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Figure 5.5.1: Graphically represenƟng
three definite integrals that cannot be
evaluated using anƟderivaƟves.

Chapter 5 IntegraƟon

5.5 Numerical IntegraƟon
The Fundamental Theorem of Calculus gives a concrete technique for finding
the exact value of a definite integral. That technique is based on compuƟng an-
ƟderivaƟves. Despite the power of this theorem, there are sƟll situaƟons where
we must approximate the value of the definite integral instead of finding its ex-
act value. The first situaƟon we explore is where we cannot compute the an-
ƟderivaƟve of the integrand. The second case is when we actually do not know
the funcƟon in the integrand, but only its valuewhen evaluated at certain points.

An elementary funcƟon is any funcƟon that is a combinaƟon of polynomial,
nth root, raƟonal, exponenƟal, logarithmic and trigonometric funcƟons. We can
compute the derivaƟve of any elementary funcƟon, but there aremany elemen-
tary funcƟons of which we cannot compute an anƟderivaƟve. For example, the
following funcƟons do not have anƟderivaƟves that we can express with ele-
mentary funcƟons:

e−x2 , sin(x3) and
sin x
x

.

The simplest way to refer to the anƟderivaƟves of e−x2 is to simply write∫
e−x2 dx.
This secƟon outlines three common methods of approximaƟng the value of

definite integrals. We describe each as a systemaƟc method of approximaƟng
area under a curve. By approximaƟng this area accurately, we find an accurate
approximaƟon of the corresponding definite integral.

We will apply the methods we learn in this secƟon to the following definite
integrals: ∫ 1

0
e−x2 dx,

∫ π
2

− π
4

sin(x3) dx, and
∫ 4π

0.5

sin(x)
x

dx,

as pictured in Figure 5.5.1.

The LeŌ and Right Hand Rule Methods

In SecƟon 5.3 we addressed the problem of evaluaƟng definite integrals by
approximaƟng the area under the curve using rectangles. We revisit those ideas
here before introducing other methods of approximaƟng definite integrals.

We start with a review of notaƟon. Let f be a conƟnuous funcƟon on the

interval [a, b]. We wish to approximate
∫ b

a
f(x) dx. We parƟƟon [a, b] into n

equally spaced subintervals, each of length∆x =
b− a
n

. The endpoints of these
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Figure 5.5.2: ApproximaƟng
∫ 1
0 e−x2 dx in

Example 5.5.1.

5.5 Numerical IntegraƟon

subintervals are labeled as

x1 = a, x2 = a+∆x, x3 = a+ 2∆x, . . . , xi = a+ (i− 1)∆x, . . . , xn+1 = b.

Key Idea 5.3.1 states that to use the LeŌ Hand Rule we use the summaƟon
n∑

i=1
f(xi)∆x and to use the Right Hand Rule we use

n∑
i=1

f(xi+1)∆x. We review

the use of these rules in the context of examples.

Example 5.5.1 ApproximaƟng definite integrals with rectangles

Approximate
∫ 1

0
e−x2 dx using the LeŌ and Right Hand Rules with 5 equally

spaced subintervals.

SÊ½çã®ÊÄ We begin by parƟƟoning the interval [0, 1] into 5 equally
spaced intervals. We have∆x = 1−0

5 = 1/5 = 0.2, so

x1 = 0, x2 = 0.2, x3 = 0.4, x4 = 0.6, x5 = 0.8, and x6 = 1.

Using the LeŌ Hand Rule, we have:

n∑
i=1

f(xi)∆x =
(
f(x1) + f(x2) + f(x3) + f(x4) + f(x5)

)
∆x

=
(
f(0) + f(0.2) + f(0.4) + f(0.6) + f(0.8)

)
∆x

≈
(
1+ 0.961+ 0.852+ 0.698+ 0.527)(0.2)

≈ 0.808.

Using the Right Hand Rule, we have:

n∑
i=1

f(xi+1)∆x =
(
f(x2) + f(x3) + f(x4) + f(x5) + f(x6)

)
∆x

=
(
f(0.2) + f(0.4) + f(0.6) + f(0.8) + f(1)

)
∆x

≈
(
0.961+ 0.852+ 0.698+ 0.527+ 0.368)(0.2)

≈ 0.681.

