
Note: Mass and weight are closely re-
lated, yet different, concepts. The mass
m of an object is a quanƟtaƟve measure
of that object’s resistance to acceleraƟon.
The weight w of an object is a measure-
ment of the force applied to the object by
the acceleraƟon of gravity g.
Since the two measurements are pro-

porƟonal, w = m · g, they are oŌen
used interchangeably in everyday conver-
saƟon. When compuƟng work, one must
be careful to note which is being referred
to. When mass is given, it must be mulƟ-
plied by the acceleraƟon of gravity to ref-
erence the related force.

7.5 Work

7.5 Work
Work is the scienƟfic term used to describe the acƟon of a force which moves
an object. When a constant force F is applied to move an object a distance d,
the amount of work performed isW = F · d.

The SI unit of force is the Newton, (kg·m/s2), and the SI unit of distance is
a meter (m). The fundamental unit of work is one Newton–meter, or a joule
(J). That is, applying a force of one Newton for one meter performs one joule
of work. In Imperial units (as used in the United States), force is measured in
pounds (lb) and distance is measured in feet (Ō), hence work is measured in
Ō–lb.

When force is constant, the measurement of work is straighƞorward. For
instance, liŌing a 200 lb object 5 Ō performs 200 · 5 = 1000 Ō–lb of work.

What if the force applied is variable? For instance, imagine a climber pulling
a 200 Ō rope up a verƟcal face. The rope becomes lighter as more is pulled in,
requiring less force and hence the climber performs less work.

In general, let F(x) be a force funcƟon on an interval [a, b]. We want to mea-
sure the amount of work done applying the force F from x = a to x = b. We can
approximate the amount of work being done by parƟƟoning [a, b] into subinter-
vals a = x1 < x2 < · · · < xn+1 = b and assuming that F is constant on each
subinterval. Let ci be a value in the i th subinterval [xi, xi+1]. Then the work done
on this interval is approximatelyWi ≈ F(ci) · (xi+1 − xi) = F(ci)∆xi, a constant
force× the distance over which it is applied. The total work is

W =

n∑
i=1

Wi ≈
n∑

i=1
F(ci)∆xi.

This, of course, is a Riemann sum. Taking a limit as the subinterval lengths go
to zero gives an exact value of work which can be evaluated through a definite
integral.

Key Idea 7.5.1 Work

Let F(x) be a conƟnuous funcƟon on [a, b] describing the amount of force
being applied to an object in the direcƟon of travel from distance x = a
to distance x = b. The total workW done on [a, b] is

W =

∫ b

a
F(x) dx.

Notes:
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Example 7.5.1 CompuƟng work performed: applying variable force
A 60m climbing rope is hanging over the side of a tall cliff. How much work
is performed in pulling the rope up to the top, where the rope has a mass of
66g/m?

SÊ½çã®ÊÄ Weneed to create a force funcƟon F(x)on the interval [0, 60].
To do so, we must first decide what x is measuring: it is the length of the rope
sƟll hanging or is it the amount of rope pulled in? As long as we are consistent,
either approach is fine. We adopt for this example the convenƟon that x is the
amount of rope pulled in. This seems to match intuiƟon beƩer; pulling up the
first 10 meters of rope involves x = 0 to x = 10 instead of x = 60 to x = 50.

As x is the amount of rope pulled in, the amount of rope sƟll hanging is 60−x.
This length of rope has a mass of 66 g/m, or 0.066 kg/m. The mass of the rope
sƟll hanging is 0.066(60 − x) kg; mulƟplying this mass by the acceleraƟon of
gravity, 9.8 m/s2, gives our variable force funcƟon

F(x) = (9.8)(0.066)(60− x) = 0.6468(60− x).

Thus the total work performed in pulling up the rope is

W =

∫ 60

0
0.6468(60− x) dx = 1, 164.24 J.

