint Rules
Approximate the value of

∫ 4
0 (4x − x2) dx using the LeŌ Hand Rule, the Right

Hand Rule, and the Midpoint Rule, using 4 equally spaced subintervals.

SÊ½çã®ÊÄ We break the interval [0, 4] into four subintervals as before.
In Figure 5.3.3(a) we see 4 rectangles drawn on f(x) = 4x − x2 using the LeŌ
Hand Rule. (The areas of the rectangles are given in each figure.)

Note how in the first subinterval, [0, 1], the rectangle has height f(0) = 0.
We add up the areas of each rectangle (height× width) for our LeŌ Hand Rule
approximaƟon:

f(0) · 1+ f(1) · 1+ f(2) · 1+ f(3) · 1 =

0+ 3+ 4+ 3 = 10.

Figure 5.3.3(b) shows 4 rectangles drawn under f using the Right Hand Rule;
note how the [3, 4] subinterval has a rectangle of height 0.

In this example, these rectangle seem to be the mirror image of those found
in part (a) of the Figure. This is because of the symmetry of our shaded region.
Our approximaƟon gives the same answer as before, though calculated a differ-
ent way:

f(1) · 1+ f(2) · 1+ f(3) · 1+ f(4) · 1 =

3+ 4+ 3+ 0 = 10.

Figure 5.3.3(c) shows 4 rectangles drawn under f using the Midpoint Rule.
This gives an approximaƟon of

∫ 4
0 (4x− x2) dx as:

f(0.5) · 1+ f(1.5) · 1+ f(2.5) · 1+ f(3.5) · 1 =

1.75+ 3.75+ 3.75+ 1.75 = 11.

Our three methods provide two approximaƟons of
∫ 4
0 (4x− x2) dx: 10 and 11.

SummaƟon NotaƟon

It is hard to tell at this moment which is a beƩer approximaƟon: 10 or 11?
We can conƟnue to refine our approximaƟon by using more rectangles. The
notaƟon can become unwieldy, though, as we add up longer and longer lists of
numbers. We introduce summaƟon notaƟon to ameliorate this problem.

Notes:
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Chapter 5 IntegraƟon

Suppose we wish to add up a list of numbers a1, a2, a3, …, a9. Instead of
wriƟng

a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9,

we use summaƟon notaƟon and write

..

9∑
i=1

ai.

.i=index
of summaƟon

. lower
bound

.

upper
bound

.

summand

Figure 5.3.4: Understanding summaƟon notaƟon.

The upper case sigma represents the term “sum.” The index of summaƟon
in this example is i; any symbol can be used. By convenƟon, the index takes on
only the integer values between (and including) the lower and upper bounds.

Let’s pracƟce using this notaƟon.

Example 5.3.2 Using summaƟon notaƟon
Let the numbers {ai} be defined as ai = 2i − 1 for integers i, where i ≥ 1. So
a1 = 1, a2 = 3, a3 = 5, etc. (The output is the posiƟve odd integers). Evaluate
the following summaƟons:

1.
6∑

i=1
ai 2.

7∑
i=3

(3ai − 4) 3.
4∑

i=1
(ai)2

SÊ½çã®ÊÄ

1.
6∑

i=1
ai = a1 + a2 + a3 + a4 + a5 + a6

= 1+ 3+ 5+ 7+ 9+ 11
= 36.

2. Note the starƟng value is different than 1:

7∑
i=3

(3ai − 4) = (3a3 − 4) + (3a4 − 4) + (3a5 − 4) + (3a6 − 4) + (3a7 − 4)

= 11+ 17+ 23+ 29+ 35
= 115.

Notes:
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5.3 Riemann Sums

3.
4∑

i=1
(ai)2 = (a1)2 + (a2)2 + (a3)2 + (a4)2

= 12 + 32 + 52 + 72

= 84.

It might seem odd to stress a new, concise way of wriƟng summaƟons only
to write each term out as we add them up. It is. The following theorem gives
some of the properƟes of summaƟons that allow us to work with them without
wriƟng individual terms. Examples will follow.

Theorem 5.3.1 ProperƟes of SummaƟons

1.
n∑

i=1
c = c · n, where c is a constant.