Figure 5.5.2 shows the rectangles used in each method to approximate the
definite integral. These graphs show that in this parƟcular case, the LeŌ Hand
Rule is an over approximaƟon and the Right Hand Rule is an under approxima-
Ɵon. To get a beƩer approximaƟon, we could use more rectangles, as we did in
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xi Exact Approx. sin(x3i )
x1 −π/4 −0.785 −0.466
x2 −7π/40 −0.550 −0.165
x3 −π/10 −0.314 −0.031
x4 −π/40 −0.0785 0
x5 π/20 0.157 0.004
x6 π/8 0.393 0.061
x7 π/5 0.628 0.246
x8 11π/40 0.864 0.601
x9 7π/20 1.10 0.971
x10 17π/40 1.34 0.690
x11 π/2 1.57 −0.670

Figure 5.5.3: Table of values used to
approximate

∫ π
2

− π
4
sin(x3) dx in Example

5.5.2.
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Figure 5.5.4: ApproximaƟng∫ π
2

− π
4
sin(x3) dx in Example 5.5.2.

Chapter 5 IntegraƟon

SecƟon 5.3. We could also average the LeŌ and Right Hand Rule results together,
giving

0.808+ 0.681
2

= 0.7445.

The actual answer, accurate to 4 places aŌer the decimal, is 0.7468, showing
our average is a good approximaƟon.

Example 5.5.2 ApproximaƟng definite integrals with rectangles

Approximate
∫ π

2

− π
4

sin(x3) dx using the LeŌ and Right Hand Rules with 10 equally

spaced subintervals.

SÊ½çã®ÊÄ We begin by finding∆x:

b− a
n

=
π/2− (−π/4)

10
=

3π
40

≈ 0.236.

It is useful to write out the endpoints of the subintervals in a table; in Figure
5.5.3, we give the exact values of the endpoints, their decimal approximaƟons,
and decimal approximaƟons of sin(x3) evaluated at these points.

Once this table is created, it is straighƞorward to approximate the definite
integral using the LeŌ and Right Hand Rules. (Note: the table itself is easy to
create, especially with a standard spreadsheet program on a computer. The last
two columns are all that are needed.) The LeŌHand Rule sums the first 10 values
of sin(x3i ) and mulƟplies the sum by ∆x; the Right Hand Rule sums the last 10
values of sin(x3i ) and mulƟplies by∆x. Therefore we have:

LeŌ Hand Rule:
∫ π

2

− π
4

sin(x3) dx ≈ (1.91)(0.236) = 0.451.

Right Hand Rule:
∫ π

2

− π
4

sin(x3) dx ≈ (1.71)(0.236) = 0.404.

Average of the LeŌ and Right Hand Rules: 0.4275.
The actual answer, accurate to 3 places aŌer the decimal, is 0.460. Our ap-

proximaƟons were once again fairly good. The rectangles used in each approx-
imaƟon are shown in Figure 5.5.4. It is clear from the graphs that using more
rectangles (and hence, narrower rectangles) should result in a more accurate
approximaƟon.

The Trapezoidal Rule

In Example 5.5.1 we approximated the value of
∫ 1

0
e−x2 dxwith 5 rectangles

of equal width. Figure 5.5.2 shows the rectangles used in the LeŌ and Right
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Figure 5.5.6: The area of a trapezoid.

xi e−x2i

0 1
0.2 0.961
0.4 0.852
0.6 0.698
0.8 0.527
1 0.368

Figure 5.5.7: A table of values of e−x2 .

5.5 Numerical IntegraƟon

Hand Rules. These graphs clearly show that rectangles do not match the shape
of the graph all that well, and that accurate approximaƟons will only come by
using lots of rectangles.

Instead of using rectangles to approximate the area, we can instead use
trapezoids. In Figure 5.5.5, we show the region under f(x) = e−x2 on [0, 1]
approximated with 5 trapezoids of equal width; the top “corners” of each trape-
zoid lies on the graph of f(x). It is clear from this figure that these trapezoids
more accurately approximate the area under f and hence should give a beƩer
approximaƟon of

∫ 1
0 e−x2 dx. (In fact, these trapezoids seem to give a great ap-

proximaƟon of the area!)
The formula for the area of a trapezoid is given in Figure 5.5.6. We approxi-

mate
∫ 1
0 e−x2 dx with these trapezoids in the following example.

