
6: T��«Ä®Øç�Ý Ê¥
AÄã®�®¥¥�Ù�Äã®�ã®ÊÄ

The previous chapter introduced the anƟderivaƟve and connected it to signed
areas under a curve through the Fundamental Theorem of Calculus. The next
chapter explores more applicaƟons of definite integrals than just area. As eval-
uaƟng definite integrals will become important, we will want to find anƟderiva-
Ɵves of a variety of funcƟons.

This chapter is devoted to exploring techniques of anƟdifferenƟaƟon. While
not every funcƟon has an anƟderivaƟve in terms of elementary funcƟons (a
concept introduced in the secƟon on Numerical IntegraƟon), we can sƟll find
anƟderivaƟves of a wide variety of funcƟons.

6.1 SubsƟtuƟon
We moƟvate this secƟon with an example. Let f(x) = (x2 + 3x − 5)10. We can
compute f ′(x) using the Chain Rule. It is:

f ′(x) = 10(x2 + 3x− 5)9 · (2x+ 3) = (20x+ 30)(x2 + 3x− 5)9.

Now consider this: What is
∫
(20x+ 30)(x2 + 3x− 5)9 dx? We have the answer

in front of us;∫
(20x+ 30)(x2 + 3x− 5)9 dx = (x2 + 3x− 5)10 + C.

How would we have evaluated this indefinite integral without starƟng with f(x)
as we did?

This secƟon explores integraƟon by subsƟtuƟon. It allows us to “undo the
Chain Rule.” SubsƟtuƟon allows us to evaluate the above integral without know-
ing the original funcƟon first.

The underlying principle is to rewrite a “complicated” integral of the form∫
f(x) dx as a not–so–complicated integral

∫
h(u) du. We’ll formally establish

later how this is done. First, consider again our introductory indefinite integral,∫
(20x + 30)(x2 + 3x − 5)9 dx. Arguably the most “complicated” part of the

integrand is (x2 + 3x − 5)9. We wish to make this simpler; we do so through a
subsƟtuƟon. Let u = x2 + 3x− 5. Thus

(x2 + 3x− 5)9 = u9.
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We have established u as a funcƟon of x, so now consider the differenƟal of u:

du = (2x+ 3)dx.

Keep inmind that (2x+3) and dx aremulƟplied; the dx is not “just siƫng there.”
Return to the original integral and do some subsƟtuƟons through algebra:∫

(20x+ 30)(x2 + 3x− 5)9 dx =
∫

10(2x+ 3)(x2 + 3x− 5)9 dx

=

∫
10(x2 + 3x− 5︸ ︷︷ ︸

u

)9 (2x+ 3) dx︸ ︷︷ ︸
du

=

∫
10u9 du

= u10 + C (replace u with x2 + 3x − 5)

= (x2 + 3x− 5)10 + C

One might well look at this and think “I (sort of) followed how that worked,
but I could never come up with that on my own,” but the process is learnable.
This secƟon contains numerous examples through which the reader will gain
understanding and mathemaƟcal maturity enabling them to regard subsƟtuƟon
as a natural tool when evaluaƟng integrals.

We stated before that integraƟon by subsƟtuƟon “undoes” the Chain Rule.
Specifically, let F(x) and g(x) be differenƟable funcƟons and consider the deriva-
Ɵve of their composiƟon:

d
dx

(
F
(
g(x)

))
= F ′(g(x))g ′(x).

Thus ∫
F ′(g(x))g ′(x) dx = F(g(x)) + C.

IntegraƟon by subsƟtuƟon works by recognizing the “inside” funcƟon g(x) and
replacing it with a variable. By seƫng u = g(x), we can rewrite the derivaƟve
as

d
dx

(
F
(
u
))

= F ′(u)u ′.

Since du = g ′(x)dx, we can rewrite the above integral as∫
F ′(g(x))g ′(x) dx =

∫
F ′(u)du = F(u) + C = F(g(x)) + C.

This concept is important so we restate it in the context of a theorem.
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6.1 SubsƟtuƟon

Theorem 6.1.1 IntegraƟon by SubsƟtuƟon

Let F and g be differenƟable funcƟons, where the range of g is an interval
I contained in the domain of F. Then∫

F ′(g(x))g ′(x) dx = F(g(x)) + C.

If u = g(x), then du = g ′(x)dx and∫
F ′(g(x))g ′(x) dx =

∫
F ′(u) du = F(u) + C = F(g(x)) + C.