By comparison, consider the work done in liŌing the enƟre rope 60 meters.
The ropeweighs 60×0.066×9.8 = 38.808N, so thework applying this force for
60 meters is 60×38.808 = 2, 328.48 J. This is exactly twice the work calculated
before (and we leave it to the reader to understand why.)

Example 7.5.2 CompuƟng work performed: applying variable force
Consider again pulling a 60 m rope up a cliff face, where the rope has a mass of
66 g/m. At what point is exactly half the work performed?

SÊ½çã®ÊÄ From Example 7.5.1 we know the total work performed is
1, 164.24 J. We want to find a height h such that the work in pulling the rope
from a height of x = 0 to a height of x = h is 582.12, half the total work. Thus
we want to solve the equaƟon∫ h

0
0.6468(60− x) dx = 582.12

for h.

Notes:
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Note: In Example 7.5.2, we find that half
of the work performed in pulling up a 60
m rope is done in the last 42.43m. Why is
it not coincidental that 60/

√
2 = 42.43?

7.5 Work

∫ h

0
0.6468(60− x) dx = 582.12

(
38.808x− 0.3234x2

) ∣∣∣h
0
= 582.12

38.808h− 0.3234h2 = 582.12
−0.3234h2 + 38.808h− 582.12 = 0.

Apply the QuadraƟc Formula:

h = 17.57 and 102.43

As the rope is only 60m long, the only sensible answer is h = 17.57. Thus about
half the work is done pulling up the first 17.5m the other half of the work is done
pulling up the remaining 42.43m.

Example 7.5.3 CompuƟng work performed: applying variable force
A box of 100 lb of sand is being pulled up at a uniform rate a distance of 50 Ō
over 1 minute. The sand is leaking from the box at a rate of 1 lb/s. The box itself
weighs 5 lb and is pulled by a rope weighing .2 lb/Ō.

1. How much work is done liŌing just the rope?

2. How much work is done liŌing just the box and sand?

3. What is the total amount of work performed?

SÊ½çã®ÊÄ

1. We start by forming the force funcƟon Fr(x) for the rope (where the sub-
script denotes we are considering the rope). As in the previous example,
let x denote the amount of rope, in feet, pulled in. (This is the same as
saying x denotes the height of the box.) The weight of the rope with x
feet pulled in is Fr(x) = 0.2(50 − x) = 10 − 0.2x. (Note that we do not
have to include the acceleraƟon of gravity here, for theweight of the rope
per foot is given, not its mass per meter as before.) The work performed
liŌing the rope is

Wr =

∫ 50

0
(10− 0.2x) dx = 250 Ō–lb.

Notes:
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2. The sand is leaving the box at a rate of 1 lb/s. As the verƟcal trip is to take
oneminute, we know that 60 lbwill have leŌwhen the box reaches its final
height of 50 Ō. Again leƫng x represent the height of the box, we have
two points on the line that describes the weight of the sand: when x = 0,
the sand weight is 100 lb, producing the point (0, 100); when x = 50, the
sand in the box weighs 40 lb, producing the point (50, 40). The slope of
this line is 100−40

0−50 = −1.2, giving the equaƟon of the weight of the sand
at height x as w(x) = −1.2x+ 100. The box itself weighs a constant 5 lb,
so the total force funcƟon is Fb(x) = −1.2x+105. IntegraƟng from x = 0
to x = 50 gives the work performed in liŌing box and sand:

Wb =

∫ 50

0
(−1.2x+ 105) dx = 3750 Ō–lb.

3. The total work is the sum of Wr and Wb: 250 + 3750 = 4000 Ō–lb. We
can also arrive at this via integraƟon:

W =

∫ 50

0
(Fr(x) + Fb(x)) dx

=

∫ 50

0
(10− 0.2x− 1.2x+ 105) dx

=

∫ 50

0
(−1.4x+ 115) dx

= 4000 Ō–lb.

