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Figure 6.8.1: Graphing f(x) = 1
1+ x2

.

6.8 Improper IntegraƟon

6.8 Improper IntegraƟon
We begin this secƟon by considering the following definite integrals:

•
∫ 100

0

1
1+ x2

dx ≈ 1.5608,

•
∫ 1000

0

1
1+ x2

dx ≈ 1.5698,

•
∫ 10,000

0

1
1+ x2

dx ≈ 1.5707.

NoƟce how the integrand is 1/(1+ x2) in each integral (which is sketched in
Figure 6.8.1). As the upper bound gets larger, one would expect the “area under
the curve” would also grow. While the definite integrals do increase in value as
the upper bound grows, they are not increasing by much. In fact, consider:∫ b

0

1
1+ x2

dx = tan−1 x
∣∣∣b
0
= tan−1 b− tan−1 0 = tan−1 b.

As b → ∞, tan−1 b → π/2. Therefore it seems that as the upper bound b grows,

the value of the definite integral
∫ b

0

1
1+ x2

dx approaches π/2 ≈ 1.5708. This

should strike the reader as being a bit amazing: even though the curve extends
“to infinity,” it has a finite amount of area underneath it.

Whenwe defined the definite integral
∫ b

a
f(x) dx, wemade two sƟpulaƟons:

1. The interval over which we integrated, [a, b], was a finite interval, and

2. The funcƟon f(x) was conƟnuous on [a, b] (ensuring that the range of f
was finite).

In this secƟon we consider integrals where one or both of the above condi-
Ɵons do not hold. Such integrals are called improper integrals.

Notes:
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Figure 6.8.2: A graph of f(x) = 1
x2 in Ex-
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Improper Integrals with Infinite Bounds

DefiniƟon6.8.1 Improper Integrals with Infinite Bounds; Converge,
Diverge

1. Let f be a conƟnuous funcƟon on [a,∞). Define∫ ∞

a
f(x) dx to be lim

b→∞

∫ b

a
f(x) dx.

2. Let f be a conƟnuous funcƟon on (−∞, b]. Define∫ b

−∞
f(x) dx to be lim

a→−∞

∫ b

a
f(x) dx.

3. Let f be a conƟnuous funcƟon on (−∞,∞). Let c be any real num-
ber; define∫ ∞

−∞
f(x) dx to be lim

a→−∞

∫ c

a
f(x) dx + lim

b→∞

∫ b

c
f(x) dx.

An improper integral is said to converge if its corresponding limit exists;
otherwise, it diverges. The improper integral in part 3 converges if and
only if both of its limits exist.

Example 6.8.1 EvaluaƟng improper integrals
Evaluate the following improper integrals.

1.
∫ ∞

1

1
x2

dx

2.
∫ ∞

1

1
x
dx

3.
∫ 0

−∞
ex dx

4.
∫ ∞

−∞

1
1+ x2

dx

SÊ½çã®ÊÄ

1.
∫ ∞

1

1
x2

dx = lim
b→∞

∫ b

1

1
x2

dx = lim
b→∞

−1
x

∣∣∣b
1

= lim
b→∞

−1
b

+ 1

= 1.

A graph of the area defined by this integral is given in Figure 6.8.2.
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Figure 6.8.5: A graph of f(x) = 1
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Example 6.8.1.

6.8 Improper IntegraƟon

2.
∫ ∞

1

1
x
dx = lim

b→∞

∫ b

1

1
x
dx

= lim
b→∞

ln |x|
∣∣∣b
1

= lim
b→∞

ln(b)

= ∞.

The limit does not exist, hence the improper integral
∫ ∞

1

1
x
dx diverges.

Compare the graphs in Figures 6.8.2 and 6.8.3; noƟce how the graph of
f(x) = 1/x is noƟceably larger. This difference is enough to cause the
improper integral to diverge.

3.
∫ 0

−∞
ex dx = lim

a→−∞

∫ 0

a
ex dx

= lim
a→−∞

ex
∣∣∣0
a

= lim
a→−∞

e0 − ea

= 1.
A graph of the area defined by this integral is given in Figure 6.8.4.

4. We will need to break this into two improper integrals and choose a value
of c as in part 3 of DefiniƟon 6.8.1. Any value of c is fine; we choose c = 0.