2.
n∑

i=m

(ai ± bi) =
n∑

i=m

ai ±
n∑

i=m

bi

3.
n∑

i=m

c · ai = c ·
n∑

i=m

ai

4.
j∑

i=m

ai +
n∑

i=j+1
ai =

n∑
i=m

ai

5.
n∑

i=1
i =

n(n+ 1)
2

6.
n∑

i=1
i2 =

n(n+ 1)(2n+ 1)
6

7.
n∑

i=1
i3 =

(
n(n+ 1)

2

)2

Example 5.3.3 EvaluaƟng summaƟons using Theorem 5.3.1
Revisit Example 5.3.2 and, using Theorem 5.3.1, evaluate

6∑
i=1

ai =
6∑

i=1
(2i− 1).

Notes:
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Figure 5.3.5: Dividing [0, 4] into 16
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Chapter 5 IntegraƟon

SÊ½çã®ÊÄ

6∑
i=1

(2i− 1) =
6∑

i=1
2i−

6∑
i=1

(1)

=

(
2

6∑
i=1

i

)
− 6

= 2
6(6+ 1)

2
− 6

= 42− 6 = 36

We obtained the same answer without wriƟng out all six terms. When dealing
with small sizes of n, it may be faster to write the terms out by hand. However,
Theorem 5.3.1 is incredibly important when dealing with large sums as we’ll
soon see.

Riemann Sums

Consider again
∫ 4
0 (4x − x2) dx. We will approximate this definite integral

using 16 equally spaced subintervals and the Right Hand Rule in Example 5.3.4.
Before doing so, it will pay to do some careful preparaƟon.

Figure 5.3.5 shows a number line of [0, 4] divided, or parƟƟoned, into 16
equally spaced subintervals. Wedenote 0 as x1; wehavemarked the values of x5,
x9, x13 and x17. We couldmark themall, but the figurewould get crowded. While
it is easy to figure that x10 = 2.25, in general, we want a method of determining
the value of xi without consulƟng the figure. Consider:

..

xi = x1 + (i− 1)∆x

. starƟng
value

.

number of
subintervals

between x1 and xi

. subinterval
size

So x10 = x1 + 9(4/16) = 2.25.
If we had parƟƟoned [0, 4] into 100 equally spaced subintervals, each subin-

terval would have length∆x = 4/100 = 0.04. We could compute x32 as

x32 = x1 + 31(4/100) = 1.24.

(That was far faster than creaƟng a sketch first.)

Notes:
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5.3 Riemann Sums

Given any subdivision of [0, 4], the first subinterval is [x1, x2]; the second is
[x2, x3]; the i th subinterval is [xi, xi+1].

When using the LeŌ Hand Rule, the height of the i th rectangle will be f(xi).
Whenusing theRightHandRule, the height of the i th rectanglewill be f(xi+1).

Whenusing theMidpoint Rule, the height of the i th rectanglewill be f
(
xi + xi+1

2

)
.

Thus approximaƟng
∫ 4
0 (4x− x2) dx with 16 equally spaced subintervals can

be expressed as follows, where∆x = 4/16 = 1/4:

LeŌ Hand Rule:
16∑
i=1

f(xi)∆x

Right Hand Rule:
16∑
i=1

f(xi+1)∆x

Midpoint Rule:
16∑
i=1

f
(
xi + xi+1

2

)
∆x

Weuse these formulas in the next two examples. The following example lets
us pracƟce using the Right Hand Rule and the summaƟon formulas introduced
in Theorem 5.3.1.

Example 5.3.4 ApproximaƟng definite integrals using sums
Approximate

∫ 4
0 (4x−x2) dx using the Right Hand Rule and summaƟon formulas

with 16 and 1000 equally spaced intervals.

SÊ½çã®ÊÄ Using the formula derived before, using 16 equally spaced
intervals and the Right Hand Rule, we can approximate the definite integral as

16∑
i=1

f(xi+1)∆x.

We have∆x = 4/16 = 0.25. Since xi = 0+ (i− 1)∆x, we have

xi+1 = 0+
(
(i+ 1)− 1

)
∆x

= i∆x

Notes:
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Figure 5.3.6: ApproximaƟng
∫ 4
0 (4x −

x2) dx with the Right Hand Rule and 16
evenly spaced subintervals.

