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6.2 IntegraƟon by Parts
Here’s a simple integral that we can’t yet evaluate:∫

x cos x dx.

It’s a simple maƩer to take the derivaƟve of the integrand using the Product
Rule, but there is no Product Rule for integrals. However, this secƟon introduces
IntegraƟon by Parts, a method of integraƟon that is based on the Product Rule
for derivaƟves. It will enable us to evaluate this integral.

The Product Rule says that ifu and v are funcƟons of x, then (uv)′ = u ′v+uv ′.
For simplicity, we’ve wriƩen u for u(x) and v for v(x). Suppose we integrate both
sides with respect to x. This gives∫

(uv)′ dx =
∫
(u ′v+ uv ′) dx.

By the Fundamental Theoremof Calculus, the leŌ side integrates to uv. The right
side can be broken up into two integrals, and we have

uv =
∫

u ′v dx+
∫

uv ′ dx.

Solving for the second integral we have∫
uv ′ dx = uv−

∫
u ′v dx.

Using differenƟal notaƟon, we can write du = u ′(x)dx and dv = v ′(x)dx and
the expression above can be wriƩen as follows:∫

u dv = uv−
∫

v du.

This is the IntegraƟon by Parts formula. For reference purposes, we state this in
a theorem.

Theorem 6.2.1 IntegraƟon by Parts

Let u and v be differenƟable funcƟons of x on an interval I containing a
and b. Then ∫

u dv = uv−
∫

v du,

and ∫ x=b

x=a
u dv = uv

∣∣∣b
a
−
∫ x=b

x=a
v du.
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Chapter 6 Techniques of AnƟdifferenƟaƟon

Let’s try an example to understand our new technique.

Example 6.2.1 IntegraƟng using IntegraƟon by Parts
Evaluate

∫
x cos x dx.

SÊ½çã®ÊÄ The key to IntegraƟon by Parts is to idenƟfy part of the in-
tegrand as “u” and part as “dv.” Regular pracƟce will help one make good iden-
ƟficaƟons, and later we will introduce some principles that help. For now, let
u = x and dv = cos x dx.

It is generally useful to make a small table of these values as done below.
Right now we only know u and dv as shown on the leŌ of Figure 6.2.1; on the
right we fill in the rest of what we need. If u = x, then du = dx. Since
dv = cos x dx, v is an anƟderivaƟve of cos x. We choose v = sin x.

u = x v = ?
du = ? dv = cos x dx

⇒ u = x v = sin x
du = dx dv = cos x dx

Figure 6.2.1: Seƫng up IntegraƟon by Parts.

Now subsƟtute all of this into the IntegraƟon by Parts formula, giving∫
x cos x dx = x sin x−

∫
sin x dx.

We can then integrate sin x to get− cos x+ C and overall our answer is∫
x cos x dx = x sin x+ cos x+ C.

Note how the anƟderivaƟve contains a product, x sin x. This product is what
makes IntegraƟon by Parts necessary.

The example above demonstrates how IntegraƟon by Parts works in general.
We try to idenƟfy u and dv in the integral we are given, and the key is that we
usually want to choose u and dv so that du is simpler than u and v is hopefully
not too much more complicated than dv. This will mean that the integral on the
right side of the IntegraƟon by Parts formula,

∫
v du will be simpler to integrate

than the original integral
∫
u dv.

In the example above, we chose u = x and dv = cos x dx. Then du = dxwas
simpler than u and v = sin x is no more complicated than dv. Therefore, instead
of integraƟng x cos x dx, we could integrate sin x dx, which we knew how to do.

A useful mnemonic for helping to determine u is “LIATE,” where

L = Logarithmic, I = Inverse Trig., A = Algebraic (polynomials),
T = Trigonometric, and E = ExponenƟal.

Notes:
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6.2 IntegraƟon by Parts

If the integrand contains both a logarithmic and an algebraic term, in general
leƫng u be the logarithmic term works best, as indicated by L coming before A
in LIATE.

We now consider another example.

Example 6.2.2 IntegraƟng using IntegraƟon by Parts
Evaluate

∫
xex dx.

SÊ½çã®ÊÄ The integrand contains anAlgebraic term (x) and an ExponenƟal
term (ex). Our mnemonic suggests leƫng u be the algebraic term, so we choose
u = x and dv = ex dx. Then du = dx and v = ex as indicated by the tables below.

u = x v = ?
du = ? dv = ex dx

⇒ u = x v = ex

du = dx dv = ex dx

Figure 6.2.2: Seƫng up IntegraƟon by Parts.

