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6.5 ParƟal FracƟon DecomposiƟon

In this secƟonwe invesƟgate the anƟderivaƟves of raƟonal funcƟons. Recall that
raƟonal funcƟons are funcƟons of the form f(x) = p(x)

q(x) , where p(x) and q(x) are
polynomials and q(x) ̸= 0. Such funcƟons arise in many contexts, one of which
is the solving of certain fundamental differenƟal equaƟons.

We begin with an example that demonstrates the moƟvaƟon behind this
secƟon. Consider the integral

∫
1

x2 − 1
dx. We do not have a simple formula

for this (if the denominator were x2 + 1, we would recognize the anƟderivaƟve
as being the arctangent funcƟon). It can be solved using Trigonometric SubsƟ-
tuƟon, but note how the integral is easy to evaluate once we realize:

1
x2 − 1

=
1/2
x− 1

− 1/2
x+ 1

.

Thus

∫
1

x2 − 1
dx =

∫
1/2
x− 1

dx−
∫

1/2
x+ 1

dx

=
1
2
ln |x− 1| − 1

2
ln |x+ 1|+ C.

This secƟon teaches how to decompose

1
x2 − 1

into
1/2
x− 1

− 1/2
x+ 1

.

We start with a raƟonal funcƟon f(x) = p(x)
q(x) , where p and q do not have any

common factors and the degree of p is less than the degree of q. It can be shown
that any polynomial, and hence q, can be factored into a product of linear and
irreducible quadraƟc terms. The following Key Idea states how to decompose a
raƟonal funcƟon into a sum of raƟonal funcƟons whose denominators are all of
lower degree than q.

Notes:
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Chapter 6 Techniques of AnƟdifferenƟaƟon

Key Idea 6.5.1 ParƟal FracƟon DecomposiƟon

Let
p(x)
q(x)

be a raƟonal funcƟon, where the degree of p is less than the

degree of q.

1. Linear Terms: Let (x−a) divide q(x), where (x−a)n is the highest
power of (x−a) that divides q(x). Then the decomposiƟon of p(x)

q(x)
will contain the sum

A1

(x− a)
+

A2

(x− a)2
+ · · ·+ An

(x− a)n
.

2. QuadraƟc Terms: Let x2+bx+ c divide q(x), where (x2+bx+ c)n
is the highest power of x2 + bx + c that divides q(x). Then the
decomposiƟon of p(x)

q(x) will contain the sum

B1x+ C1
x2 + bx+ c

+
B2x+ C2

(x2 + bx+ c)2
+ · · ·+ Bnx+ Cn

(x2 + bx+ c)n
.

To find the coefficients Ai, Bi and Ci:

1. MulƟply all fracƟons by q(x), clearing the denominators. Collect
like terms.

2. Equate the resulƟng coefficients of the powers of x and solve the
resulƟng system of linear equaƟons.

The following examples will demonstrate how to put this Key Idea into prac-
Ɵce. Example 6.5.1 stresses the decomposiƟon aspect of the Key Idea.

Example 6.5.1 Decomposing into parƟal fracƟons
Decompose f(x) =

1
(x+ 5)(x− 2)3(x2 + x+ 2)(x2 + x+ 7)2

without solving

for the resulƟng coefficients.

SÊ½çã®ÊÄ The denominator is already factored, as both x2+ x+ 2 and
x2 + x + 7 cannot be factored further. We need to decompose f(x) properly.
Since (x+ 5) is a linear term that divides the denominator, there will be a

A
x+ 5

Notes:
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6.5 ParƟal FracƟon DecomposiƟon

term in the decomposiƟon.
As (x− 2)3 divides the denominator, we will have the following terms in the

decomposiƟon:
B

x− 2
,

C
(x− 2)2

and
D

(x− 2)3
.

The x2 + x+ 2 term in the denominator results in a
Ex+ F

x2 + x+ 2
term.

Finally, the (x2 + x+ 7)2 term results in the terms

Gx+ H
x2 + x+ 7

and
Ix+ J

(x2 + x+ 7)2
.

