6.2 Integration by Parts

Here’s a simple integral that we can’t yet evaluate:

/xcosxdx.

It’s a simple matter to take the derivative of the integrand using the Product
Rule, but there is no Product Rule for integrals. However, this section introduces
Integration by Parts, a method of integration that is based on the Product Rule
for derivatives. It will enable us to evaluate this integral.

The Product Rule says that if u and vare functions of x, then (uv)’ = u’v+uv’.
For simplicity, we’ve written u for u(x) and v for v(x). Suppose we integrate both
sides with respect to x. This gives

/(uv)’ dx = /(u’v + uv’) dx.

By the Fundamental Theorem of Calculus, the left side integrates to uv. The right
side can be broken up into two integrals, and we have

uv = /u’vdx—|—/uv’dx.

Solving for the second integral we have

/uv’dx:uv—/u’vdx.

Using differential notation, we can write du = u’(x)dx and dv = v/(x)dx and
the expression above can be written as follows:

/udv:uvf/vdu.

This is the Integration by Parts formula. For reference purposes, we state this in
a theorem.

Theorem 6.2.1 Integration by Parts
Let u and v be differentiable functions of x on an interval / containing a
and b. Then
/udv:uv—/vdu,
and
X=h b X=b
/ udv=uv| — / vdu.
x=a a x=a
Notes:
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Let’s try an example to understand our new technique.

Example 6.2.1 Integrating using Integration by Parts
Evaluate /xcosx dx.

SOLUTION The key to Integration by Parts is to identify part of the in-
tegrand as “u” and part as “dv.” Regular practice will help one make good iden-
tifications, and later we will introduce some principles that help. For now, let
u = xand dv = cos x dx.

It is generally useful to make a small table of these values as done below.
Right now we only know u and dv as shown on the left of Figure 6.2.1; on the
right we fill in the rest of what we need. If u = x, then du = dx. Since
dv = cos x dx, v is an antiderivative of cos x. We choose v = sin x.

u=x v=" u=x vV =sinx

=
du="7? dv = cosx dx du = dx dv = cos x dx

Figure 6.2.1: Setting up Integration by Parts.

Now substitute all of this into the Integration by Parts formula, giving

/xcosxdx:xsinx—/sinxdx.

We can then integrate sin x to get — cos x + C and overall our answer is
/xcosxdx = xsinx + cosx + C.

Note how the antiderivative contains a product, xsinx. This product is what
makes Integration by Parts necessary.

The example above demonstrates how Integration by Parts works in general.
We try to identify u and dv in the integral we are given, and the key is that we
usually want to choose u and dv so that du is simpler than u and v is hopefully
not too much more complicated than dv. This will mean that the integral on the
right side of the Integration by Parts formula, f vdu will be simpler to integrate
than the original integral f udv.

In the example above, we chose u = x and dv = cos x dx. Then du = dx was
simpler than u and v = sin x is no more complicated than dv. Therefore, instead
of integrating x cos x dx, we could integrate sin x dx, which we knew how to do.

A useful mnemonic for helping to determine u is “LIATE,” where

L = Logarithmic, | = Inverse Trig., A = Algebraic (polynomials),
T = Trigonometric, and E = Exponential.

Notes:
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If the integrand contains both a logarithmic and an algebraic term, in general
letting u be the logarithmic term works best, as indicated by L coming before A
in LIATE.

We now consider another example.

Example 6.2.2 Integrating using Integration by Parts

Evaluate / xe* dx.

SOLUTION The integrand contains an Algebraic term (x) and an Exponential
term (e*). Our mnemonic suggests letting u be the algebraic term, so we choose
u = xand dv = e*dx. Thendu = dxand v = e* as indicated by the tables below.

u=x v="7 u=x v=2¢"
=
du="7 dv = e* dx du = dx dv = e* dx

Figure 6.2.2: Setting up Integration by Parts.

We see du is simpler than u, while there is no change in going from dv to v.
This is good. The Integration by Parts formula gives

/xe*dx:xe"—/e*dx.

The integral on the right is simple; our final answer is
/xe"dx:xe"—e"—i—c.
Note again how the antiderivatives contain a product term.

Example 6.2.3 Integrating using Integration by Parts

Evaluate /x2 cos X dx.

SOLUTION The mnemonic suggests letting u = x? instead of the trigono-
metric function, hence dv = cosxdx. Then du = 2xdx and v = sin x as shown
below.

u=x v="7? u=x v =sinx

=
du="7? dv = cos x dx du=2xdx dv=cosxdx

Figure 6.2.3: Setting up Integration by Parts.

Notes:
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The Integration by Parts formula gives
/x2 cosxdx = x*sinx — /2xsinxdx.