Hooke’s Law and Springs

Hooke’s Law states that the force required to compress or stretch a spring x
units from its natural length is proporƟonal to x; that is, this force is F(x) = kx
for some constant k. For example, if a force of 1 N stretches a given spring
2 cm, then a force of 5 N will stretch the spring 10 cm. ConverƟng the dis-
tances to meters, we have that stretching this spring 0.02 m requires a force
of F(0.02) = k(0.02) = 1 N, hence k = 1/0.02 = 50 N/m.

Example 7.5.4 CompuƟng work performed: stretching a spring
A force of 20 lb stretches a spring from a natural length of 7 inches to a length
of 12 inches. How much work was performed in stretching the spring to this
length?

SÊ½çã®ÊÄ In many ways, we are not at all concerned with the actual
length of the spring, only with the amount of its change. Hence, we do not care

Notes:
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Fluid lb/Ō3 kg/m3

Concrete 150 2400
Fuel Oil 55.46 890.13
Gasoline 45.93 737.22
Iodine 307 4927

Methanol 49.3 791.3
Mercury 844 13546
Milk 63.6–65.4 1020 – 1050
Water 62.4 1000

Figure 7.5.2: Weight and Mass densiƟes

7.5 Work

that 20 lb of force stretches the spring to a length of 12 inches, but rather that
a force of 20 lb stretches the spring by 5 in. This is illustrated in Figure 7.5.1;
we only measure the change in the spring’s length, not the overall length of the
spring.
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Figure 7.5.1: IllustraƟng the important aspects of stretching a spring in compuƟng work
in Example 7.5.4.

ConverƟng the units of length to feet, we have

F(5/12) = 5/12k = 20 lb.

Thus k = 48 lb/Ō and F(x) = 48x.
We compute the total work performed by integraƟng F(x) from x = 0 to

x = 5/12:

W =

∫ 5/12

0
48x dx

= 24x2
∣∣∣5/12
0

= 25/6 ≈ 4.1667 Ō–lb.

Pumping Fluids

Another useful example of the applicaƟon of integraƟon to compute work
comes in the pumping of fluids, oŌen illustrated in the context of emptying a
storage tank by pumping the fluid out the top. This situaƟon is different than
our previous examples for the forces involved are constant. AŌer all, the force
required to move one cubic foot of water (about 62.4 lb) is the same regardless
of its locaƟon in the tank. What is variable is the distance that cubic foot of
water has to travel; water closer to the top travels less distance than water at
the boƩom, producing less work.

We demonstrate how to compute the total work done in pumping a fluid out
of the top of a tank in the next two examples.

Notes:
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empty it in Example 7.5.5.
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Example 7.5.5 CompuƟng work performed: pumping fluids
A cylindrical storage tank with a radius of 10 Ō and a height of 30 Ō is filled with
water, which weighs approximately 62.4 lb/Ō3. Compute the amount of work
performed by pumping the water up to a point 5 feet above the top of the tank.

SÊ½çã®ÊÄ Wewill refer oŌen to Figure 7.5.3which illustrates the salient
aspects of this problem.

We start aswe oŌen do: we parƟƟon an interval into subintervals. We orient
our tank verƟcally since this makes intuiƟve sense with the base of the tank at
y = 0. Hence the top of the water is at y = 30, meaning we are interested in
subdividing the y-interval [0, 30] into n subintervals as

0 = y1 < y2 < · · · < yn+1 = 30.

Consider the workWi of pumping only the water residing in the i th subinterval,
illustrated in Figure 7.5.3. The force required to move this water is equal to its
weight which we calculate as volume × density. The volume of water in this
subinterval is Vi = 102π∆yi; its density is 62.4 lb/Ō3. Thus the required force is
6240π∆yi lb.

We approximate the distance the force is applied by using any y-value con-
tained in the i th subinterval; for simplicity, we arbitrarily use yi for now (it will
not maƩer later on). The water will be pumped to a point 5 feet above the top
of the tank, that is, to the height of y = 35 Ō. Thus the distance the water at
height yi travels is 35− yi Ō.