The point of subsƟtuƟon is to make the integraƟon step easy. Indeed, the
step

∫
F ′(u) du = F(u)+C looks easy, as the anƟderivaƟve of the derivaƟve of F

is just F, plus a constant. The “work” involved is making the proper subsƟtuƟon.
There is not a step–by–step process that one can memorize; rather, experience
will be one’s guide. To gain experience, we now embark on many examples.

Example 6.1.1 IntegraƟng by subsƟtuƟon
Evaluate

∫
x sin(x2 + 5) dx.

SÊ½çã®ÊÄ Knowing that subsƟtuƟon is related to the Chain Rule, we
choose to let u be the “inside” funcƟon of sin(x2+5). (This is not always a good
choice, but it is oŌen the best place to start.)

Let u = x2 + 5, hence du = 2x dx. The integrand has an x dx term, but
not a 2x dx term. (Recall that mulƟplicaƟon is commutaƟve, so the x does not
physically have to be next to dx for there to be an x dx term.) We can divide both
sides of the du expression by 2:

du = 2x dx ⇒ 1
2
du = x dx.

We can now subsƟtute.∫
x sin(x2 + 5) dx =

∫
sin(x2 + 5︸ ︷︷ ︸

u

) x dx︸︷︷︸
1
2 du

=

∫
1
2
sin u du

Notes:

265



Chapter 6 Techniques of AnƟdifferenƟaƟon

= −1
2
cos u+ C (now replace u with x2 + 5)

= −1
2
cos(x2 + 5) + C.

Thus
∫
x sin(x2 + 5) dx = − 1

2 cos(x
2 + 5) + C. We can check our work by eval-

uaƟng the derivaƟve of the right hand side.

Example 6.1.2 IntegraƟng by subsƟtuƟon
Evaluate

∫
cos(5x) dx.

SÊ½çã®ÊÄ Again let u replace the “inside” funcƟon. Leƫng u = 5x, we
have du = 5dx. Since our integrand does not have a 5dx term, we can divide
the previous equaƟon by 5 to obtain 1

5du = dx. We can now subsƟtute.∫
cos(5x) dx =

∫
cos( 5x︸︷︷︸

u

) dx︸︷︷︸
1
5 du

=

∫
1
5
cos u du

=
1
5
sin u+ C

=
1
5
sin(5x) + C.

We can again check our work through differenƟaƟon.

The previous example exhibited a common, and simple, type of subsƟtuƟon.
The “inside” funcƟon was a linear funcƟon (in this case, y = 5x). When the
inside funcƟon is linear, the resulƟng integraƟon is very predictable, outlined
here.

Key Idea 6.1.1 SubsƟtuƟon With A Linear FuncƟon

Consider
∫
F ′(ax + b) dx, where a ̸= 0 and b are constants. Leƫng

u = ax+ b gives du = a · dx, leading to the result∫
F ′(ax+ b) dx =

1
a
F(ax+ b) + C.

Thus
∫
sin(7x− 4) dx = − 1

7 cos(7x− 4) + C. Our next example can use Key
Idea 6.1.1, but we will only employ it aŌer going through all of the steps.

Notes:
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Example 6.1.3 IntegraƟng by subsƟtuƟng a linear funcƟon
Evaluate

∫
7

−3x+ 1
dx.

SÊ½çã®ÊÄ View the integrand as the composiƟon of funcƟons f(g(x)),
where f(x) = 7/x and g(x) = −3x+ 1. Employing our understanding of subsƟ-
tuƟon, we let u = −3x+1, the inside funcƟon. Thus du = −3dx. The integrand
lacks a −3; hence divide the previous equaƟon by −3 to obtain −du/3 = dx.
We can now evaluate the integral through subsƟtuƟon.∫

7
−3x+ 1

dx =
∫

7
u
du
−3

=
−7
3

∫
du
u

=
−7
3

ln |u|+ C

= −7
3
ln | − 3x+ 1|+ C.

Using Key Idea 6.1.1 is faster, recognizing that u is linear and a = −3. One may
want to conƟnue wriƟng out all the steps unƟl they are comfortable with this
parƟcular shortcut.

Not all integrals that benefit from subsƟtuƟon have a clear “inside” funcƟon.
Several of the following examples will demonstrate ways in which this occurs.

Example 6.1.4 IntegraƟng by subsƟtuƟon
Evaluate

∫
sin x cos x dx.

SÊ½çã®ÊÄ There is not a composiƟonof funcƟonhere to exploit; rather,
just a product of funcƟons. Do not be afraid to experiment; when given an inte-
gral to evaluate, it is oŌen beneficial to think “If I let u be this, then dumust be
that …” and see if this helps simplify the integral at all.