Example 5.5.3 ApproximaƟng definite integrals using trapezoids

Use 5 trapezoids of equal width to approximate
∫ 1

0
e−x2 dx.

SÊ½çã®ÊÄ To compute the areas of the 5 trapezoids in Figure 5.5.5, it
will again be useful to create a table of values as shown in Figure 5.5.7.

The leŌmost trapezoid has legs of length 1 and 0.961 and a height of 0.2.
Thus, by our formula, the area of the leŌmost trapezoid is:

1+ 0.961
2

(0.2) = 0.1961.

Moving right, the next trapezoid has legs of length 0.961 and 0.852 and a height
of 0.2. Thus its area is:

0.961+ 0.852
2

(0.2) = 0.1813.

The sum of the areas of all 5 trapezoids is:

1+ 0.961
2

(0.2) +
0.961+ 0.852

2
(0.2) +

0.852+ 0.698
2

(0.2)+

0.698+ 0.527
2

(0.2) +
0.527+ 0.368

2
(0.2) = 0.7445.

We approximate
∫ 1

0
e−x2 dx ≈ 0.7445.

There are many things to observe in this example. Note how each term in
the final summaƟonwasmulƟplied by both 1/2 and by∆x = 0.2. We can factor
these coefficients out, leaving a more concise summaƟon as:
1
2
(0.2)

[
(1+0.961)+(0.961+0.852)+(0.852+0.698)+(0.698+0.527)+(0.527+0.368)

]
.
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Now noƟce that all numbers except for the first and the last are added twice.
Therefore we can write the summaƟon even more concisely as

0.2
2

[
1+ 2(0.961+ 0.852+ 0.698+ 0.527) + 0.368

]
.

This is the heart of the Trapezoidal Rule, wherein a definite integral
∫ b

a
f(x)dx

is approximated by using trapezoids of equal widths to approximate the corre-
sponding area under f. Using n equally spaced subintervals with endpoints x1,
x2, . . ., xn+1, we again have∆x =

b− a
n

. Thus:

∫ b

a
f(x) dx ≈

n∑
i=1

f(xi) + f(xi+1)

2
∆x

=
∆x
2

n∑
i=1

(
f(xi) + f(xi+1)

)
=

∆x
2

[
f(x1) + 2

n∑
i=2

f(xi) + f(xn+1)
]
.

Example 5.5.4 Using the Trapezoidal Rule

Revisit Example 5.5.2 and approximate
∫ π

2

− π
4

sin(x3) dx using the Trapezoidal Rule

and 10 equally spaced subintervals.

SÊ½çã®ÊÄ Werefer back to Figure 5.5.3 for the table of values of sin(x3).
Recall that∆x = 3π/40 ≈ 0.236. Thus we have:∫ π

2

− π
4

sin(x3) dx ≈ 0.236
2

[
− 0.466+ 2

(
− 0.165+ (−0.031) + . . .+ 0.69

)
+ (−0.67)

]
= 0.4275.

NoƟce how “quickly” the Trapezoidal Rule can be implemented once the ta-
ble of values is created. This is true for all the methods explored in this secƟon;
the real work is creaƟng a table of xi and f(xi) values. Once this is completed, ap-
proximaƟng the definite integral is not difficult. Again, using technology is wise.
Spreadsheets can make quick work of these computaƟons and make using lots
of subintervals easy.

Also noƟce the approximaƟons the Trapezoidal Rule gives. It is the average
of the approximaƟons given by the LeŌ and Right Hand Rules! This effecƟvely
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Figure 5.5.8: A graph of a funcƟon f and
a parabola that approximates it well on
[1, 3].

5.5 Numerical IntegraƟon

renders the LeŌ and Right Hand Rules obsolete. They are useful when first learn-
ing about definite integrals, but if a real approximaƟon is needed, one is gener-
ally beƩer off using the Trapezoidal Rule instead of either the LeŌ or Right Hand
Rule.

How can we improve on the Trapezoidal Rule, apart from using more and
more trapezoids? The answer is clear once we look back and consider what we
have really done so far. The LeŌ Hand Rule is not really about using rectangles to
approximate area. Instead, it approximates a funcƟon f with constant funcƟons
on small subintervals and then computes the definite integral of these constant
funcƟons. The Trapezoidal Rule is really approximaƟng a funcƟon fwith a linear
funcƟon on a small subinterval, then computes the definite integral of this linear
funcƟon. In both of these cases the definite integrals are easy to compute in
geometric terms.