We see du is simpler than u, while there is no change in going from dv to v.
This is good. The IntegraƟon by Parts formula gives∫

xex dx = xex −
∫

ex dx.

The integral on the right is simple; our final answer is∫
xex dx = xex − ex + C.

Note again how the anƟderivaƟves contain a product term.

Example 6.2.3 IntegraƟng using IntegraƟon by Parts
Evaluate

∫
x2 cos x dx.

SÊ½çã®ÊÄ Themnemonic suggests leƫngu = x2 insteadof the trigono-
metric funcƟon, hence dv = cos x dx. Then du = 2x dx and v = sin x as shown
below.

u = x2 v = ?
du = ? dv = cos x dx

⇒ u = x2 v = sin x
du = 2x dx dv = cos x dx

Figure 6.2.3: Seƫng up IntegraƟon by Parts.

Notes:
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Chapter 6 Techniques of AnƟdifferenƟaƟon

The IntegraƟon by Parts formula gives∫
x2 cos x dx = x2 sin x−

∫
2x sin x dx.

At this point, the integral on the right is indeed simpler than the one we started
with, but to evaluate it, we need to do IntegraƟon by Parts again. Here we
choose u = 2x and dv = sin x and fill in the rest below.

u = 2x v = ?
du = ? dv = sin x dx

⇒ u = 2x v = − cos x
du = 2 dx dv = sin x dx

Figure 6.2.4: Seƫng up IntegraƟon by Parts (again).∫
x2 cos x dx = x2 sin x−

(
−2x cos x−

∫
−2 cos x dx

)
.

The integral all the way on the right is now something we can evaluate. It eval-
uates to −2 sin x. Then going through and simplifying, being careful to keep all
the signs straight, our answer is∫

x2 cos x dx = x2 sin x+ 2x cos x− 2 sin x+ C.

Example 6.2.4 IntegraƟng using IntegraƟon by Parts
Evaluate

∫
ex cos x dx.

SÊ½çã®ÊÄ This is a classic problem. Our mnemonic suggests leƫng u
be the trigonometric funcƟon instead of the exponenƟal. In this parƟcular ex-
ample, one can let u be either cos x or ex; to demonstrate that we do not have
to follow LIATE, we choose u = ex and hence dv = cos x dx. Then du = ex dx
and v = sin x as shown below.

u = ex v = ?
du = ? dv = cos x dx

⇒ u = ex v = sin x
du = ex dx dv = cos x dx

Figure 6.2.5: Seƫng up IntegraƟon by Parts.

NoƟce that du is no simpler than u, going against our general rule (but bear
with us). The IntegraƟon by Parts formula yields∫

ex cos x dx = ex sin x−
∫

ex sin x dx.

Notes:
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6.2 IntegraƟon by Parts

The integral on the right is not much different than the one we started with, so
it seems like we have goƩen nowhere. Let’s keep working and apply IntegraƟon
by Parts to the new integral, using u = ex and dv = sin x dx. This leads us to the
following:

u = ex v = ?
du = ? dv = sin x dx

⇒ u = ex v = − cos x
du = ex dx dv = sin x dx

Figure 6.2.6: Seƫng up IntegraƟon by Parts (again).

The IntegraƟon by Parts formula then gives:∫
ex cos x dx = ex sin x−

(
−ex cos x−

∫
−ex cos x dx

)
= ex sin x+ ex cos x−

∫
ex cos x dx.

It seems we are back right where we started, as the right hand side contains∫
ex cos x dx. But this is actually a good thing.

Add
∫

ex cos x dx to both sides. This gives

2
∫

ex cos x dx = ex sin x+ ex cos x

Now divide both sides by 2:∫
ex cos x dx =

1
2
(
ex sin x+ ex cos x

)
.

Simplifying a liƩle and adding the constant of integraƟon, our answer is thus∫
ex cos x dx =

1
2
ex (sin x+ cos x) + C.

Example 6.2.5 IntegraƟng using IntegraƟon by Parts: anƟderivaƟve of ln x
Evaluate

∫
ln x dx.