∫ ∞

−∞

1
1+ x2

dx = lim
a→−∞

∫ 0

a

1
1+ x2

dx+ lim
b→∞

∫ b

0

1
1+ x2

dx

= lim
a→−∞

tan−1 x
∣∣∣0
a
+ lim

b→∞
tan−1 x

∣∣∣b
0

= lim
a→−∞

(
tan−1 0− tan−1 a

)
+ lim

b→∞

(
tan−1 b− tan−1 0

)
=

(
0− −π

2

)
+
(π
2
− 0
)
.

Each limit exists, hence the original integral converges and has value:

= π.

A graph of the area defined by this integral is given in Figure 6.8.5.

Notes:
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Figure 6.8.6: A graph of f(x) = ln x
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The previous secƟon introduced l’Hôpital’s Rule, a method of evaluaƟng lim-
its that return indeterminate forms. It is not uncommon for the limits resulƟng
from improper integrals to need this rule as demonstrated next.

Example 6.8.2 Improper integraƟon and l’Hôpital’s Rule
Evaluate the improper integral

∫ ∞

1

ln x
x2

dx.

SÊ½çã®ÊÄ This integral will require the use of IntegraƟon by Parts. Let
u = ln x and dv = 1/x2 dx. Then∫ ∞

1

ln x
x2

dx = lim
b→∞

∫ b

1

ln x
x2

dx

= lim
b→∞

(
− ln x

x

∣∣∣b
1
+

∫ b

1

1
x2

dx

)

= lim
b→∞

(
− ln x

x
− 1

x

)∣∣∣∣b
1

= lim
b→∞

(
− ln b

b
− 1

b
− (− ln 1− 1)

)
.

The 1/b and ln 1 terms go to 0, leaving lim
b→∞

− ln b
b

+ 1. We need to evaluate

lim
b→∞

ln b
b

with l’Hôpital’s Rule. We have:

lim
b→∞

ln b
b

by LHR
= lim

b→∞

1/b
1

= 0.

Thus the improper integral evaluates as:∫ ∞

1

ln x
x2

dx = 1.

Improper Integrals with Infinite Range

We have just considered definite integrals where the interval of integraƟon
was infinite. We now consider another type of improper integraƟon, where the
range of the integrand is infinite.

Notes:
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Note: In DefiniƟon 6.8.2, c can be one of
the endpoints (a or b). In that case, there
is only one limit to consider as part of the
definiƟon.
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Figure 6.8.7: A graph of f(x) = 1√
x in Ex-

ample 6.8.3.
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Figure 6.8.8: A graph of f(x) = 1
x2 in Ex-

ample 6.8.3.

6.8 Improper IntegraƟon

DefiniƟon 6.8.2 Improper IntegraƟon with Infinite Range

Let f(x) be a conƟnuous funcƟon on [a, b] except at c, a ≤ c ≤ b, where
x = c is a verƟcal asymptote of f. Define∫ b

a
f(x) dx = lim

t→c−

∫ t

a
f(x) dx+ lim

t→c+

∫ b

t
f(x) dx.

Example 6.8.3 Improper integraƟon of funcƟons with infinite range
Evaluate the following improper integrals:

1.
∫ 1

0

1√
x
dx 2.

∫ 1

−1

1
x2

dx.

SÊ½çã®ÊÄ

1. A graph of f(x) = 1/
√
x is given in Figure 6.8.7. NoƟce that f has a verƟcal

asymptote at x = 0; in some sense, we are trying to compute the area of
a region that has no “top.” Could this have a finite value?∫ 1

0

1√
x
dx = lim

a→0+

∫ 1

a

1√
x
dx

= lim
a→0+

2
√
x
∣∣∣1
a

= lim
a→0+

2
(√

1−
√
a
)

= 2.

It turns out that the region does have a finite area even though it has no
upper bound (strange things can occur in mathemaƟcs when considering
the infinite).

2. The funcƟon f(x) = 1/x2 has a verƟcal asymptote at x = 0, as shown
in Figure 6.8.8, so this integral is an improper integral. Let’s eschew using
limits for amoment and proceedwithout recognizing the improper nature
of the integral. This leads to:∫ 1

−1

1
x2

dx = −1
x

∣∣∣1
−1

= −1− (1)
= −2. (!)