So we have a progression: we start by approximaƟng fwith a constant func-
Ɵon and then with a linear funcƟon. What is next? A quadraƟc funcƟon. By
approximaƟng the curve of a funcƟon with lots of parabolas, we generally get
an even beƩer approximaƟon of the definite integral. We call this process Simp-
son’s Rule, named aŌer Thomas Simpson (1710-1761), even though others had
used this rule as much as 100 years prior.

Simpson’s Rule

Given one point, we can create a constant funcƟon that goes through that
point. Given two points, we can create a linear funcƟon that goes through those
points. Given three points, we can create a quadraƟc funcƟon that goes through
those three points (given that no two have the same x–value).

Consider three points (x1, y1), (x2, y2) and (x3, y3)whose x–values are equally
spaced and x1 < x2 < x3. Let fbe the quadraƟc funcƟon that goes through these
three points. It is not hard to show that∫ x3

x1
f(x) dx =

x3 − x1
6

(
y1 + 4y2 + y3

)
. (5.4)

Consider Figure 5.5.8. A funcƟon f goes through the 3 points shown and the
parabola g that also goes through those points is graphed with a dashed line.
Using our equaƟon from above, we know exactly that∫ 3

1
g(x) dx =

3− 1
6
(
3+ 4(1) + 2

)
= 3.

Since g is a good approximaƟon for f on [1, 3], we can state that∫ 3

1
f(x) dx ≈ 3.
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xi e−x2i

0 1
0.25 0.939
0.5 0.779
0.75 0.570
1 0.368
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Figure 5.5.9: A table of values to approxi-
mate

∫ 1
0 e−x2 dx, alongwith a graph of the

funcƟon.

xi sin(x3i )
−0.785 −0.466
−0.550 −0.165
−0.314 −0.031
−0.0785 0
0.157 0.004
0.393 0.061
0.628 0.246
0.864 0.601
1.10 0.971
1.34 0.690
1.57 −0.670

Figure 5.5.10: Table of values used to
approximate

∫ π
2

− π
4
sin(x3) dx in Example

5.5.6.

Chapter 5 IntegraƟon

NoƟce how the interval [1, 3]was split into two subintervals as we needed 3
points. Because of this, whenever we use Simpson’s Rule, we need to break the
interval into an even number of subintervals.

In general, to approximate
∫ b

a
f(x) dx using Simpson’s Rule, subdivide [a, b]

into n subintervals, where n is even and each subinterval has width∆x = (b−
a)/n. We approximate fwith n/2 parabolic curves, using EquaƟon (5.4) to com-
pute the area under these parabolas. Adding up these areas gives the formula:∫ b

a
f(x)dx ≈ ∆x

3

[
f(x1)+4f(x2)+2f(x3)+4f(x4)+. . .+2f(xn−1)+4f(xn)+f(xn+1)

]
.

Note how the coefficients of the terms in the summaƟon have the paƩern 1, 4,
2, 4, 2, 4, . . ., 2, 4, 1.

Let’s demonstrate Simpson’s Rule with a concrete example.

Example 5.5.5 Using Simpson’s Rule

Approximate
∫ 1

0
e−x2 dxusing Simpson’s Rule and 4 equally spaced subintervals.

SÊ½çã®ÊÄ We begin bymaking a table of values as we have in the past,
as shown in Figure 5.5.9(a). Simpson’s Rule states that∫ 1

0
e−x2 dx ≈ 0.25

3

[
1+ 4(0.939) + 2(0.779) + 4(0.570) + 0.368

]
= 0.74683.

Recall in Example 5.5.1 we stated that the correct answer, accurate to 4
places aŌer the decimal, was 0.7468. Our approximaƟon with Simpson’s Rule,
with 4 subintervals, is beƩer than our approximaƟon with the Trapezoidal Rule
using 5!

Figure 5.5.9(b) shows f(x) = e−x2 along with its approximaƟng parabolas,
demonstraƟng how good our approximaƟon is. The approximaƟng curves are
nearly indisƟnguishable from the actual funcƟon.

Example 5.5.6 Using Simpson’s Rule

Approximate
∫ π

2

− π
4

sin(x3) dx using Simpson’s Rule and 10 equally spaced inter-

vals.