In all, the approximate work Wi peformed in moving the water in the i th
subinterval to a point 5 feet above the tank is

Wi ≈ 6240π∆yi(35− yi).

To approximate the total work performed in pumping out all the water from the
tank, we sum all the workWi performed in pumping the water from each of the
n subintervals of [0, 30]:

W ≈
n∑

i=1
Wi =

n∑
i=1

6240π∆yi(35− yi).

This is a Riemann sum. Taking the limit as the subinterval length goes to 0 gives

W =

∫ 30

0
6240π(35− y) dy

= 6240π
(
35y− 1/2y2

) ∣∣∣30
0

= 11, 762, 123 Ō–lb
≈ 1.176× 107 Ō–lb.

Notes:
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Figure 7.5.5: A graph of the conical water
tank in Example 7.5.6.

7.5 Work

We can “streamline” the above process a bit as we may now recognize what
the important features of the problem are. Figure 7.5.4 shows the tank from
Example 7.5.5 without the i th subinterval idenƟfied. Instead, we just draw one
differenƟal element. This helps establish the height a small amount of water
must travel along with the force required to move it (where the force is volume
× density).

We demonstrate the concepts again in the next examples.

Example 7.5.6 CompuƟng work performed: pumping fluids
A conicalwater tank has its top at ground level and its base 10 feet belowground.
The radius of the cone at ground level is 2 Ō. It is filled with water weighing 62.4
lb/Ō3 and is to be empƟed by pumping thewater to a spigot 3 feet above ground
level. Find the total amount of work performed in emptying the tank.

SÊ½çã®ÊÄ The conical tank is sketched in Figure 7.5.5. We can orient
the tank in a variety of ways; we could let y = 0 represent the base of the tank
and y = 10 represent the top of the tank, but we choose to keep the convenƟon
of the wording given in the problem and let y = 0 represent ground level and
hence y = −10 represents the boƩom of the tank. The actual “height” of the
water does not maƩer; rather, we are concerned with the distance the water
travels.

The figure also sketches a differenƟal element, a cross–secƟonal circle. The
radius of this circle is variable, depending on y. When y = −10, the circle has
radius 0; when y = 0, the circle has radius 2. These two points, (−10, 0) and
(0, 2), allow us to find the equaƟon of the line that gives the radius of the cross–
secƟonal circle, which is r(y) = 1/5y + 2. Hence the volume of water at this
height is V(y) = π(1/5y + 2)2dy, where dy represents a very small height of
the differenƟal element. The force required to move the water at height y is
F(y) = 62.4× V(y).

The distance the water at height y travels is given by h(y) = 3− y. Thus the
total work done in pumping the water from the tank is

W =

∫ 0

−10
62.4π(1/5y+ 2)2(3− y) dy

= 62.4π
∫ 0

−10

(
− 1
25

y3 − 17
25

y2 − 8
5
y+ 12

)
dy

= 62.2π · 220
3

≈ 14, 376 Ō–lb.

Notes:
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Example 7.5.7 CompuƟng work performed: pumping fluids
A rectangular swimming pool is 20 Ō wide and has a 3 Ō “shallow end” and a 6 Ō
“deep end.” It is to have its water pumped out to a point 2 Ō above the current
top of the water. The cross–secƟonal dimensions of the water in the pool are
given in Figure 7.5.6; note that the dimensions are for the water, not the pool
itself. Compute the amount of work performed in draining the pool.

SÊ½çã®ÊÄ For the purposes of this problem we choose to set y = 0
to represent the boƩom of the pool, meaning the top of the water is at y = 6.
Figure 7.5.7 shows the pool oriented with this y-axis, along with 2 differenƟal
elements as the pool must be split into two different regions.