Chapter 5 IntegraƟon

Using the summaƟon formulas, consider:∫ 4

0
(4x− x2) dx ≈

16∑
i=1

f(xi+1)∆x

=

16∑
i=1

f(i∆x)∆x

=

16∑
i=1

(
4i∆x− (i∆x)2

)
∆x

=

16∑
i=1

(4i∆x2 − i2∆x3)

= (4∆x2)
16∑
i=1

i−∆x3
16∑
i=1

i2 (5.3)

= (4∆x2)
16 · 17

2
−∆x3

16(17)(33)
6

(∆x = 0.25)

= 10.625

We were able to sum up the areas of 16 rectangles with very liƩle computaƟon.
In Figure 5.3.6 the funcƟon and the 16 rectangles are graphed. While some
rectangles over–approximate the area, other under–approximate the area (by
about the same amount). Thus our approximate area of 10.625 is likely a fairly
good approximaƟon.

NoƟce EquaƟon (5.3); by changing the 16’s to 1,000’s (and appropriately
changing the value of ∆x), we can use that equaƟon to sum up 1000 rectan-
gles! We do so here, skipping from the original summand to the equivalent of
EquaƟon (5.3) to save space. Note that∆x = 4/1000 = 0.004.∫ 4

0
(4x− x2) dx ≈

1000∑
i=1

f(xi+1)∆x

= (4∆x2)
1000∑
i=1

i−∆x3
1000∑
i=1

i2

= (4∆x2)
1000 · 1001

2
−∆x3

1000(1001)(2001)
6

= 10.666656

Using many, many rectangles, we have a likely good approximaƟon of∫ 4
0 (4x− x2)∆x. That is,∫ 4

0
(4x− x2) dx ≈ 10.666656.

Notes:
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5.3 Riemann Sums

Before the above example, we statedwhat the summaƟons for the LeŌHand,
Right Hand and Midpoint Rules looked like. Each had the same basic structure,
which was:

1. each rectangle has the same width, which we referred to as∆x, and

2. each rectangle’s height is determined by evaluaƟng f at a parƟcular point
in each subinterval. For instance, the LeŌ Hand Rule states that each rect-
angle’s height is determined by evaluaƟng f at the leŌ hand endpoint of
the subinterval the rectangle lives on.

One could parƟƟon an interval [a, b]with subintervals that do not have the same
size. We refer to the length of the i th subinterval as∆xi. Also, one could deter-
mine each rectangle’s height by evaluaƟng f at any point ci in the i th subinterval.
Thus the height of the i th subinterval would be f(ci), and the area of the i th rect-
angle would be f(ci)∆xi. These ideas are formally defined below.

DefiniƟon 5.3.1 ParƟƟon

A parƟƟon ∆x of a closed interval [a, b] is a set of numbers x1, x2, . . .
xn+1 where

a = x1 < x2 < . . . < xn < xn+1 = b.

The length of the i th subinterval, [xi, xi+1], is ∆xi = xi+1 − xi. If [a, b] is
parƟƟoned into subintervals of equal length, we let ∆x represent the
length of each subinterval.

The size of the parƟƟon, denoted ||∆x||, is the length of the largest
subinterval of the parƟƟon.

SummaƟons of rectangleswith area f(ci)∆xi are named aŌermathemaƟcian
Georg Friedrich Bernhard Riemann, as given in the following definiƟon.

DefiniƟon 5.3.2 Riemann Sum

Let f be defined on a closed interval [a, b], let∆x be a parƟƟon of [a, b]
and let ci denote any value in the i th subinterval.
The sum

n∑
i=1

f(ci)∆xi

is a Riemann sum of f on [a, b].

Notes:
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Figure 5.3.7: An example of a general Rie-
mann sum to approximate

∫ 4
0 (4x−x2) dx.

Chapter 5 IntegraƟon

Figure 5.3.7 shows the approximaƟng rectangles of a Riemann sumof
∫ 4
0 (4x−

x2) dx. While the rectangles in this example do not approximate well the shaded
area, they demonstrate that the subinterval widths may vary and the heights of
the rectangles can be determined without following a parƟcular rule.

“Usually” Riemann sums are calculated using one of the three methods we
have introduced. The uniformity of construcƟon makes computaƟons easier.
Beforeworking another example, let’s summarize someofwhatwehave learned
in a convenient way.

Key Idea 5.3.1 Riemann Sum Concepts

Consider
∫ b

a
f(x) dx ≈

n∑
i=1

f(ci)∆xi.

1. When the n subintervals have equal length,∆xi = ∆x =
b− a
n

.

2. The i th term of an equally spaced parƟƟon is xi = a + (i − 1)∆x.
(Thus x1 = a and xn+1 = b.)

3. The LeŌ Hand Rule summaƟon is:
n∑

i=1
f(xi)∆x.