In this example, let’s set u = sin x. Then du = cos x dx, which we have as
part of the integrand! The subsƟtuƟon becomes very straighƞorward:∫

sin x cos x dx =
∫

u du

=
1
2
u2 + C

=
1
2
sin2 x+ C.

Notes:
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One would do well to ask “What would happen if we let u = cos x?” The result
is just as easy to find, yet looks very different. The challenge to the reader is to
evaluate the integral leƫng u = cos x and discover why the answer is the same,
yet looks different.

Our examples so far have required “basic subsƟtuƟon.” The next example
demonstrates how subsƟtuƟons can be made that oŌen strike the new learner
as being “nonstandard.”

Example 6.1.5 IntegraƟng by subsƟtuƟon
Evaluate

∫
x
√
x+ 3 dx.

SÊ½çã®ÊÄ Recognizing the composiƟon of funcƟons, set u = x + 3.
Then du = dx, giving what seems iniƟally to be a simple subsƟtuƟon. But at this
stage, we have: ∫

x
√
x+ 3 dx =

∫
x
√
u du.

We cannot evaluate an integral that has both an x and an u in it. We need to
convert the x to an expression involving just u.

Since we set u = x+3, we can also state that u−3 = x. Thus we can replace
x in the integrand with u− 3. It will also be helpful to rewrite

√
u as u 1

2 .∫
x
√
x+ 3 dx =

∫
(u− 3)u

1
2 du

=

∫ (
u

3
2 − 3u

1
2
)
du

=
2
5
u

5
2 − 2u

3
2 + C

=
2
5
(x+ 3)

5
2 − 2(x+ 3)

3
2 + C.

Checking your work is always a good idea. In this parƟcular case, some algebra
will be needed to make one’s answer match the integrand in the original prob-
lem.

Example 6.1.6 IntegraƟng by subsƟtuƟon
Evaluate

∫
1

x ln x
dx.

SÊ½çã®ÊÄ This is another example where there does not seem to be
an obvious composiƟon of funcƟons. The line of thinking used in Example 6.1.5
is useful here: choose something for u and consider what this implies du must

Notes:
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be. If u can be chosen such that du also appears in the integrand, then we have
chosen well.

Choosing u = 1/xmakes du = −1/x2 dx; that does not seem helpful. How-
ever, seƫng u = ln xmakes du = 1/x dx, which is part of the integrand. Thus:

∫
1

x ln x
dx =

∫
1
ln x︸︷︷︸
u

1
x
dx︸︷︷︸

du

=

∫
1
u
du

= ln |u|+ C
= ln | ln x|+ C.

The final answer is interesƟng; the natural log of the natural log. Take the deriva-
Ɵve to confirm this answer is indeed correct.

Integrals Involving Trigonometric FuncƟons

SecƟon 6.3 delves deeper into integrals of a variety of trigonometric func-
Ɵons; here we use subsƟtuƟon to establish a foundaƟon that wewill build upon.

Thenext three exampleswill help fill in somemissing pieces of our anƟderiva-
Ɵve knowledge. We know the anƟderivaƟves of the sine and cosine funcƟons;
what about the other standard funcƟons tangent, cotangent, secant and cose-
cant? We discover these next.

Example 6.1.7 IntegraƟon by subsƟtuƟon: anƟderivaƟves of tan x
Evaluate

∫
tan x dx.

SÊ½çã®ÊÄ The previous paragraph established that we did not know
the anƟderivaƟves of tangent, hence we must assume that we have learned
something in this secƟon that can help us evaluate this indefinite integral.

Rewrite tan x as sin x/ cos x. While the presence of a composiƟon of func-
Ɵons may not be immediately obvious, recognize that cos x is “inside” the 1/x
funcƟon. Therefore, we see if seƫng u = cos x returns usable results. We have

Notes:
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that du = − sin x dx, hence−du = sin x dx. We can integrate:

∫
tan x dx =

∫
sin x
cos x

dx

=

∫
1

cos x︸︷︷︸
u

sin x dx︸ ︷︷ ︸
−du

=

∫
−1
u

du

= − ln |u|+ C
= − ln | cos x|+ C.

Some texts prefer to bring the−1 inside the logarithm as a power of cos x, as in:

− ln | cos x|+ C = ln |(cos x)−1|+ C

= ln
∣∣∣∣ 1
cos x

∣∣∣∣+ C

= ln | sec x|+ C.

Thus the result they give is
∫
tan x dx = ln | sec x| + C. These two answers are

equivalent.

Example 6.1.8 IntegraƟng by subsƟtuƟon: anƟderivaƟves of sec x
Evaluate

∫
sec x dx.