SÊ½çã®ÊÄ Onemay have noƟced that we have rules for integraƟng the
familiar trigonometric funcƟons and ex, but we have not yet given a rule for
integraƟng ln x. That is because ln x can’t easily be integrated with any of the
rules we have learned up to this point. But we can find its anƟderivaƟve by a

Notes:
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Chapter 6 Techniques of AnƟdifferenƟaƟon

clever applicaƟon of IntegraƟon by Parts. Set u = ln x and dv = dx. This is a
good, sneaky trick to learn as it can help in other situaƟons. This determines
du = (1/x) dx and v = x as shown below.

u = ln x v = ?
du = ? dv = dx

⇒ u = ln x v = x
du = 1/x dx dv = dx

Figure 6.2.7: Seƫng up IntegraƟon by Parts.

Puƫng this all together in the IntegraƟon by Parts formula, things work out
very nicely: ∫

ln x dx = x ln x−
∫

x
1
x
dx.

The new integral simplifies to
∫
1 dx, which is about as simple as things get. Its

integral is x+ C and our answer is∫
ln x dx = x ln x− x+ C.

Example 6.2.6 IntegraƟng using Int. by Parts: anƟderivaƟve of arctan x
Evaluate

∫
arctan x dx.

SÊ½çã®ÊÄ The same sneaky trick we used above works here. Let u =
arctan x and dv = dx. Then du = 1/(1 + x2) dx and v = x. The IntegraƟon by
Parts formula gives∫

arctan x dx = x arctan x−
∫

x
1+ x2

dx.

The integral on the right can be solved by subsƟtuƟon. Taking u = 1 + x2, we
get du = 2x dx. The integral then becomes∫

arctan x dx = x arctan x− 1
2

∫
1
u
du.

The integral on the right evaluates to ln |u| + C, which becomes ln(1 + x2) + C
(we can drop the absolute values as 1 + x2 is always posƟve). Therefore, the
answer is ∫

arctan x dx = x arctan x− 1
2
ln(1+ x2) + C.

Notes:
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6.2 IntegraƟon by Parts

SubsƟtuƟon Before IntegraƟon

When taking derivaƟves, it was common to employ mulƟple rules (such as
using both theQuoƟent and the Chain Rules). It should then come as no surprise
that some integrals are best evaluated by combining integraƟon techniques. In
parƟcular, here we illustrate making an “unusual” subsƟtuƟon first before using
IntegraƟon by Parts.

Example 6.2.7 IntegraƟon by Parts aŌer subsƟtuƟon
Evaluate

∫
cos(ln x) dx.

SÊ½çã®ÊÄ The integrand contains a composiƟon of funcƟons, leading
us to think SubsƟtuƟon would be beneficial. Leƫng u = ln x, we have du =
1/x dx. This seems problemaƟc, as we do not have a 1/x in the integrand. But
consider:

du =
1
x
dx ⇒ x · du = dx.

Since u = ln x, we can use inverse funcƟons and conclude that x = eu. Therefore
we have that

dx = x · du
= eu du.

We can thus replace ln x with u and dx with eu du. Thus we rewrite our integral
as ∫

cos(ln x) dx =
∫

eu cos u du.

We evaluated this integral in Example 6.2.4. Using the result there, we have:∫
cos(ln x) dx =

∫
eu cos u du

=
1
2
eu
(
sin u+ cos u

)
+ C

=
1
2
eln x
(
sin(ln x) + cos(ln x)

)
+ C

=
1
2
x
(
sin(ln x) + cos(ln x)

)
+ C.

Definite Integrals and IntegraƟon By Parts

So far we have focused only on evaluaƟng indefinite integrals. Of course, we
can use IntegraƟon by Parts to evaluate definite integrals as well, as Theorem

Notes:
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Chapter 6 Techniques of AnƟdifferenƟaƟon

6.2.1 states. We do so in the next example.

Example 6.2.8 Definite integraƟon using IntegraƟon by Parts

Evaluate
∫ 2

1
x2 ln x dx.

SÊ½çã®ÊÄ Our mnemonic suggests leƫng u = ln x, hence dv = x2 dx.
We then get du = (1/x) dx and v = x3/3 as shown below.

u = ln x v = ?
du = ? dv = x2 dx

⇒ u = ln x v = x3/3
du = 1/x dx dv = x2 dx

Figure 6.2.8: Seƫng up IntegraƟon by Parts.