4. The Right Hand Rule summaƟon is:
n∑

i=1
f(xi+1)∆x.

5. The Midpoint Rule summaƟon is:
n∑

i=1
f
(
xi + xi+1

2

)
∆x.

Let’s do another example.

Example 5.3.5 ApproximaƟng definite integrals with sums
Approximate

∫ 3
−2(5x + 2) dx using the Midpoint Rule and 10 equally spaced

intervals.

SÊ½çã®ÊÄ Following Key Idea 5.3.1, we have

∆x =
3− (−2)

10
= 1/2 and xi = (−2) + (1/2)(i− 1) = i/2− 5/2.

Notes:
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Figure 5.3.8: ApproximaƟng
∫ 3
−2(5x +

2) dx using the Midpoint Rule and 10
evenly spaced subintervals in Example
5.3.5.

5.3 Riemann Sums

As we are using the Midpoint Rule, we will also need xi+1 and
xi + xi+1

2
. Since

xi = i/2− 5/2, xi+1 = (i+ 1)/2− 5/2 = i/2− 2. This gives

xi + xi+1

2
=

(i/2− 5/2) + (i/2− 2)
2

=
i− 9/2

2
= i/2− 9/4.

We now construct the Riemann sum and compute its value using summaƟon
formulas. ∫ 3

−2
(5x+ 2) dx ≈

10∑
i=1

f
(
xi + xi+1

2

)
∆x

=

10∑
i=1

f(i/2− 9/4)∆x

=

10∑
i=1

(
5(i/2− 9/4) + 2

)
∆x

= ∆x
10∑
i=1

[(
5
2

)
i− 37

4

]

= ∆x

(
5
2

10∑
i=1

(i)−
10∑
i=1

(
37
4

))

=
1
2

(
5
2
· 10(11)

2
− 10 · 37

4

)
=

45
2

= 22.5

Note the graph of f(x) = 5x + 2 in Figure 5.3.8. The regions whose area is
computed by the definite integral are triangles, meaning we can find the exact
answer without summaƟon techniques. We find that the exact answer is indeed
22.5. One of the strengths of the Midpoint Rule is that oŌen each rectangle
includes area that should not be counted, but misses other area that should.
When the parƟƟon size is small, these two amounts are about equal and these
errors almost “cancel each other out.” In this example, since our funcƟon is a
line, these errors are exactly equal and they do cancel each other out, giving us
the exact answer.

Note too thatwhen the funcƟon is negaƟve, the rectangles have a “negaƟve”
height. When we compute the area of the rectangle, we use f(ci)∆x; when f is
negaƟve, the area is counted as negaƟve.

NoƟce in the previous example that while we used 10 equally spaced inter-
vals, the number “10” didn’t play a big role in the calculaƟons unƟl the very end.

Notes:
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Chapter 5 IntegraƟon

MathemaƟcians love to abstract ideas; let’s approximate the area of another re-
gion using n subintervals, wherewe do not specify a value of n unƟl the very end.

Example 5.3.6 ApproximaƟngdefinite integralswith a formula, using sums
Revisit

∫ 4
0 (4x−x2)dx yet again. Approximate this definite integral using theRight

Hand Rule with n equally spaced subintervals.

SÊ½çã®ÊÄ Using Key Idea 5.3.1, we know ∆x = 4−0
n = 4/n. We also

find xi = 0 +∆x(i − 1) = 4(i − 1)/n. The Right Hand Rule uses xi+1, which is
xi+1 = 4i/n.

We construct the Right Hand Rule Riemann sum as follows. Be sure to fol-
low each step carefully. If you get stuck, and do not understand how one line
proceeds to the next, you may skip to the result and consider how this result
is used. You should come back, though, and work through each step for full
understanding.∫ 4

0
(4x− x2) dx ≈

n∑
i=1

f(xi+1)∆x

=

n∑
i=1

f
(
4i
n

)
∆x

=

n∑
i=1

[
4
4i
n
−
(
4i
n

)2
]
∆x

=

n∑
i=1

(
16∆x
n

)
i−

n∑
i=1

(
16∆x
n2

)
i2

=

(
16∆x
n

) n∑
i=1

i−
(
16∆x
n2

) n∑
i=1

i2

=

(
16∆x
n

)
· n(n+ 1)

2
−
(
16∆x
n2

)
n(n+ 1)(2n+ 1)

6

(
recall

∆x = 4/n

)
=

32(n+ 1)
n

− 32(n+ 1)(2n+ 1)
3n2

(now simplify)

=
32
3

(
1− 1

n2

)
The result is an amazing, easy to use formula. To approximate the definite

integral with 10 equally spaced subintervals and the Right Hand Rule, set n = 10
and compute ∫ 4

0
(4x− x2) dx ≈ 32

3

(
1− 1

102

)
= 10.56.