SÊ½çã®ÊÄ Figure 5.5.10 shows the table of values that we used in the
past for this problem, shown here again for convenience. Again, ∆x = (π/2 +
π/4)/10 ≈ 0.236.
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Simpson’s Rule and 10 equally spaced
intervals.
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Simpson’s Rule states that∫ π
2

− π
4

sin(x3) dx ≈ 0.236
3

[
(−0.466) + 4(−0.165) + 2(−0.031) + . . .

. . .+ 2(0.971) + 4(0.69) + (−0.67)
]

= 0.4701

Recall that the actual value, accurate to 3 decimal places, is 0.460. Our ap-
proximaƟon iswithin one 1/100th of the correct value. The graph in Figure 5.5.11
shows how closely the parabolas match the shape of the graph.

Summary and Error Analysis

We summarize the key concepts of this secƟon thus far in the following Key
Idea.

Key Idea 5.5.1 Numerical IntegraƟon

Let f be a conƟnuous funcƟon on [a, b], let n be a posiƟve integer, and let∆x =
b− a
n

.
Set x1 = a, x2 = a+∆x, . . ., xi = a+ (i− 1)∆x, xn+1 = b.

Consider
∫ b

a
f(x) dx.

LeŌ Hand Rule:
∫ b

a
f(x) dx ≈ ∆x

[
f(x1) + f(x2) + . . .+ f(xn)

]
.

Right Hand Rule:
∫ b

a
f(x) dx ≈ ∆x

[
f(x2) + f(x3) + . . .+ f(xn+1)

]
.

Trapezoidal Rule:
∫ b

a
f(x) dx ≈ ∆x

2

[
f(x1) + 2f(x2) + 2f(x3) + . . .+ 2f(xn) + f(xn+1)

]
.

Simpson’s Rule:
∫ b

a
f(x) dx ≈ ∆x

3

[
f(x1) + 4f(x2) + 2f(x3) + . . .+ 4f(xn) + f(xn+1)

]
(n even).

In our examples, we approximated the value of a definite integral using a
given method then compared it to the “right” answer. This should have raised
several quesƟons in the reader’s mind, such as:

1. How was the “right” answer computed?

2. If the right answer can be found, what is the point of approximaƟng?

3. If there is value to approximaƟng, how are we supposed to know if the
approximaƟon is any good?
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These are good quesƟons, and their answers are educaƟonal. In the exam-
ples, the right answer was never computed. Rather, an approximaƟon accurate
to a certain number of places aŌer the decimal was given. In Example 5.5.1, we
do not know the exact answer, but we know it starts with 0.7468. These more
accurate approximaƟons were computed using numerical integraƟon but with
more precision (i.e., more subintervals and the help of a computer).

Since the exact answer cannot be found, approximaƟon sƟll has its place.
How are we to tell if the approximaƟon is any good?

“Trial and error” provides one way. Using technology, make an approxima-
Ɵon with, say, 10, 100, and 200 subintervals. This likely will not take much Ɵme
at all, and a trend should emerge. If a trend does not emerge, try using yet more
subintervals. Keep in mind that trial and error is never foolproof; you might
stumble upon a problem in which a trend will not emerge.

A second method is to use Error Analysis. While the details are beyond the
scope of this text, there are some formulas that give bounds for how good your
approximaƟon will be. For instance, the formula might state that the approx-
imaƟon is within 0.1 of the correct answer. If the approximaƟon is 1.58, then
one knows that the correct answer is between 1.48 and 1.68. By using lots of
subintervals, one can get an approximaƟon as accurate as one likes. Theorem
5.5.1 states what these bounds are.

Theorem 5.5.1 Error Bounds in the Trapezoidal Rule and
Simpson’s Rule

1. Let ET be the error in approximaƟng
∫ b

a
f(x) dx using the Trape-

zoidal Rule with n subintervals.
If f has a conƟnuous 2nd derivaƟve on [a, b] and M is any upper
bound of

∣∣f ′′(x)∣∣ on [a, b], then

ET ≤
(b− a)3

12n2
M.

2. Let ES be the error in approximaƟng
∫ b

a
f(x) dx using Simpson’s

Rule with n subintervals.
If f has a conƟnuous 4th derivaƟve on [a, b] and M is any upper
bound of

∣∣f (4)∣∣ on [a, b], then

ES ≤
(b− a)5

180n4
M.
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Figure 5.5.12: Graphing f ′′(x) in Example
5.5.7 to help establish error bounds.
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There are some key things to note about this theorem.