SÊ½çã®ÊÄ This example employs a wonderful trick: mulƟply the inte-
grand by “1” so that we see how to integrate more clearly. In this case, we write
“1” as

1 =
sec x+ tan x
sec x+ tan x

.

This may seem like it came out of leŌ field, but it works beauƟfully. Consider:

∫
sec x dx =

∫
sec x · sec x+ tan x

sec x+ tan x
dx

=

∫
sec2 x+ sec x tan x

sec x+ tan x
dx.

Notes:
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Now let u = sec x + tan x; this means du = (sec x tan x + sec2 x) dx, which is
our numerator. Thus:

=

∫
du
u

= ln |u|+ C
= ln | sec x+ tan x|+ C.

We can use similar techniques to those used in Examples 6.1.7 and 6.1.8
to find anƟderivaƟves of cot x and csc x (which the reader can explore in the
exercises.) We summarize our results here.

Theorem 6.1.2 AnƟderivaƟves of Trigonometric FuncƟons

1.
∫

sin x dx = − cos x+ C

2.
∫

cos x dx = sin x+ C

3.
∫

tan x dx = − ln | cos x|+C

4.
∫

csc x dx = − ln | csc x+ cot x|+ C

5.
∫

sec x dx = ln | sec x+ tan x|+ C

6.
∫

cot x dx = ln | sin x|+ C

We explore one more common trigonometric integral.

Example 6.1.9 IntegraƟon by subsƟtuƟon: powers of cos x and sin x
Evaluate

∫
cos2 x dx.

SÊ½çã®ÊÄ We have a composiƟon of funcƟons as cos2 x =
(
cos x

)2.
However, seƫng u = cos xmeans du = − sin x dx, which we do not have in the
integral. Another technique is needed.

The process we’ll employ is to use a Power Reducing formula for cos2 x (per-
haps consult the back of this text for this formula), which states

cos2 x =
1+ cos(2x)

2
.

The right hand side of this equaƟon is not difficult to integrate. We have:∫
cos2 x dx =

∫
1+ cos(2x)

2
dx

=

∫ (
1
2
+

1
2
cos(2x)

)
dx.

Notes:
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Now use Key Idea 6.1.1:

=
1
2
x+

1
2
sin(2x)

2
+ C

=
1
2
x+

sin(2x)
4

+ C.

We’ll make significant use of this power–reducing technique in future secƟons.

Simplifying the Integrand

It is common to be reluctant to manipulate the integrand of an integral; at
first, our grasp of integraƟon is tenuous and one may think that working with
the integrand will improperly change the results. IntegraƟon by subsƟtuƟon
works using a different logic: as long as equality is maintained, the integrand can
be manipulated so that its form is easier to deal with. The next two examples
demonstrate common ways in which using algebra first makes the integraƟon
easier to perform.

Example 6.1.10 IntegraƟon by subsƟtuƟon: simplifying first

Evaluate
∫

x3 + 4x2 + 8x+ 5
x2 + 2x+ 1

dx.

SÊ½çã®ÊÄ One may try to start by seƫng u equal to either the numer-
ator or denominator; in each instance, the result is not workable.

When dealing with raƟonal funcƟons (i.e., quoƟents made up of polynomial
funcƟons), it is an almost universal rule that everything works beƩer when the
degree of the numerator is less than the degree of the denominator. Hence we
use polynomial division.

We skip the specifics of the steps, but note that when x2 + 2x+ 1 is divided
into x3 + 4x2 + 8x+ 5, it goes in x+ 2 Ɵmes with a remainder of 3x+ 3. Thus

x3 + 4x2 + 8x+ 5
x2 + 2x+ 1

= x+ 2+
3x+ 3

x2 + 2x+ 1
.

IntegraƟng x + 2 is simple. The fracƟon can be integrated by seƫng u = x2 +
2x+ 1, giving du = (2x+ 2) dx. This is very similar to the numerator. Note that

Notes:
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du/2 = (x+ 1) dx and then consider the following:∫
x3 + 4x2 + 8x+ 5

x2 + 2x+ 1
dx =

∫ (
x+ 2+

3x+ 3
x2 + 2x+ 1

)
dx

=

∫
(x+ 2) dx+

∫
3(x+ 1)

x2 + 2x+ 1
dx

=
1
2
x2 + 2x+ C1 +

∫
3
u
du
2

=
1
2
x2 + 2x+ C1 +

3
2
ln |u|+ C2

=
1
2
x2 + 2x+

3
2
ln |x2 + 2x+ 1|+ C.