All together, we have

1
(x+ 5)(x− 2)3(x2 + x+ 2)(x2 + x+ 7)2

=
A

x+ 5
+

B
x− 2

+
C

(x− 2)2
+

D
(x− 2)3

+

Ex+ F
x2 + x+ 2

+
Gx+ H

x2 + x+ 7
+

Ix+ J
(x2 + x+ 7)2

Solving for the coefficients A, B . . . J would be a bit tedious but not “hard.”

Example 6.5.2 Decomposing into parƟal fracƟons
Perform the parƟal fracƟon decomposiƟon of

1
x2 − 1

.

SÊ½çã®ÊÄ The denominator factors into two linear terms: x2 − 1 =
(x− 1)(x+ 1). Thus

1
x2 − 1

=
A

x− 1
+

B
x+ 1

.

To solve for A and B, first mulƟply through by x2 − 1 = (x− 1)(x+ 1):

1 =
A(x− 1)(x+ 1)

x− 1
+

B(x− 1)(x+ 1)
x+ 1

= A(x+ 1) + B(x− 1)
= Ax+ A+ Bx− B

Now collect like terms.

= (A+ B)x+ (A− B).

The next step is key. Note the equality we have:

1 = (A+ B)x+ (A− B).

Notes:
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Note: EquaƟon 6.3 offers a direct route to
finding the values of A, B and C. Since the
equaƟon holds for all values of x, it holds
in parƟcular when x = 1. However, when
x = 1, the right hand side simplifies to
A(1 + 2)2 = 9A. Since the leŌ hand side
is sƟll 1, we have 1 = 9A. HenceA = 1/9.
Likewise, the equality holds when x =
−2; this leads to the equaƟon 1 = −3C.
Thus C = −1/3.
Knowing A and C, we can find the value of
B by choosing yet another value of x, such
as x = 0, and solving for B.

Chapter 6 Techniques of AnƟdifferenƟaƟon

For clarity’s sake, rewrite the leŌ hand side as

0x+ 1 = (A+ B)x+ (A− B).

On the leŌ, the coefficient of the x term is 0; on the right, it is (A + B). Since
both sides are equal, we must have that 0 = A+ B.

Likewise, on the leŌ, we have a constant term of 1; on the right, the constant
term is (A− B). Therefore we have 1 = A− B.

We have two linear equaƟons with two unknowns. This one is easy to solve
by hand, leading to

A+ B = 0
A− B = 1 ⇒ A = 1/2

B = −1/2 .

Thus
1

x2 − 1
=

1/2
x− 1

− 1/2
x+ 1

.

Example 6.5.3 IntegraƟng using parƟal fracƟons
Use parƟal fracƟon decomposiƟon to integrate

∫
1

(x− 1)(x+ 2)2
dx.

SÊ½çã®ÊÄ Wedecompose the integrand as follows, as described by Key
Idea 6.5.1:

1
(x− 1)(x+ 2)2

=
A

x− 1
+

B
x+ 2

+
C

(x+ 2)2
.

To solve for A, B and C, we mulƟply both sides by (x− 1)(x+ 2)2 and collect like
terms:

1 = A(x+ 2)2 + B(x− 1)(x+ 2) + C(x− 1) (6.3)
= Ax2 + 4Ax+ 4A+ Bx2 + Bx− 2B+ Cx− C
= (A+ B)x2 + (4A+ B+ C)x+ (4A− 2B− C)

We have

0x2 + 0x+ 1 = (A+ B)x2 + (4A+ B+ C)x+ (4A− 2B− C)

leading to the equaƟons

A+ B = 0, 4A+ B+ C = 0 and 4A− 2B− C = 1.

These three equaƟons of three unknowns lead to a unique soluƟon:

A = 1/9, B = −1/9 and C = −1/3.

Notes:
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Note: The values ofA andB can be quickly
found using the technique described in
the margin of Example 6.5.3.

6.5 ParƟal FracƟon DecomposiƟon

Thus∫
1

(x− 1)(x+ 2)2
dx =

∫
1/9
x− 1

dx+
∫

−1/9
x+ 2

dx+
∫

−1/3
(x+ 2)2

dx.