1. The larger the interval, the larger the error. This should make sense intu-
iƟvely.

2. The error shrinks as more subintervals are used (i.e., as n gets larger).

3. The error in Simpson’s Rule has a term relaƟng to the 4th derivaƟve of f.
Consider a cubic polynomial: it’s 4th derivaƟve is 0. Therefore, the error in
approximaƟng the definite integral of a cubic polynomial with Simpson’s
Rule is 0 – Simpson’s Rule computes the exact answer!

We revisit Examples 5.5.3 and 5.5.5 and compute the error bounds using
Theorem 5.5.1 in the following example.

Example 5.5.7 CompuƟng error bounds

Find the error bounds when approximaƟng
∫ 1

0
e−x2 dx using the Trapezoidal

Rule and 5 subintervals, and using Simpson’s Rule with 4 subintervals.

SÊ½çã®ÊÄ
Trapezoidal Rule with n = 5:

We start by compuƟng the 2nd derivaƟve of f(x) = e−x2 :

f ′′(x) = e−x2(4x2 − 2).

Figure 5.5.12 shows a graph of f ′′(x) on [0, 1]. It is clear that the largest value of
f ′′, in absolute value, is 2. Thus we letM = 2 and apply the error formula from
Theorem 5.5.1.

ET =
(1− 0)3

12 · 52
· 2 = 0.006.

Our error esƟmaƟon formula states that our approximaƟon of 0.7445 found
in Example 5.5.3 is within 0.0067 of the correct answer, hence we know that

0.7445− 0.0067 = .7378 ≤
∫ 1

0
e−x2 dx ≤ 0.7512 = 0.7445+ 0.0067.

We had earlier computed the exact answer, correct to 4 decimal places, to be
0.7468, affirming the validity of Theorem 5.5.1.

Simpson’s Rule with n = 4:
We start by compuƟng the 4th derivaƟve of f(x) = e−x2 :

f (4)(x) = e−x2(16x4 − 48x2 + 12).

Notes:
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Figure 5.5.13: Graphing f (4)(x) in Exam-
ple 5.5.7 to help establish error bounds.

Time Speed
(mph)

0 0
1 25
2 22
3 19
4 39
5 0
6 43
7 59
8 54
9 51
10 43
11 35
12 40
13 43
14 30
15 0
16 0
17 28
18 40
19 42
20 40
21 39
22 40
23 23
24 0

Figure 5.5.14: Speed data collected at 30
second intervals for Example 5.5.8.

Chapter 5 IntegraƟon

Figure 5.5.13 shows a graph of f (4)(x) on [0, 1]. It is clear that the largest value
of f (4), in absolute value, is 12. Thus we letM = 12 and apply the error formula
from Theorem 5.5.1.

Es =
(1− 0)5

180 · 44
· 12 = 0.00026.

Our error esƟmaƟon formula states that our approximaƟonof 0.74683 found
in Example 5.5.5 is within 0.00026 of the correct answer, hence we know that

0.74683− 0.00026 = .74657 ≤
∫ 1

0
e−x2 dx ≤ 0.74709 = 0.74683+ 0.00026.

Once again we affirm the validity of Theorem 5.5.1.

At the beginning of this secƟon we menƟoned two main situaƟons where
numerical integraƟon was desirable. We have considered the case where an
anƟderivaƟve of the integrand cannot be computed. We now invesƟgate the
situaƟon where the integrand is not known. This is, in fact, the most widely
used applicaƟon of Numerical IntegraƟon methods. “Most of the Ɵme” we ob-
serve behavior but do not know “the” funcƟon that describes it. We instead
collect data about the behavior and make approximaƟons based on this data.
We demonstrate this in an example.

Example 5.5.8 ApproximaƟng distance traveled
One of the authors drove his daughter home from school while she recorded
their speed every 30 seconds. The data is given in Figure 5.5.14. Approximate
the distance they traveled.

SÊ½çã®ÊÄ Recall that by integraƟng a speed funcƟon we get distance
traveled. We have informaƟon about v(t); we will use Simpson’s Rule to approx-

imate
∫ b

a
v(t) dt.

Themost difficult aspect of this problem is converƟng the given data into the
form we need it to be in. The speed is measured in miles per hour, whereas the
Ɵme is measured in 30 second increments.