In some ways, we “lucked out” in that aŌer dividing, subsƟtuƟon was able to be
done. In later secƟons we’ll develop techniques for handling raƟonal funcƟons
where subsƟtuƟon is not directly feasible.

Example 6.1.11 IntegraƟon by alternate methods

Evaluate
∫

x2 + 2x+ 3√
x

dx with, and without, subsƟtuƟon.

SÊ½çã®ÊÄ We already know how to integrate this parƟcular example.
Rewrite

√
x as x 1

2 and simplify the fracƟon:

x2 + 2x+ 3
x1/2

= x
3
2 + 2x

1
2 + 3x−

1
2 .

We can now integrate using the Power Rule:∫
x2 + 2x+ 3

x1/2
dx =

∫ (
x

3
2 + 2x

1
2 + 3x−

1
2

)
dx

=
2
5
x

5
2 +

4
3
x

3
2 + 6x

1
2 + C

This is a perfectly fine approach. We demonstrate how this can also be solved
using subsƟtuƟon as its implementaƟon is rather clever.

Let u =
√
x = x 1

2 ; therefore

du =
1
2
x−

1
2 dx =

1
2
√
x
dx ⇒ 2du =

1√
x
dx.

This gives us
∫

x2 + 2x+ 3√
x

dx =
∫
(x2 + 2x+ 3) · 2 du. What are we to do

with the other x terms? Since u = x 1
2 , u2 = x, etc. We can then replace x2 and

Notes:
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x with appropriate powers of u. We thus have∫
x2 + 2x+ 3√

x
dx =

∫
(x2 + 2x+ 3) · 2 du

=

∫
2(u4 + 2u2 + 3) du

=
2
5
u5 +

4
3
u3 + 6u+ C

=
2
5
x

5
2 +

4
3
x

3
2 + 6x

1
2 + C,

which is obviously the same answer we obtained before. In this situaƟon, sub-
sƟtuƟon is arguably more work than our other method. The fantasƟc thing is
that it works. It demonstrates how flexible integraƟon is.

SubsƟtuƟon and Inverse Trigonometric FuncƟons

When studying derivaƟves of inverse funcƟons, we learned that

d
dx
(
tan−1 x

)
=

1
1+ x2

.

Applying the Chain Rule to this is not difficult; for instance,

d
dx
(
tan−1 5x

)
=

5
1+ 25x2

.

Wenow explore how SubsƟtuƟon can be used to “undo” certain derivaƟves that
are the result of the Chain Rule applied to Inverse Trigonometric funcƟons. We
begin with an example.

Example 6.1.12 IntegraƟngby subsƟtuƟon: inverse trigonometric funcƟons
Evaluate

∫
1

25+ x2
dx.

SÊ½çã®ÊÄ The integrand looks similar to the derivaƟve of the arctan-
gent funcƟon. Note:

1
25+ x2

=
1

25(1+ x2
25 )

=
1

25(1+
( x
5
)2
)

=
1
25

1
1+

( x
5
)2 .

Notes:
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Thus ∫
1

25+ x2
dx =

1
25

∫
1

1+
( x
5
)2 dx.

This can be integrated using SubsƟtuƟon. Set u = x/5, hence du = dx/5 or
dx = 5du. Thus ∫

1
25+ x2

dx =
1
25

∫
1

1+
( x
5
)2 dx

=
1
5

∫
1

1+ u2
du

=
1
5
tan−1 u+ C

=
1
5
tan−1

( x
5

)
+ C

Example 6.1.12 demonstrates a general technique that can be applied to
other integrands that result in inverse trigonometric funcƟons. The results are
summarized here.

Theorem 6.1.3 Integrals Involving Inverse Trigonometric FuncƟons

Let a > 0.

1.
∫

1
a2 + x2

dx =
1
a
tan−1

( x
a

)
+ C

2.
∫

1√
a2 − x2

dx = sin−1
( x
a

)
+ C

3.
∫

1
x
√
x2 − a2

dx =
1
a
sec−1

(
|x|
a

)
+ C

Let’s pracƟce using Theorem 6.1.3.

Example 6.1.13 IntegraƟngby subsƟtuƟon: inverse trigonometric funcƟons
Evaluate the given indefinite integrals.

1.
∫

1
9+ x2

dx, 2.
∫

1

x
√

x2 − 1
100

dx 3.
∫

1√
5− x2

dx.
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SÊ½çã®ÊÄ Each can be answered using a straighƞorward applicaƟon of
Theorem 6.1.3.

1.
∫

1
9+ x2

dx =
1
3
tan−1 x

3
+ C, as a = 3.