Notes:
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5.3 Riemann Sums

Recall how earlier we approximated the definite integral with 4 subintervals;
with n = 4, the formula gives 10, our answer as before.

It is noweasy to approximate the integralwith 1,000,000 subintervals! Hand-
held calculators will round off the answer a bit prematurely giving an answer of
10.66666667. (The actual answer is 10.666666666656.)

We now take an important leap. Up to this point, our mathemaƟcs has been
limited to geometry and algebra (finding areas and manipulaƟng expressions).
Now we apply calculus. For any finite n, we know that∫ 4

0
(4x− x2) dx ≈ 32

3

(
1− 1

n2

)
.

Both common sense and high–level mathemaƟcs tell us that as n gets large, the
approximaƟon gets beƩer. In fact, if we take the limit as n → ∞, we get the
exact area described by

∫ 4
0 (4x− x2) dx. That is,∫ 4

0
(4x− x2) dx = lim

n→∞

32
3

(
1− 1

n2

)
=

32
3

(1− 0)

=
32
3

= 10.6

This is a fantasƟc result. By considering n equally–spaced subintervals, we ob-
tained a formula for an approximaƟon of the definite integral that involved our
variable n. As n grows large – without bound – the error shrinks to zero and we
obtain the exact area.

This secƟon started with a fundamental calculus technique: make an ap-
proximaƟon, refine the approximaƟon to make it beƩer, then use limits in the
refining process to get an exact answer. That is precisely what we just did.

Let’s pracƟce this again.

Example 5.3.7 ApproximaƟngdefinite integralswith a formula, using sums
Find a formula that approximates

∫ 5
−1 x

3 dx using the Right Hand Rule and n
equally spaced subintervals, then take the limit as n → ∞ to find the exact
area.

SÊ½çã®ÊÄ Following Key Idea 5.3.1, we have ∆x = 5−(−1)
n = 6/n.

We have xi = (−1) + (i − 1)∆x; as the Right Hand Rule uses xi+1, we have
xi+1 = (−1) + i∆x.

The Riemann sum corresponding to the Right Hand Rule is (followed by sim-
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Figure 5.3.9: ApproximaƟng
∫ 5
−1 x

3 dx us-
ing the Right Hand Rule and 10 evenly
spaced subintervals.

Chapter 5 IntegraƟon

plificaƟons):∫ 5

−1
x3 dx ≈

n∑
i=1

f(xi+1)∆x

=

n∑
i=1

f(−1+ i∆x)∆x

=

n∑
i=1

(−1+ i∆x)3∆x

=

n∑
i=1

(
(i∆x)3 − 3(i∆x)2 + 3i∆x− 1

)
∆x (now distribute∆x)

=

n∑
i=1

(
i3∆x4 − 3i2∆x3 + 3i∆x2 −∆x

)
(now split up summaƟon)

= ∆x4
n∑

i=1
i3 − 3∆x3

n∑
i=1

i2 + 3∆x2
n∑

i=1
i−

n∑
i=1

∆x

= ∆x4
(
n(n+ 1)

2

)2

− 3∆x3
n(n+ 1)(2n+ 1)

6
+ 3∆x2

n(n+ 1)
2

− n∆x

(use∆x = 6/n)

=
1296
n4

· n
2(n+ 1)2

4
− 3

216
n3

· n(n+ 1)(2n+ 1)
6

+ 3
36
n2

n(n+ 1)
2

− 6

(now do a sizable amount of algebra to simplify)

= 156+
378
n

+
216
n2

Once again, we have found a compact formula for approximaƟng the definite
integral with n equally spaced subintervals and the Right Hand Rule. Using 10
subintervals, we have an approximaƟon of 195.96 (these rectangles are shown
in Figure 5.3.9). Using n = 100 gives an approximaƟon of 159.802.