We need to compute∆x = (b − a)/n. Clearly, n = 24. What are a and b?
Since we start at Ɵme t = 0, we have that a = 0. The final recorded Ɵme came
aŌer 24 periods of 30 seconds, which is 12 minutes or 1/5 of an hour. Thus we
have

∆x =
b− a
n

=
1/5− 0

24
=

1
120

;
∆x
3

=
1

360
.

Notes:
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Thus the distance traveled is approximately:∫ 0.2

0
v(t) dt ≈ 1

360

[
f(x1) + 4f(x2) + 2f(x3) + · · ·+ 4f(xn) + f(xn+1)

]
=

1
360

[
0+ 4 · 25+ 2 · 22+ · · ·+ 2 · 40+ 4 · 23+ 0

]
≈ 6.2167 miles.

We approximate the author drove 6.2 miles. (Because we are sure the reader
wants to know, the author’s odometer recorded the distance as about 6.05
miles.)

We started this chapter learning about anƟderivaƟves and indefinite inte-
grals. We then seemed to change focus by looking at areas between the graph
of a funcƟon and the x-axis. We defined these areas as the definite integral of
the funcƟon, using a notaƟon very similar to the notaƟon of the indefinite inte-
gral. The Fundamental Theorem of Calculus Ɵed these two seemingly separate
concepts together: we can find areas under a curve, i.e., we can evaluate a def-
inite integral, using anƟderivaƟves.

We ended the chapter by noƟng that anƟderivaƟves are someƟmes more
than difficult to find: they are impossible. Therefore we developed numerical
techniques that gave us good approximaƟons of definite integrals.

We used the definite integral to compute areas, and also to compute dis-
placements and distances traveled. There is far more we can do than that. In
Chapter 7 we’ll see more applicaƟons of the definite integral. Before that, in
Chapter 6 we’ll learn advanced techniques of integraƟon, analogous to learning
rules like the Product, QuoƟent and Chain Rules of differenƟaƟon.

Notes:
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Exercises 5.5
Terms and Concepts

1. T/F: Simpson’s Rule is a method of approximaƟng an-
ƟderivaƟves.

2. What are the two basic situaƟons where approximaƟng the
value of a definite integral is necessary?

3. Why are the LeŌ and Right Hand Rules rarely used?

4. Simpson’s Rule is based on approximaƟng porƟons of a
funcƟon with what type of funcƟon?

Problems
In Exercises 5 – 12, a definite integral is given.

(a) Approximate the definite integral with the Trapezoidal
Rule and n = 4.

(b) Approximate the definite integral with Simpson’s Rule
and n = 4.

(c) Find the exact value of the integral.

5.
∫ 1

−1
x2 dx

6.
∫ 10

0
5x dx

7.
∫ π

0
sin x dx

8.
∫ 4

0

√
x dx

9.
∫ 3

0
(x3 + 2x2 − 5x+ 7) dx

10.
∫ 1

0
x4 dx

11.
∫ 2π

0
cos x dx

12.
∫ 3

−3

√
9− x2 dx

In Exercises 13 – 20, approximate the definite integral with
the Trapezoidal Rule and Simpson’s Rule, with n = 6.

13.
∫ 1

0
cos
(
x2
)
dx

14.
∫ 1

−1
ex

2
dx

15.
∫ 5

0

√
x2 + 1 dx

16.
∫ π

0
x sin x dx

17.
∫ π/2

0

√
cos x dx

18.
∫ 4

1
ln x dx

19.
∫ 1

−1

1
sin x+ 2

dx

20.
∫ 6

0

1
sin x+ 2

dx

In Exercises 21 – 24, find n such that the error in approximat-
ing the given definite integral is less than 0.0001when using:

(a) the Trapezoidal Rule

(b) Simpson’s Rule

21.
∫ π

0
sin x dx

22.
∫ 4

1

1√
x
dx

23.
∫ π

0
cos
(
x2
)
dx

24.
∫ 5

0
x4 dx

In Exercises 25 – 26, a region is given. Find the area of the
region using Simpson’s Rule:

(a) where the measurements are in cenƟmeters, taken in
1 cm increments, and

(b) where the measurements are in hundreds of yards,
taken in 100 yd increments.

25. ..

4.
7

.

6.
3

. 6.
9

. 6.
6.

5.
1
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