The top region lies in the y-interval of [3, 6], where the length of the differen-
Ɵal element is 25 Ō as shown. As the pool is 20 Ō wide, this differenƟal element
represents a thin slice of water with volume V(y) = 20 · 25 · dy. The water is
to be pumped to a height of y = 8, so the height funcƟon is h(y) = 8 − y. The
work done in pumping this top region of water is

Wt = 62.4
∫ 6

3
500(8− y) dy = 327, 600 Ō–lb.

The boƩom region lies in the y-interval of [0, 3]; we need to compute the
length of the differenƟal element in this interval.

One end of the differenƟal element is at x = 0 and the other is along the line
segment joining the points (10, 0) and (15, 3). The equaƟon of this line is y =
3/5(x−10); as we will be integraƟng with respect to y, we rewrite this equaƟon
as x = 5/3y + 10. So the length of the differenƟal element is a difference of
x-values: x = 0 and x = 5/3y+ 10, giving a length of x = 5/3y+ 10.

Again, as the pool is 20 Ō wide, this differenƟal element represents a thin
slice of water with volume V(y) = 20 · (5/3y + 10) · dy; the height funcƟon is
the same as before at h(y) = 8− y. The work performed in emptying this part
of the pool is

Wb = 62.4
∫ 3

0
20(5/3y+ 10)(8− y) dy = 299, 520 Ō–lb.

The total work in empyƟng the pool is

W = Wb +Wt = 327, 600+ 299, 520 = 627, 120 Ō–lb.

NoƟce how the emptying of the boƩom of the pool performs almost as much
work as emptying the top. The top porƟon travels a shorter distance but has
more water. In the end, this extra water produces more work.

The next secƟon introduces one final applicaƟon of the definite integral, the
calculaƟon of fluid force on a plate.

Notes:
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Exercises 7.5
Terms and Concepts

1. What are the typical units of work?

2. If a man has a mass of 80 kg on Earth, will his mass on the
moon be bigger, smaller, or the same?

3. If a woman weighs 130 lb on Earth, will her weight on the
moon be bigger, smaller, or the same?

4. Fill in the blanks:
Some integrals in this secƟon are set up by mulƟplying a
variable by a constant distance; others are set
up by mulƟplying a constant force by a variable .

Problems

5. A 100 Ō rope, weighing 0.1 lb/Ō, hangs over the edge of a
tall building.

(a) Howmuchwork is done pulling the enƟre rope to the
top of the building?

(b) How much rope is pulled in when half of the total
work is done?

6. A 50 m rope, with a mass density of 0.2 kg/m, hangs over
the edge of a tall building.

(a) Howmuchwork is done pulling the enƟre rope to the
top of the building?

(b) How much work is done pulling in the first 20 m?

7. A rope of length ℓ Ō hangs over the edge of tall cliff. (As-
sume the cliff is taller than the length of the rope.) The
rope has a weight density of d lb/Ō.

(a) Howmuchwork is done pulling the enƟre rope to the
top of the cliff?

(b) What percentage of the total work is done pulling in
the first half of the rope?

(c) How much rope is pulled in when half of the total
work is done?

8. A 20 m rope with mass density of 0.5 kg/m hangs over the
edge of a 10 m building. How much work is done pulling
the rope to the top?

9. A crane liŌs a 2,000 lb load verƟcally 30 Ō with a 1” cable
weighing 1.68 lb/Ō.

(a) How much work is done liŌing the cable alone?

(b) How much work is done liŌing the load alone?

(c) Could one conclude that the work done liŌing the ca-
ble is negligible compared to thework done liŌing the
load?

10. A 100 lb bag of sand is liŌed uniformly 120 Ō in oneminute.
Sand leaks from the bag at a rate of 1/4 lb/s. What is the
total work done in liŌing the bag?

11. A boxweighing 2 lb liŌs 10 lb of sand verƟcally 50 Ō. A crack
in the box allows the sand to leak out such that 9 lb of sand
is in the box at the end of the trip. Assume the sand leaked
out at a uniform rate. What is the total work done in liŌing
the box and sand?