Now find the exact answer using a limit:∫ 5

−1
x3 dx = lim

n→∞

(
156+

378
n

+
216
n2

)
= 156.

Limits of Riemann Sums

We have used limits to evaluate given definite integrals. Will this always
work? We will show, given not–very–restricƟve condiƟons, that yes, it will al-
ways work.
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5.3 Riemann Sums

The previous two examples demonstrated how an expression such as

n∑
i=1

f(xi+1)∆x

can be rewriƩen as an expression explicitly involving n, such as 32/3(1− 1/n2).
Viewed in this manner, we can think of the summaƟon as a funcƟon of n.

An n value is given (where n is a posiƟve integer), and the sum of areas of n
equally spaced rectangles is returned, using the LeŌ Hand, Right Hand, or Mid-
point Rules.

Given a definite integral
∫ b
a f(x) dx, let:

• SL(n) =
n∑

i=1
f(xi)∆x, the sum of equally spaced rectangles formed using

the LeŌ Hand Rule,

• SR(n) =
n∑

i=1
f(xi+1)∆x, the sum of equally spaced rectangles formed us-

ing the Right Hand Rule, and

• SM(n) =

n∑
i=1

f
(
xi + xi+1

2

)
∆x, the sum of equally spaced rectangles

formed using the Midpoint Rule.

Recall the definiƟon of a limit as n → ∞: lim
n→∞

SL(n) = K if, given any ε > 0,
there exists N > 0 such that

|SL(n)− K| < ε when n ≥ N.

The following theorem states that we can use any of our three rules to find
the exact value of a definite integral

∫ b
a f(x) dx. It also goes two steps further.

The theorem states that the height of each rectangle doesn’t have to be deter-
mined following a specific rule, but could be f(ci), where ci is any point in the i th
subinterval, as discussed before Riemann Sums were defined in DefiniƟon 5.3.2.

The theorem goes on to state that the rectangles do not need to be of the
same width. Using the notaƟon of DefiniƟon 5.3.1, let ∆xi denote the length
of the i th subinterval in a parƟƟon of [a, b] and let ||∆x|| represent the length
of the largest subinterval in the parƟƟon: that is, ||∆x|| is the largest of all the
∆xi’s. If ||∆x|| is small, then [a, b] must be parƟƟoned into many subintervals,
since all subintervals must have small lengths. “Taking the limit as ||∆x|| goes
to zero” implies that the number n of subintervals in the parƟƟon is growing to
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infinity, as the largest subinterval length is becoming arbitrarily small. We then
interpret the expression

lim
||∆x||→0

n∑
i=1

f(ci)∆xi

as “the limit of the sum of the areas of rectangles, where the width of each
rectangle can be different but geƫng small, and the height of each rectangle is
not necessarily determined by a parƟcular rule.” The theorem states that this
Riemann Sum also gives the value of the definite integral of f over [a, b].

Theorem 5.3.2 Definite Integrals and the Limit of Riemann Sums

Let f be conƟnuous on the closed interval [a, b] and let SL(n), SR(n),
SM(n),∆x,∆xi and ci be defined as before. Then:

1. lim
n→∞

SL(n) = lim
n→∞

SR(n) = lim
n→∞

SM(n) = lim
n→∞

n∑
i=1

f(ci)∆x,

2. lim
n→∞

n∑
i=1

f(ci)∆x =
∫ b

a
f(x) dx, and

3. lim
∥∆x∥→0

n∑
i=1

f(ci)∆xi =
∫ b

a
f(x) dx.

We summarize what we have learned over the past few secƟons here.

• Knowing the “area under the curve” can be useful. One commonexample:
the area under a velocity curve is displacement.

• We have defined the definite integral,
∫ b
a f(x) dx, to be the signed area

under f on the interval [a, b].

• While we can approximate a definite integral manyways, we have focused
on using rectangles whose heights can be determined using the LeŌ Hand
Rule, the Right Hand Rule and the Midpoint Rule.

• Sums of rectangles of this type are called Riemann sums.

• The exact value of the definite integral can be computed using the limit of
a Riemann sum. We generally use one of the above methods as it makes
the algebra simpler.
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5.3 Riemann Sums

We first learned of derivaƟves through limits then learned rules that made
the process simpler. We knowof away to evaluate a definite integral using limits;
in the next secƟonwewill see how the Fundamental Theorem of Calculusmakes
the process simpler. The key feature of this theorem is its connecƟon between
the indefinite integral and the definite integral.
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Exercises 5.3
Terms and Concepts
1. A fundamental calculus technique is to use to re-

fine approximaƟons to get an exact answer.