Notes:
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Figure 6.8.9: Ploƫng funcƟons of the
form 1/x p in Example 6.8.4.
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Clearly the area in quesƟon is above the x-axis, yet the area is supposedly
negaƟve! Why does our answer not match our intuiƟon? To answer this,
evaluate the integral using DefiniƟon 6.8.2.∫ 1

−1

1
x2

dx = lim
t→0−

∫ t

−1

1
x2

dx+ lim
t→0+

∫ 1

t

1
x2

dx

= lim
t→0−

−1
x

∣∣∣t
−1

+ lim
t→0+

−1
x

∣∣∣1
t

= lim
t→0−

−1
t
− 1+ lim

t→0+
−1+

1
t

⇒
(
∞− 1

)
+
(
− 1+∞

)
.

Neither limit converges hence the original improper integral diverges. The
nonsensical answer we obtained by ignoring the improper nature of the
integral is just that: nonsensical.

Understanding Convergence and Divergence

OŌenƟmes we are interested in knowing simply whether or not an improper
integral converges, and not necessarily the value of a convergent integral. We
provide here several tools that help determine the convergence or divergence
of improper integrals without integraƟng.

Our first tool is to understand the behavior of funcƟons of the form
1
xp

.

Example 6.8.4 Improper integraƟon of 1/xp

Determine the values of p for which
∫ ∞

1

1
xp

dx converges.

SÊ½çã®ÊÄ We begin by integraƟng and then evaluaƟng the limit.∫ ∞

1

1
xp

dx = lim
b→∞

∫ b

1

1
xp

dx

= lim
b→∞

∫ b

1
x−p dx (assume p ̸= 1)

= lim
b→∞

1
−p+ 1

x−p+1
∣∣∣b
1

= lim
b→∞

1
1− p

(
b1−p − 11−p).

When does this limit converge – i.e., when is this limit not ∞? This limit con-
verges precisely when the power of b is less than 0: when 1− p < 0 ⇒ 1 < p.

Notes:
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Note: We used the upper and lower
bound of “1” in Key Idea 6.8.1 for conve-
nience. It can be replaced by any awhere
a > 0.

6.8 Improper IntegraƟon

Our analysis shows that if p > 1, then
∫ ∞

1

1
xp

dx converges. When p < 1

the improper integral diverges; we showed in Example 6.8.1 that when p = 1
the integral also diverges.

Figure 6.8.9 graphs y = 1/x with a dashed line, along with graphs of y =
1/xp, p < 1, and y = 1/xq, q > 1. Somehow the dashed line forms a dividing
line between convergence and divergence.

The result of Example 6.8.4 provides an important tool in determining the
convergence of other integrals. A similar result is proved in the exercises about

improper integrals of the form
∫ 1

0

1
xp

dx. These results are summarized in the

following Key Idea.

Key Idea 6.8.1 Convergence of Improper Integrals
∫ ∞

1

1
xp

dx and
∫ 1

0

1
xp

dx.

1. The improper integral
∫ ∞

1

1
xp

dx converges when p > 1 and diverges when p ≤ 1.

2. The improper integral
∫ 1

0

1
xp

dx converges when p < 1 and diverges when p ≥ 1.

A basic technique in determining convergence of improper integrals is to
compare an integrand whose convergence is unknown to an integrand whose
convergence is known. We oŌen use integrands of the form 1/xp to compare
to as their convergence on certain intervals is known. This is described in the
following theorem.

Theorem 6.8.1 Direct Comparison Test for Improper Integrals

Let f and g be conƟnuous on [a,∞) where 0 ≤ f(x) ≤ g(x) for all x in
[a,∞).

1. If
∫ ∞

a
g(x) dx converges, then

∫ ∞

a
f(x) dx converges.

2. If
∫ ∞

a
f(x) dx diverges, then

∫ ∞

a
g(x) dx diverges.

Notes:
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Figure 6.8.10: Graphs of f(x) = e−x2 and
f(x) = 1/x2 in Example 6.8.5.
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Example 6.8.5 Determining convergence of improper integrals
Determine the convergence of the following improper integrals.

1.
∫ ∞

1
e−x2 dx 2.