Each can be integrated with a simple subsƟtuƟonwith u = x−1 or u = x+2
(or by directly applying Key Idea 6.1.1 as the denominators are linear funcƟons).
The end result is∫

1
(x− 1)(x+ 2)2

dx =
1
9
ln |x− 1| − 1

9
ln |x+ 2|+ 1

3(x+ 2)
+ C.

Example 6.5.4 IntegraƟng using parƟal fracƟons

Use parƟal fracƟon decomposiƟon to integrate
∫

x3

(x− 5)(x+ 3)
dx.

SÊ½çã®ÊÄ Key Idea 6.5.1 presumes that the degree of the numerator
is less than the degree of the denominator. Since this is not the case here, we
begin by using polynomial division to reduce the degree of the numerator. We
omit the steps, but encourage the reader to verify that

x3

(x− 5)(x+ 3)
= x+ 2+

19x+ 30
(x− 5)(x+ 3)

.

Using Key Idea 6.5.1, we can rewrite the new raƟonal funcƟon as:

19x+ 30
(x− 5)(x+ 3)

=
A

x− 5
+

B
x+ 3

for appropriate values of A and B. Clearing denominators, we have

19x+ 30 = A(x+ 3) + B(x− 5)
= (A+ B)x+ (3A− 5B).

This implies that:

19 = A+ B
30 = 3A− 5B.

Solving this system of linear equaƟons gives

125/8 = A
27/8 = B.

Notes:
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We can now integrate.∫
x3

(x− 5)(x+ 3)
dx =

∫ (
x+ 2+

125/8
x− 5

+
27/8
x+ 3

)
dx

=
x2

2
+ 2x+

125
8

ln |x− 5|+ 27
8

ln |x+ 3|+ C.

Example 6.5.5 IntegraƟng using parƟal fracƟons

Use parƟal fracƟon decomposiƟon to evaluate
∫

7x2 + 31x+ 54
(x+ 1)(x2 + 6x+ 11)

dx.

SÊ½çã®ÊÄ The degree of the numerator is less than the degree of the
denominator so we begin by applying Key Idea 6.5.1. We have:

7x2 + 31x+ 54
(x+ 1)(x2 + 6x+ 11)

=
A

x+ 1
+

Bx+ C
x2 + 6x+ 11

.

Now clear the denominators.

7x2 + 31x+ 54 = A(x2 + 6x+ 11) + (Bx+ C)(x+ 1)
= (A+ B)x2 + (6A+ B+ C)x+ (11A+ C).

This implies that:

7 = A+ B
31 = 6A+ B+ C
54 = 11A+ C.

Solving this system of linear equaƟons gives the nice result of A = 5, B = 2 and
C = −1. Thus∫

7x2 + 31x+ 54
(x+ 1)(x2 + 6x+ 11)

dx =
∫ (

5
x+ 1

+
2x− 1

x2 + 6x+ 11

)
dx.

The first termof this new integrand is easy to evaluate; it leads to a 5 ln |x+1|
term. The second term is not hard, but takes several steps and uses subsƟtuƟon
techniques.

The integrand
2x− 1

x2 + 6x+ 11
has a quadraƟc in the denominator and a linear

term in the numerator. This leads us to try subsƟtuƟon. Let u = x2+6x+11, so
du = (2x+ 6) dx. The numerator is 2x− 1, not 2x+ 6, but we can get a 2x+ 6

Notes:
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6.5 ParƟal FracƟon DecomposiƟon

term in the numerator by adding 0 in the form of “7− 7.”

2x− 1
x2 + 6x+ 11

=
2x− 1+ 7− 7
x2 + 6x+ 11

=
2x+ 6

x2 + 6x+ 11
− 7

x2 + 6x+ 11
.

Wecannow integrate the first termwith subsƟtuƟon, leading to a ln |x2+6x+11|
term. The final term can be integrated using arctangent. First, complete the
square in the denominator:

7
x2 + 6x+ 11

=
7

(x+ 3)2 + 2
.

An anƟderivaƟve of the laƩer term can be found using Theorem 6.1.3 and sub-
sƟtuƟon: ∫

7
x2 + 6x+ 11

dx =
7√
2
tan−1

(
x+ 3√

2

)
+ C.