2.
∫

1

x
√

x2 − 1
100

dx = 10 sec−1 10x+ C, as a = 1
10 .

3.
∫

1√
5− x2

= sin−1 x√
5
+ C, as a =

√
5.

Most applicaƟons of Theorem 6.1.3 are not as straighƞorward. The next
examples show some common integrals that can sƟll be approached with this
theorem.

Example 6.1.14 IntegraƟng by subsƟtuƟon: compleƟng the square
Evaluate

∫
1

x2 − 4x+ 13
dx.

SÊ½çã®ÊÄ IniƟally, this integral seems to have nothing in commonwith
the integrals in Theorem 6.1.3. As it lacks a square root, it almost certainly is not
related to arcsine or arcsecant. It is, however, related to the arctangent funcƟon.

We see this by compleƟng the square in the denominator. We give a brief
reminder of the process here.

Start with a quadraƟc with a leading coefficient of 1. It will have the form of
x2+bx+c. Take 1/2 of b, square it, and add/subtract it back into the expression.
I.e.,

x2 + bx+ c = x2 + bx+
b2

4︸ ︷︷ ︸
(x+b/2)2

−b2

4
+ c

=

(
x+

b
2

)2

+ c− b2

4

In our example, we take half of −4 and square it, geƫng 4. We add/subtract it
into the denominator as follows:

1
x2 − 4x+ 13

=
1

x2 − 4x+ 4︸ ︷︷ ︸
(x−2)2

−4+ 13

=
1

(x− 2)2 + 9

Notes:
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6.1 SubsƟtuƟon

We can now integrate this using the arctangent rule. Technically, we need to
subsƟtute first with u = x− 2, but we can employ Key Idea 6.1.1 instead. Thus
we have∫

1
x2 − 4x+ 13

dx =
∫

1
(x− 2)2 + 9

dx =
1
3
tan−1 x− 2

3
+ C.

Example 6.1.15 Integrals requiring mulƟple methods
Evaluate

∫
4− x√
16− x2

dx.

SÊ½çã®ÊÄ This integral requires two different methods to evaluate it.
We get to those methods by spliƫng up the integral:∫

4− x√
16− x2

dx =
∫

4√
16− x2

dx−
∫

x√
16− x2

dx.

The first integral is handled using a straighƞorward applicaƟon of Theorem6.1.3;
the second integral is handled by subsƟtuƟon, with u = 16−x2. We handle each
separately.∫

4√
16− x2

dx = 4 sin−1 x
4
+ C.

∫
x√

16− x2
dx: Set u = 16 − x2, so du = −2xdx and xdx = −du/2. We

have ∫
x√

16− x2
dx =

∫
−du/2√

u

= −1
2

∫
1√
u
du

= −
√
u+ C

= −
√

16− x2 + C.

Combining these together, we have∫
4− x√
16− x2

dx = 4 sin−1 x
4
+
√

16− x2 + C.

SubsƟtuƟon and Definite IntegraƟon

This secƟon has focused on evaluaƟng indefinite integrals as we are learning
a new technique for finding anƟderivaƟves. However, much of the Ɵme integra-
Ɵon is used in the context of a definite integral. Definite integrals that require
subsƟtuƟon can be calculated using the following workflow:

Notes:
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Chapter 6 Techniques of AnƟdifferenƟaƟon

1. Start with a definite integral
∫ b

a
f(x) dx that requires subsƟtuƟon.

2. Ignore the bounds; use subsƟtuƟon to evaluate
∫

f(x) dx and find an an-

ƟderivaƟve F(x).

3. Evaluate F(x) at the bounds; that is, evaluate F(x)
∣∣∣b
a
= F(b)− F(a).

This workflow works fine, but subsƟtuƟon offers an alternaƟve that is powerful
and amazing (and a liƩle Ɵme saving).

At its heart, (using the notaƟon of Theorem 6.1.1) subsƟtuƟon converts inte-
grals of the form

∫
F ′(g(x))g ′(x) dx into an integral of the form

∫
F ′(u) du with

the subsƟtuƟon of u = g(x). The following theorem states how the bounds of
a definite integral can be changed as the subsƟtuƟon is performed.

Theorem 6.1.4 SubsƟtuƟon with Definite Integrals

Let F and g be differenƟable funcƟons, where the range of g is an interval
I that is contained in the domain of F. Then∫ b

a
F ′
(
g(x)

)
g ′(x) dx =

∫ g(b)

g(a)
F ′(u) du.

In effect, Theorem 6.1.4 states that once you convert to integraƟng with re-
spect to u, you do not need to switch back to evaluaƟng with respect to x. A few
examples will help one understand.