2. What is the upper bound in the summaƟon
14∑
i=7

(48i− 201)?

3. This secƟon approximates definite integrals using what ge-
ometric shape?

4. T/F: A sum using the Right Hand Rule is an example of a
Riemann Sum.

Problems
In Exercises 5 – 12, write out each term of the summaƟon and
compute the sum.

5.
4∑

i=2

i2

6.
3∑

i=−1

(4i− 2)

7.
2∑

i=−2

sin(πi/2)

8.
10∑
i=1

5

9.
5∑

i=1

1
i

10.
6∑

i=1

(−1)ii

11.
4∑

i=1

(
1
i
− 1

i+ 1

)

12.
5∑

i=0

(−1)i cos(πi)

In Exercises 13 – 16, write each sum in summaƟon notaƟon.

13. 3+ 6+ 9+ 12+ 15

14. −1+ 0+ 3+ 8+ 15+ 24+ 35+ 48+ 63

15. 1
2
+

2
3
+

3
4
+

4
5

16. 1− e+ e2 − e3 + e4

In Exercises 17 – 24, evaluate the summaƟon using Theorem
5.3.1.

17.
10∑
i=1

5

18.
25∑
i=1

i

19.
10∑
i=1

(3i2 − 2i)

20.
15∑
i=1

(2i3 − 10)

21.
10∑
i=1

(−4i3 + 10i2 − 7i+ 11)

22.
10∑
i=1

(i3 − 3i2 + 2i+ 7)

23. 1+ 2+ 3+ . . .+ 99+ 100

24. 1+ 4+ 9+ . . .+ 361+ 400

Theorem 5.3.1 states
n∑

i=1

ai =
k∑

i=1

ai +
n∑

i=k+1

ai , so

n∑
i=k+1

ai =
n∑

i=1

ai −
k∑

i=1

ai .

Use this fact, alongwith other parts of Theorem5.3.1, to eval-
uate the summaƟons given in Exercises 25 – 28.

25.
20∑

i=11

i

26.
25∑

i=16

i3

27.
12∑
i=7

4

28.
10∑
i=5

4i3
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In Exercises 29 – 34, a definite integral∫ b

a
f(x) dx is given.

(a) Graph f(x) on [a, b].
(b) Add to the sketch rectangles using the provided rule.

(c) Approximate
∫ b

a
f(x) dx by summing the areas of the

rectangles.

29.
∫ 3

−3
x2 dx, with 6 rectangles using the LeŌ Hand Rule.

30.
∫ 2

0
(5− x2) dx, with 4 rectangles using the Midpoint Rule.

31.
∫ π

0
sin x dx, with 6 rectangles using the Right Hand Rule.

32.
∫ 3

0
2x dx, with 5 rectangles using the LeŌ Hand Rule.

33.
∫ 2

1
ln x dx, with 3 rectangles using the Midpoint Rule.

34.
∫ 9

1

1
x
dx, with 4 rectangles using the Right Hand Rule.

In Exercises 35 – 40, a definite integral∫ b

a
f(x) dx is given. As demonstrated in Examples 5.3.6

and 5.3.7, do the following.

(a) Find a formula to approximate
∫ b

a
f(x) dx using n

subintervals and the provided rule.
(b) Evaluate the formula using n = 10, 100 and 1, 000.
(c) Find the limit of the formula, as n → ∞, to find the

exact value of
∫ b

a
f(x) dx.

35.
∫ 1

0
x3 dx, using the Right Hand Rule.

36.
∫ 1

−1
3x2 dx, using the LeŌ Hand Rule.

37.
∫ 3

−1
(3x− 1) dx, using the Midpoint Rule.

38.
∫ 4

1
(2x2 − 3) dx, using the LeŌ Hand Rule.

39.
∫ 10

−10
(5− x) dx, using the Right Hand Rule.

40.
∫ 1

0
(x3 − x2) dx, using the Right Hand Rule.

Review
In Exercises 41 – 46, find an anƟderivaƟve of the given func-
Ɵon.

41. f(x) = 5 sec2 x

42. f(x) = 7
x

43. g(t) = 4t5 − 5t3 + 8

44. g(t) = 5 · 8t

45. g(t) = cos t+ sin t

46. f(x) = 1√
x
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