At this point, the integral on the right is indeed simpler than the one we started
with, but to evaluate it, we need to do Integration by Parts again. Here we
choose u = 2x and dv = sin x and fill in the rest below.

u=2x v=" N u=2x V= —CoSX
du =7 dv = sinx dx du = 2dx dv = sinx dx

Figure 6.2.4: Setting up Integration by Parts (again).

/x2 cosxdx = x*sinx — <—2xcosx— /—Zcosxdx).

The integral all the way on the right is now something we can evaluate. It eval-
uates to —2 sinx. Then going through and simplifying, being careful to keep all
the signs straight, our answer is

/chosde:xzsinx+2xcosx— 2sinx + C.

Example 6.2.4 Integrating using Integration by Parts
Evaluate / €* cos x dx.

SOLUTION This is a classic problem. Our mnemonic suggests letting u
be the trigonometric function instead of the exponential. In this particular ex-
ample, one can let u be either cos x or €*; to demonstrate that we do not have
to follow LIATE, we choose u = e* and hence dv = cosxdx. Then du = e*dx
and v = sin x as shown below.

u=e" v="7 u=_¢e v =sinx

=
du=7 dv = cos x dx du=¢e"dx dv=cosxdx

Figure 6.2.5: Setting up Integration by Parts.

Notice that du is no simpler than u, going against our general rule (but bear
with us). The Integration by Parts formula yields

/e"cosxdx:e"sinx—/e"sinxdx.

Notes:



The integral on the right is not much different than the one we started with, so
it seems like we have gotten nowhere. Let’s keep working and apply Integration
by Parts to the new integral, using u = e* and dv = sin x dx. This leads us to the
following:

u=e v="7 u=e" V= —cosx
. = X .
du=7 dv = sinx dx du=¢e“dx dv=sinxdx

Figure 6.2.6: Setting up Integration by Parts (again).
The Integration by Parts formula then gives:
/e’( cosxdx = e*sinx — (e’( cosXx — / —e* cosxdx)
= e*sinx + e cosx — /e"cosxdx.

It seems we are back right where we started, as the right hand side contains
f e* cos x dx. But this is actually a good thing.

Add /e" cos x dx to both sides. This gives

2/ ¥ cosx dx = e*sinx + e* cos x

Now divide both sides by 2:

/e" cosx dx =

Simplifying a little and adding the constant of integration, our answer is thus

(e*sinx + e* cosx).

N =

1
/e" cosx dx = Ee" (sinx + cos x) + C.

Example 6.2.5 Integrating using Integration by Parts: antiderivative of In x
Evaluate / In x dx.

SOLUTION One may have noticed that we have rules for integrating the
familiar trigonometric functions and e*, but we have not yet given a rule for
integrating Inx. That is because In x can’t easily be integrated with any of the
rules we have learned up to this point. But we can find its antiderivative by a

Notes:
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clever application of Integration by Parts. Set u = Inx and dv = dx. Thisis a
good, sneaky trick to learn as it can help in other situations. This determines
du = (1/x) dx and v = x as shown below.

u=Inx v="7" N u=Inx V=X
du=7? dv = dx du=1/xdx dv = dx

Figure 6.2.7: Setting up Integration by Parts.

Putting this all together in the Integration by Parts formula, things work out

very nicely:
1
/Inxdx:xlnx—/xfdx.
X

The new integral simplifies to f 1 dx, which is about as simple as things get. Its
integral is x + C and our answer is

/Inxdx:xlnx—x+C.

Example 6.2.6 Integrating using Int. by Parts: antiderivative of arctan x
Evaluate / arctan x dx.

SOLUTION The same sneaky trick we used above works here. Let u =
arctanx and dv = dx. Then du = 1/(1 + x*) dx and v = x. The Integration by
Parts formula gives

X
arctanxdx = xarctanx — | —— dx.
1+ x2

The integral on the right can be solved by substitution. Taking u = 1 + x%, we
get du = 2x dx. The integral then becomes

1 1
/arctanxdx:xarctanx— E/fdu.
u

The integral on the right evaluates to In |u| + C, which becomes In(1 + x?) + C
(we can drop the absolute values as 1 + x? is always postive). Therefore, the
answer is

1
/arctanxdx = xarctanx — > In(1+x*) +C.

Notes:



Substitution Before Integration

When taking derivatives, it was common to employ multiple rules (such as
using both the Quotient and the Chain Rules). It should then come as no surprise
that some integrals are best evaluated by combining integration techniques. In
particular, here we illustrate making an “unusual” substitution first before using
Integration by Parts.

Example 6.2.7 Integration by Parts after substitution

Evaluate/cos(lnx) dx.

SOLUTION The integrand contains a composition of functions, leading
us to think Substitution would be beneficial. Letting u = Inx, we have du =
1/x dx. This seems problematic, as we do not have a 1/x in the integrand. But
consider:

du:%dx:w(-du:dx.