Let’s start at the beginning and put all of the steps together.∫
7x2 + 31x+ 54

(x+ 1)(x2 + 6x+ 11)
dx =

∫ (
5

x+ 1
+

2x− 1
x2 + 6x+ 11

)
dx

=

∫
5

x+ 1
dx+

∫
2x+ 6

x2 + 6x+ 11
dx−

∫
7

x2 + 6x+ 11
dx

= 5 ln |x+ 1|+ ln |x2 + 6x+ 11| − 7√
2
tan−1

(
x+ 3√

2

)
+ C.

As with many other problems in calculus, it is important to remember that one
is not expected to “see” the final answer immediately aŌer seeing the problem.
Rather, given the iniƟal problem, we break it down into smaller problems that
are easier to solve. The final answer is a combinaƟon of the answers of the
smaller problems.

ParƟal FracƟon DecomposiƟon is an important tool when dealing with raƟo-
nal funcƟons. Note that at its heart, it is a technique of algebra, not calculus,
as we are rewriƟng a fracƟon in a new form. Regardless, it is very useful in the
realm of calculus as it lets us evaluate a certain set of “complicated” integrals.

The next secƟon introduces new funcƟons, called the Hyperbolic FuncƟons.
They will allow us to make subsƟtuƟons similar to those found when studying
Trigonometric SubsƟtuƟon, allowing us to approach evenmore integraƟonprob-
lems.

Notes:
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Exercises 6.5
Terms and Concepts
1. Fill in the blank: ParƟal FracƟonDecomposiƟon is amethod

of rewriƟng funcƟons.

2. T/F: It is someƟmes necessary to use polynomial division
before using ParƟal FracƟon DecomposiƟon.

3. Decompose 1
x2 − 3x

without solving for the coefficients, as
done in Example 6.5.1.

4. Decompose 7− x
x2 − 9

without solving for the coefficients, as
done in Example 6.5.1.

5. Decompose x− 3
x2 − 7

without solving for the coefficients, as
done in Example 6.5.1.

6. Decompose 2x+ 5
x3 + 7x

without solving for the coefficients, as
done in Example 6.5.1.

Problems
In Exercises 7 – 26, evaluate the indefinite integral.

7.
∫

7x+ 7
x2 + 3x− 10

dx

8.
∫

7x− 2
x2 + x

dx

9.
∫

−4
3x2 − 12

dx

10.
∫

6x+ 4
3x2 + 4x+ 1

dx

11.
∫

x+ 7
(x+ 5)2

dx

12.
∫

−3x− 20
(x+ 8)2

dx

13.
∫

9x2 + 11x+ 7
x(x+ 1)2

dx

14.
∫

−12x2 − x+ 33
(x− 1)(x+ 3)(3− 2x)

dx

15.
∫

94x2 − 10x
(7x+ 3)(5x− 1)(3x− 1)

dx

16.
∫

x2 + x+ 1
x2 + x− 2

dx

17.
∫

x3

x2 − x− 20
dx

18.
∫

2x2 − 4x+ 6
x2 − 2x+ 3

dx

19.
∫

1
x3 + 2x2 + 3x

dx

20.
∫

x2 + x+ 5
x2 + 4x+ 10

dx

21.
∫

12x2 + 21x+ 3
(x+ 1)(3x2 + 5x− 1)

dx

22.
∫

6x2 + 8x− 4
(x− 3)(x2 + 6x+ 10)

dx

23.
∫

2x2 + x+ 1
(x+ 1)(x2 + 9)

dx

24.
∫

x2 − 20x− 69
(x− 7)(x2 + 2x+ 17)

dx

25.
∫

9x2 − 60x+ 33
(x− 9)(x2 − 2x+ 11)

dx

26.
∫

6x2 + 45x+ 121
(x+ 2)(x2 + 10x+ 27)

dx

In Exercises 27 – 30, evaluate the definite integral.

27.
∫ 2

1

8x+ 21
(x+ 2)(x+ 3)

dx

28.
∫ 5

0

14x+ 6
(3x+ 2)(x+ 4)

dx

29.
∫ 1

−1

x2 + 5x− 5
(x− 10)(x2 + 4x+ 5)

dx

30.
∫ 1

0

x
(x+ 1)(x2 + 2x+ 1)

dx
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