12. A force of 1000 lb compresses a spring 3 in. Howmuchwork
is performed in compressing the spring?

13. A force of 2 N stretches a spring 5 cm. How much work is
performed in stretching the spring?

14. A force of 50 lb compresses a spring froma natural length of
18 in to 12 in. Howmuchwork is performed in compressing
the spring?

15. A force of 20 lb stretches a spring from a natural length of
6 in to 8 in. How much work is performed in stretching the
spring?

16. A force of 7 N stretches a spring from a natural length of 11
cm to 21 cm. How much work is performed in stretching
the spring from a length of 16 cm to 21 cm?

17. A force of f N stretches a spring dm from its natural length.
How much work is performed in stretching the spring?

18. A 20 lb weight is aƩached to a spring. The weight rests on
the spring, compressing the spring from a natural length of
1 Ō to 6 in.
How much work is done in liŌing the box 1.5 Ō (i.e, the
spring will be stretched 1 Ō beyond its natural length)?

19. A 20 lb weight is aƩached to a spring. The weight rests on
the spring, compressing the spring from a natural length of
1 Ō to 6 in.
How much work is done in liŌing the box 6 in (i.e, bringing
the spring back to its natural length)?

20. A 5 m tall cylindrical tank with radius of 2 m is filled with 3
m of gasoline, with a mass density of 737.22 kg/m3. Com-
pute the total work performed in pumping all the gasoline
to the top of the tank.

21. A 6 Ō cylindrical tank with a radius of 3 Ō is filled with wa-
ter, which has a weight density of 62.4 lb/Ō3. The water is
to be pumped to a point 2 Ō above the top of the tank.

(a) How much work is performed in pumping all the wa-
ter from the tank?

(b) How much work is performed in pumping 3 Ō of wa-
ter from the tank?

(c) At what point is 1/2 of the total work done?
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22. A gasoline tanker is filled with gasoline with a weight den-
sity of 45.93 lb/Ō3. The dispensing valve at the base is
jammed shut, forcing the operator to empty the tank via
pumping the gas to a point 1 Ō above the top of the tank.
Assume the tank is a perfect cylinder, 20 Ō long with a di-
ameter of 7.5 Ō. How much work is performed in pumping
all the gasoline from the tank?

23. A fuel oil storage tank is 10 Ō deep with trapezoidal sides,
5 Ō at the top and 2 Ō at the boƩom, and is 15 Ō wide (see
diagram below). Given that fuel oil weighs 55.46 lb/Ō3, find
the work performed in pumping all the oil from the tank to
a point 3 Ō above the top of the tank.

10

2

15

5

24. A conical water tank is 5 m deep with a top radius of 3 m.
(This is similar to Example 7.5.6.) The tank is filledwith pure
water, with a mass density of 1000 kg/m3.

(a) Find the work performed in pumping all the water to
the top of the tank.

(b) Find the work performed in pumping the top 2.5 m
of water to the top of the tank.

(c) Find the work performed in pumping the top half of
the water, by volume, to the top of the tank.

25. A water tank has the shape of a truncated cone, with di-
mensions given below, and is filledwithwaterwith aweight
density of 62.4 lb/Ō3. Find the work performed in pumping
all water to a point 1 Ō above the top of the tank.

2 Ō

5 Ō
10 Ō

26. A water tank has the shape of an inverted pyramid, with di-
mensions given below, and is filled with water with a mass
density of 1000 kg/m3. Find the work performed in pump-
ing all water to a point 5 m above the top of the tank.

2 m

2 m

7 m

27. A water tank has the shape of an truncated, inverted pyra-
mid, with dimensions given below, and is filled with wa-
ter with a mass density of 1000 kg/m3. Find the work per-
formed in pumping all water to a point 1 m above the top
of the tank.

5 m

5 m

2 m

2 m

9 m
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