Since u = In x, we can use inverse functions and conclude that x = eY. Therefore
we have that

dx =x-du
=e'du.

We can thus replace In x with u and dx with e¥ du. Thus we rewrite our integral

as
/cos(lnx) dx = /e“ cos u du.

We evaluated this integral in Example 6.2.4. Using the result there, we have:
/cos(ln x) dx = /e“ cosu du
1, .
=€ (sinu+cosu) +C
1
= Ee'”x(sin(ln x) + cos(Inx)) + C

= %x(sin(lnx) + cos(Inx)) + C.

Definite Integrals and Integration By Parts

So far we have focused only on evaluating indefinite integrals. Of course, we
can use Integration by Parts to evaluate definite integrals as well, as Theorem

Notes:

6.2
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6.2.1 states. We do so in the next example.
Example 6.2.8 Definite integration using Integration by Parts

2
Evaluate / X% In x dx.
1

SOLUTION Our mnemonic suggests letting u = Inx, hence dv = x? d¥x.
We then get du = (1/x) dx and v = x3/3 as shown below.

u=Inx v="7? _ u=Inx v=1x/3
du=7? dv = x* dx du=1/xdx dv=x*dx

Figure 6.2.8: Setting up Integration by Parts.

The Integration by Parts formula then gives

2 3 2 2 .3
1
/lenxdx:x—lnx — X—fdx
1 3 1 1 3 x
3 2 2 2
X X
= —lInx —/ — dx
3 1 1 3
x3 2 32
=—Inx| ——
3 1 90
(Fme5)].
= =Ihx——
3 9/,
8 8 1 1
=(zh2—=-)—-({=zIhl—-—
3 9 3 9
8 7
=-In2— -
3 9
~ 1.07.

In general, Integration by Parts is useful for integrating certain products of
functions, like [xe*dx or [x®sinxdx. It is also useful for integrals involving
logarithms and inverse trigonometric functions.

As stated before, integration is generally more difficult than derivation. We
are developing tools for handling a large array of integrals, and experience will
tell us when one tool is preferable/necessary over another. For instance, con-
sider the three similar—looking integrals

/ xe* dx, / xe* dx and / xe* dx.

Notes:
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While the firstis calculated easily with Integration by Parts, the second is best
approached with Substitution. Taking things one step further, the third integral
has no answer in terms of elementary functions, so none of the methods we
learn in calculus will get us the exact answer.

Integration by Parts is a very useful method, second only to Substitution. In
the following sections of this chapter, we continue to learn other integration
techniques. The next section focuses on handling integrals containing trigono-
metric functions.

Notes:
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Exercises 6.2

Terms and Concepts

1.

T/F: Integration by Parts is useful in evaluating integrands
that contain products of functions.

. T/F: Integration by Parts can be thought of as the “opposite

of the Chain Rule.”

. For what is “LIATE” useful?

. T/F:If the integral that results from Integration by Parts ap-

pears to also need Integration by Parts, then a mistake was
made in the orginal choice of “u”

Problems

In Exercises 5 — 34, evaluate the given indefinite integral.

10.

11.

12.

13.

14.

15.

16.

17.

. /xsinxdx

X sinx dx

X sinx dx
xe* dx

x e dx

xe > dx

e sinx dx

e” cos x dx
e” sin(3x) dx
e cos(5x) dx
sin x cos x dx

sin~

e
]
]
e
/¥
/
/
/¢
J
/¢
/
fon

18. /tan_l(ZX) dx
19. /xtan_lxdx
20. /sin_lxdx
21. /xlnxdx

22, /(X—Z)Inxdx
23. /xln(xf 1) dx
24, /xln(xz) dx
25. /x Inx dx

26. /(Inx) dx
27. /(In(x+ 1)) dx
28. /xseczxdx

29. /xcsczxdx
30. /xﬂdx
31. /xmdx
32. /secxtanxdx
33. /xsecxtanxdx

34. /xcscxcotx dx

In Exercises 35 — 40, evaluate the indefinite integral after first
making a substitution.

35. /sin(lnx) dx

36. /ezx cos (€*) dx



) /4
37. /sm(ﬁ)dx 43./ X* sinx dx
T/2
38. [ In(v/x) dx 44./ X° sin x dx
39, /eﬁdx 2,
45./ xe" dx
0
40. /e'"xdx L
46. x"e” dx
0

In Exercises 41 — 49, evaluate the definite integral. Note: the 2 ,
corresponding indefinite integrals appear in Exercises 5—13.  47. / xe” “dx
1
41, / xsinx dx 48. / e*sinx dx
0 0
1 /2
42. / xe ™ dx 49, / e™ cos x dx
—1 —7/2

293



	6 Techniques of Antidifferentiation
	6.2 Integration by Parts