The IntegraƟon by Parts formula then gives∫ 2

1
x2 ln x dx =

x3

3
ln x
∣∣∣∣2
1
−
∫ 2

1

x3

3
1
x
dx

=
x3

3
ln x
∣∣∣∣2
1
−
∫ 2

1

x2

3
dx

=
x3

3
ln x
∣∣∣∣2
1
− x3

9

∣∣∣∣2
1

=

(
x3

3
ln x− x3

9

) ∣∣∣∣2
1

=

(
8
3
ln 2− 8

9

)
−
(
1
3
ln 1− 1

9

)
=

8
3
ln 2− 7

9
≈ 1.07.

In general, IntegraƟon by Parts is useful for integraƟng certain products of
funcƟons, like

∫
xex dx or

∫
x3 sin x dx. It is also useful for integrals involving

logarithms and inverse trigonometric funcƟons.
As stated before, integraƟon is generally more difficult than derivaƟon. We

are developing tools for handling a large array of integrals, and experience will
tell us when one tool is preferable/necessary over another. For instance, con-
sider the three similar–looking integrals∫

xex dx,
∫

xex
2
dx and

∫
xex

3
dx.

Notes:
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6.2 IntegraƟon by Parts

While the first is calculated easilywith IntegraƟonby Parts, the second is best
approached with SubsƟtuƟon. Taking things one step further, the third integral
has no answer in terms of elementary funcƟons, so none of the methods we
learn in calculus will get us the exact answer.

IntegraƟon by Parts is a very useful method, second only to SubsƟtuƟon. In
the following secƟons of this chapter, we conƟnue to learn other integraƟon
techniques. The next secƟon focuses on handling integrals containing trigono-
metric funcƟons.

Notes:
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Exercises 6.2
Terms and Concepts

1. T/F: IntegraƟon by Parts is useful in evaluaƟng integrands
that contain products of funcƟons.

2. T/F: IntegraƟon by Parts can be thought of as the “opposite
of the Chain Rule.”

3. For what is “LIATE” useful?

4. T/F: If the integral that results from IntegraƟon by Parts ap-
pears to also need IntegraƟon by Parts, then a mistake was
made in the orginal choice of “u”.

Problems
In Exercises 5 – 34, evaluate the given indefinite integral.

5.
∫

x sin x dx

6.
∫

xe−x dx

7.
∫

x2 sin x dx

8.
∫

x3 sin x dx

9.
∫

xex
2
dx

10.
∫

x3ex dx

11.
∫

xe−2x dx

12.
∫

ex sin x dx

13.
∫

e2x cos x dx

14.
∫

e2x sin(3x) dx

15.
∫

e5x cos(5x) dx

16.
∫

sin x cos x dx

17.
∫

sin−1 x dx

18.
∫

tan−1(2x) dx

19.
∫

x tan−1 x dx

20.
∫

sin−1 x dx

21.
∫

x ln x dx

22.
∫

(x− 2) ln x dx

23.
∫

x ln(x− 1) dx

24.
∫

x ln(x2) dx

25.
∫

x2 ln x dx

26.
∫

(ln x)2 dx

27.
∫

(ln(x+ 1))2 dx

28.
∫

x sec2 x dx

29.
∫

x csc2 x dx

30.
∫

x
√
x− 2 dx

31.
∫

x
√
x2 − 2 dx

32.
∫

sec x tan x dx

33.
∫

x sec x tan x dx

34.
∫

x csc x cot x dx

In Exercises 35 – 40, evaluate the indefinite integral aŌer first
making a subsƟtuƟon.

35.
∫

sin(ln x) dx

36.
∫

e2x cos
(
ex
)
dx
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37.
∫

sin(
√
x) dx

38.
∫

ln(
√
x) dx

39.
∫

e
√

x dx

40.
∫

eln x dx

In Exercises 41 – 49, evaluate the definite integral. Note: the
corresponding indefinite integrals appear in Exercises 5 – 13.

41.
∫ π

0
x sin x dx

42.
∫ 1

−1
xe−x dx

43.
∫ π/4

−π/4
x2 sin x dx

44.
∫ π/2

−π/2
x3 sin x dx

45.
∫ √

ln 2

0
xex

2
dx

46.
∫ 1

0
x3ex dx

47.
∫ 2

1
xe−2x dx

48.
∫ π

0
ex sin x dx

49.
∫ π/2

−π/2
e2x cos x dx
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