∫ ∞

3

1√
x2 − x

dx

SÊ½çã®ÊÄ

1. The funcƟon f(x) = e−x2 does not have an anƟderivaƟve expressible in
terms of elementary funcƟons, so we cannot integrate directly. It is com-
parable to g(x) = 1/x2, and as demonstrated in Figure 6.8.10, e−x2 <

1/x2 on [1,∞). We know from Key Idea 6.8.1 that
∫ ∞

1

1
x2

dx converges,

hence
∫ ∞

1
e−x2 dx also converges.

2. Note that for large values of x,
1√

x2 − x
≈ 1√

x2
=

1
x
. We know from Key

Idea 6.8.1 and the subsequent note that
∫ ∞

3

1
x
dx diverges, so we seek

to compare the original integrand to 1/x.

It is easy to see that when x > 0, we have x =
√
x2 >

√
x2 − x. Taking

reciprocals reverses the inequality, giving

1
x
<

1√
x2 − x

.

Using Theorem6.8.1, we conclude that since
∫ ∞

3

1
x
dxdiverges,

∫ ∞

3

1√
x2 − x

dx

diverges as well. Figure 6.8.11 illustrates this.

Being able to compare “unknown” integrals to “known” integrals is very use-
ful in determining convergence. However, some of our examples were a liƩle
“too nice.” For instance, it was convenient that

1
x
<

1√
x2 − x

, but what if the

“−x” were replaced with a “+2x+ 5”? That is, what can we say about the con-

vergence of
∫ ∞

3

1√
x2 + 2x+ 5

dx? We have
1
x
>

1√
x2 + 2x+ 5

, so we cannot

use Theorem 6.8.1.
In cases like this (and many more) it is useful to employ the following theo-

rem.

Notes:
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Figure 6.8.12: Graphing f(x) = 1√
x2+2x+5

and f(x) = 1
x in Example 6.8.6.

6.8 Improper IntegraƟon

Theorem 6.8.2 Limit Comparison Test for Improper Integrals

Let f and g be conƟnuous funcƟons on [a,∞)where f(x) > 0 and g(x) >
0 for all x. If

lim
x→∞

f(x)
g(x)

= L, 0 < L < ∞,

then ∫ ∞

a
f(x) dx and

∫ ∞

a
g(x) dx

either both converge or both diverge.

Example 6.8.6 Determining convergence of improper integrals
Determine the convergence of

∫ ∞

3

1√
x2 + 2x+ 5

dx.

SÊ½çã®ÊÄ As x gets large, the denominator of the integrand will begin
to behave much like y = x. So we compare 1√

x2 + 2x+ 5
to 1

x
with the Limit

Comparison Test:

lim
x→∞

1/
√
x2 + 2x+ 5
1/x

= lim
x→∞

x√
x2 + 2x+ 5

.

The immediate evaluaƟonof this limit returns∞/∞, an indeterminate form.
Using l’Hôpital’s Rule seems appropriate, but in this situaƟon, it does not lead
to useful results. (We encourage the reader to employ l’Hôpital’s Rule at least
once to verify this.)

The trouble is the square root funcƟon. To get rid of it, we employ the fol-
lowing fact: If lim

x→c
f(x) = L, then lim

x→c
f(x)2 = L2. (This is true when either c or L

is∞.) So we consider now the limit

lim
x→∞

x2

x2 + 2x+ 5
.

This converges to 1, meaning the original limit also converged to 1. As x gets
very large, the funcƟon 1√

x2 + 2x+ 5
looks verymuch like 1

x
. Sincewe know that∫ ∞

3

1
x
dxdiverges, by the Limit Comparison Testwe know that

∫ ∞

3

1√
x2 + 2x+ 5

dx

also diverges. Figure 6.8.12 graphs f(x) = 1/
√
x2 + 2x+ 5 and f(x) = 1/x, il-

lustraƟng that as x gets large, the funcƟons become indisƟnguishable.
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Both the Direct and Limit Comparison Tests were given in terms of integrals
over an infinite interval. There are versions that apply to improper integrals with
an infinite range, but as they are a bit wordy and a liƩle more difficult to employ,
they are omiƩed from this text.

This chapter has explored many integraƟon techniques. We learned SubsƟ-
tuƟon, which “undoes” the Chain Rule of differenƟaƟon, as well as IntegraƟon
by Parts, which “undoes” the Product Rule. We learned specialized techniques
for handling trigonometric funcƟons and introduced the hyperbolic funcƟons,
which are closely related to the trigonometric funcƟons. All techniques effec-
Ɵvely have this goal in common: rewrite the integrand in a new way so that the
integraƟon step is easier to see and implement.