Example 6.1.16 Definite integrals and subsƟtuƟon: changing the bounds

Evaluate
∫ 2

0
cos(3x− 1) dx using Theorem 6.1.4.

SÊ½çã®ÊÄ Observing the composiƟon of funcƟons, let u = 3x − 1,
hence du = 3dx. As 3dx does not appear in the integrand, divide the laƩer
equaƟon by 3 to get du/3 = dx.

By seƫng u = 3x− 1, we are implicitly staƟng that g(x) = 3x− 1. Theorem
6.1.4 states that the new lower bound is g(0) = −1; the new upper bound is

Notes:
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y = cos(3x − 1)
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Figure 6.1.1: Graphing the areas de-
fined by the definite integrals of Example
6.1.16.

.....

y = sin x cos x

.
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y = u
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Figure 6.1.2: Graphing the areas de-
fined by the definite integrals of Example
6.1.17.

6.1 SubsƟtuƟon

g(2) = 5. We now evaluate the definite integral:∫ 2

0
cos(3x− 1) dx =

∫ 5

−1
cos u

du
3

=
1
3
sin u

∣∣∣5
−1

=
1
3
(
sin 5− sin(−1)

)
≈ −0.039.

NoƟce how once we converted the integral to be in terms of u, we never went
back to using x.

The graphs in Figure 6.1.1 tell more of the story. In (a) the area defined by
the original integrand is shaded, whereas in (b) the area defined by the new in-
tegrand is shaded. In this parƟcular situaƟon, the areas look very similar; the
new region is “shorter” but “wider,” giving the same area.

Example 6.1.17 Definite integrals and subsƟtuƟon: changing the bounds

Evaluate
∫ π/2

0
sin x cos x dx using Theorem 6.1.4.

SÊ½çã®ÊÄ Wesaw the corresponding indefinite integral in Example 6.1.4.
In that example we set u = sin x but stated that we could have let u = cos x.
For variety, we do the laƩer here.

Let u = g(x) = cos x, giving du = − sin x dx and hence sin x dx = −du. The
new upper bound is g(π/2) = 0; the new lower bound is g(0) = 1. Note how
the lower bound is actually larger than the upper bound now. We have∫ π/2

0
sin x cos x dx =

∫ 0

1
−u du (switch bounds & change sign)

=

∫ 1

0
u du

=
1
2
u2
∣∣∣1
0
= 1/2.

In Figure 6.1.2 we have again graphed the two regions defined by our definite
integrals. Unlike the previous example, they bear no resemblance to each other.
However, Theorem 6.1.4 guarantees that they have the same area.

IntegraƟon by subsƟtuƟon is a powerful and useful integraƟon technique.
The next secƟon introduces another technique, called IntegraƟon by Parts. As
subsƟtuƟon “undoes” the Chain Rule, integraƟon by parts “undoes” the Product
Rule. Together, these two techniques provide a strong foundaƟononwhichmost
other integraƟon techniques are based.

Notes:
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Exercises 6.1
Terms and Concepts

1. SubsƟtuƟon “undoes” what derivaƟve rule?

2. T/F: One can use algebra to rewrite the integrand of an in-
tegral to make it easier to evaluate.

Problems
In Exercises 3 – 14, evaluate the indefinite integral to develop
an understanding of SubsƟtuƟon.

3.
∫

3x2
(
x3 − 5

)7 dx
4.
∫

(2x− 5)
(
x2 − 5x+ 7

)3 dx
5.
∫

x
(
x2 + 1

)8 dx
6.
∫

(12x+ 14)
(
3x2 + 7x− 1

)5 dx
7.
∫

1
2x+ 7

dx

8.
∫

1√
2x+ 3

dx

9.
∫

x√
x+ 3

dx

10.
∫

x3 − x√
x

dx

11.
∫

e
√

x
√
x
dx

12.
∫

x4√
x5 + 1

dx

13.
∫ 1

x + 1
x2

dx

14.
∫

ln(x)
x

dx

In Exercises 15 – 24, use SubsƟtuƟon to evaluate the indefi-
nite integral involving trigonometric funcƟons.

15.
∫

sin2(x) cos(x)dx

16.
∫

cos3(x) sin(x)dx

17.
∫

cos(3− 6x)dx

18.
∫

sec2(4− x)dx

19.
∫

sec(2x)dx

20.
∫

tan2(x) sec2(x)dx

21.
∫

x cos
(
x2
)
dx

22.
∫

tan2(x)dx

23.
∫

cot x dx. Do not just refer to Theorem 6.1.2 for the an-
swer; jusƟfy it through SubsƟtuƟon.