As stated before, integraƟon is, in general, hard. It is easy to write a funcƟon
whose anƟderivaƟve is impossible to write in terms of elementary funcƟons,
and evenwhen a funcƟon does have an anƟderivaƟve expressible by elementary
funcƟons, it may be really hard to discover what it is. The powerful computer
algebra systemMathemaƟca® has approximately 1,000 pages of code dedicated
to integraƟon.

Do not let this difficulty discourage you. There is great value in learning in-
tegraƟon techniques, as they allow one to manipulate an integral in ways that
can illuminate a concept for greater understanding. There is also great value
in understanding the need for good numerical techniques: the Trapezoidal and
Simpson’s Rules are just the beginning of powerful techniques for approximat-
ing the value of integraƟon.

The next chapter stresses the uses of integraƟon. We generally do not find
anƟderivaƟves for anƟderivaƟve’s sake, but rather because they provide the so-
luƟon to some typeof problem. The following chapter introduces us to a number
of different problems whose soluƟon is provided by integraƟon.

Notes:
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Exercises 6.8
Terms and Concepts
1. The definite integral was defined with what two sƟpula-

Ɵons?

2. If lim
b→∞

∫ b

0
f(x) dx exists, then the integral

∫ ∞

0
f(x) dx is

said to .

3. If
∫ ∞

1
f(x) dx = 10, and 0 ≤ g(x) ≤ f(x) for all x, then we

know that
∫ ∞

1
g(x) dx .

4. For what values of p will
∫ ∞

1

1
xp

dx converge?

5. For what values of p will
∫ ∞

10

1
xp

dx converge?

6. For what values of p will
∫ 1

0

1
xp

dx converge?

Problems
In Exercises 7 – 34, evaluate the given improper integral.

7.
∫ ∞

0
e5−2x dx

8.
∫ ∞

1

1
x3

dx

9.
∫ ∞

1
x−4 dx

10.
∫ ∞

−∞

1
x2 + 9

dx

11.
∫ 0

−∞
2x dx

12.
∫ 0

−∞

(
1
2

)x

dx

13.
∫ ∞

−∞

x
x2 + 1

dx

14.
∫ ∞

3

1
x2 − 4

dx

15.
∫ ∞

2

1
(x− 1)2

dx

16.
∫ 2

1

1
(x− 1)2

dx

17.
∫ ∞

2

1
x− 1

dx

18.
∫ 2

1

1
x− 1

dx

19.
∫ 1

−1

1
x
dx

20.
∫ 3

1

1
x− 2

dx

21.
∫ π

0
sec2 x dx

22.
∫ 1

−2

1√
|x|

dx

23.
∫ ∞

0
xe−x dx

24.
∫ ∞

0
xe−x2 dx

25.
∫ ∞

−∞
xe−x2 dx

26.
∫ ∞

−∞

1
ex + e−x dx

27.
∫ 1

0
x ln x dx

28.
∫ 1

0
x2 ln x dx

29.
∫ ∞

1

ln x
x

dx

30.
∫ 1

0
ln x dx

31.
∫ ∞

1

ln x
x2

dx

32.
∫ ∞

1

ln x√
x
dx

33.
∫ ∞

0
e−x sin x dx

34.
∫ ∞

0
e−x cos x dx
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In Exercises 35 – 44, use the Direct Comparison Test or the
Limit Comparison Test to determine whether the given def-
inite integral converges or diverges. Clearly state what test
is being used and what funcƟon the integrand is being com-
pared to.

35.
∫ ∞

10

3√
3x2 + 2x− 5

dx

36.
∫ ∞

2

4√
7x3 − x

dx

37.
∫ ∞

0

√
x+ 3√

x3 − x2 + x+ 1
dx

38.
∫ ∞

1
e−x ln x dx

39.
∫ ∞

5
e−x2+3x+1 dx

40.
∫ ∞

0

√
x

ex
dx

41.
∫ ∞

2

1
x2 + sin x

dx

42.
∫ ∞

0

x
x2 + cos x

dx

43.
∫ ∞

0

1
x+ ex

dx

44.
∫ ∞

0

1
ex − x

dx
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