24.
∫

csc x dx. Do not just refer to Theorem 6.1.2 for the an-
swer; jusƟfy it through SubsƟtuƟon.

In Exercises 25 – 32, use SubsƟtuƟon to evaluate the indefi-
nite integral involving exponenƟal funcƟons.

25.
∫

e3x−1dx

26.
∫

ex
3
x2dx

27.
∫

ex
2−2x+1(x− 1)dx

28.
∫

ex + 1
ex

dx

29.
∫

ex

ex + 1
dx

30.
∫

ex − e−x

e2x
dx

31.
∫

33xdx

32.
∫

42xdx

In Exercises 33 – 36, use SubsƟtuƟon to evaluate the indefi-
nite integral involving logarithmic funcƟons.

33.
∫

ln x
x

dx

34.
∫ (

ln x
)2

x
dx
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35.
∫ ln

(
x3
)

x
dx

36.
∫

1
x ln (x2)

dx

In Exercises 37 – 42, use SubsƟtuƟon to evaluate the indefi-
nite integral involving raƟonal funcƟons.

37.
∫

x2 + 3x+ 1
x

dx

38.
∫

x3 + x2 + x+ 1
x

dx

39.
∫

x3 − 1
x+ 1

dx

40.
∫

x2 + 2x− 5
x− 3

dx

41.
∫

3x2 − 5x+ 7
x+ 1

dx

42.
∫

x2 + 2x+ 1
x3 + 3x2 + 3x

dx

In Exercises 43 – 52, use SubsƟtuƟon to evaluate the indefi-
nite integral involving inverse trigonometric funcƟons.

43.
∫

7
x2 + 7

dx

44.
∫

3√
9− x2

dx

45.
∫

14√
5− x2

dx

46.
∫

2
x
√
x2 − 9

dx

47.
∫

5√
x4 − 16x2

dx

48.
∫

x√
1− x4

dx

49.
∫

1
x2 − 2x+ 8

dx

50.
∫

2√
−x2 + 6x+ 7

dx

51.
∫

3√
−x2 + 8x+ 9

dx

52.
∫

5
x2 + 6x+ 34

dx

In Exercises 53 – 78, evaluate the indefinite integral.

53.
∫

x2

(x3 + 3)2
dx

54.
∫ (

3x2 + 2x
) (

5x3 + 5x2 + 2
)8 dx

55.
∫

x√
1− x2

dx

56.
∫

x2 csc2
(
x3 + 1

)
dx

57.
∫

sin(x)
√

cos(x)dx

58.
∫

sin
(
5x+ 1

)
dx

59.
∫

1
x− 5

dx

60.
∫

7
3x+ 2

dx

61.
∫

3x3 + 4x2 + 2x− 22
x2 + 3x+ 5

dx

62.
∫

2x+ 7
x2 + 7x+ 3

dx

63.
∫

9(2x+ 3)
3x2 + 9x+ 7

dx

64.
∫

−x3 + 14x2 − 46x− 7
x2 − 7x+ 1

dx

65.
∫

x
x4 + 81

dx

66.
∫

2
4x2 + 1

dx

67.
∫

1
x
√
4x2 − 1

dx

68.
∫

1√
16− 9x2

dx

69.
∫

3x− 2
x2 − 2x+ 10

dx

70.
∫

7− 2x
x2 + 12x+ 61

dx

71.
∫

x2 + 5x− 2
x2 − 10x+ 32

dx

72.
∫

x3

x2 + 9
dx
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73.
∫

x3 − x
x2 + 4x+ 9

dx

74.
∫

sin(x)
cos2(x) + 1

dx

75.
∫

cos(x)
sin2(x) + 1

dx

76.
∫

cos(x)
1− sin2(x)

dx

77.
∫

3x− 3√
x2 − 2x− 6

dx

78.
∫

x− 3√
x2 − 6x+ 8

dx

In Exercises 79 – 86, evaluate the definite integral.

79.
∫ 3

1

1
x− 5

dx

80.
∫ 6

2
x
√
x− 2dx

81.
∫ π/2

−π/2
sin2 x cos x dx

82.
∫ 1

0
2x(1− x2)4 dx

83.
∫ −1

−2
(x+ 1)ex

2+2x+1 dx

84.
∫ 1

−1

1
1+ x2

dx

85.
∫ 4

2

1
x2 − 6x+ 10

dx

86.
∫ √

3

1

1√
4− x2

dx

282


	6 Techniques of Antidifferentiation
	6.1 Substitution


