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Homework 2 solutions

1. Find the general solution of the separable equation

3G − 1
H2 − 6H + 13

3H = 0.

Solution. We can rewrite the separable equation as

1
H2 − 6H + 13

3H = 3G.

We can complete the square to rewrite the polynomial as

H2 − 6H + 13 = (H2 − 6H + 9) + 4

= (H − 3)2 + 22,

which allows us to obtain ∫
1

H2 − 6H + 13
3H =

∫
1

(H − 3)2 + 22 3H

=
1
2

tan−1
(
H − 3

2

)
+ 2,

where 2 is an arbitrary constant. Now, we can integrate both sides of the separable equation, writing∫
1

H2 − 6H + 13
3H =

∫
1 3G,

in order to obtain
1
2

tan−1
(
H − 3

2

)
= G + �,

or equivalently, the explicit general solution
H = 2 tan(2(G + �)) + 3 ,

where � is an arbitrary constant. �

2. Find the general solution of the separable equation

H′ =
G4G

2H
.

Solution. We can rewrite the separable equation as

2H 3H = G4G 3G.

We can employ the method of integration by parts to write∫
G4G 3G = G4G −

∫
4G 3G

= G4G − 4G + 2
= (G − 1)4G + �,

where 2 is an arbitrary constant. Now, we can integrate both sides of the separable equation, writing∫
2H 3H =

∫
G4G 3G,

in order to obtain
H2 = (G − 1)4G + �,

or equivalently the two solutions

H = ±
√
(G − 1)4G + � ,

where � is an arbitrary constant. �



3. Find the general solution of the homogeneous equation

H′ = tan
( H
G

)
+ H
G
.

Solution. We recall that a homogeneous equation can be transformed into a separable equation by making the substitutions

H = GE,

H′ = E + GE′.

Applying these substitutions, our homogeneous equation becomes

E + GE′ = tan(E) + E,

or equivalently the separable equation
1

tan(E) 3E =
1
G
3G.

We can employ the substitution rule to obtain ∫
1

tan(E) 3E =
∫

cos(E)
sin(E) 3E

= ln | sin(E) | + 2,

where 2 is an arbitrary constant. Now, we can integrate both sides of the separable equation, writing∫
1

tan(E) 3E =
∫

1
G
3G,

in order to obtain

ln( | sin(E) |) = ln( |G |) + ln( |� |)
= ln( |�G |),

from which we can exponentiate both sides to further obtain

sin(E) = �G,

or equivalently
E = sin−1 (�G),

which implies

H = GE

= G sin−1 (�G) ,

where � is an arbitrary constant. �

4. Solve the initial value problem

H′ = 4
H

G + H
G
,

H(1) = 2.

Solution. We recall that a homogeneous equation can be transformed into a separable equation by making the substitutions

H = GE,

H′ = E + GE′.

Applying these substitutions, our homogeneous equation becomes

E + GE′ = 4E + E,

or equivalently the separable equation

4−E 3E =
1
G
3G.

Now, we can integrate both sides of the separable equation, writing∫
4−E 3E =

∫
1
G
3G,



in order to obtain
−4−E = ln( |G |) + �,

where � is an arbitrary constant. Now, we can apply the initial condition H(1) = 2 to deduce � = −4−2, and so we can write

−4−E = ln( |G |) − 4−2,

or equivalently
E = − ln(4−2 − ln( |G |)),

which implies

H = GE

= −G ln(4−2 − ln( |G |)) ,

as desired. �

5. Determine whether the differential equation

(H2 cos(G) + 4H) 3G + (2H sin(G) + G4H) 3H = 0

is exact. If yes, solve it.

Solution. We recall that an equation in differential form

" (G, H) 3G + # (G, H) 3H = 0

is exact if we have
m"

mH
=
m#

mG
.

For this exercise, we have

" (G, H) = H2 cos(G) + 4H ,
# (G, H) = 2H sin(G) + G4H .

We obtain the partial derivatives are

m" (G, H)
mH

=
m

mH
(H2 cos(G) + 4H)

= 2H cos(G) + 4H

and

m# (G, H)
mG

=
m

mG
(2H sin(G) + G4H)

= 2H cos(G) + 4H .

We see that we have
m" (G, H)

mH
=
m# (G, H)
mG

.

meaning that the differential equation is exact. Now it remains to solve the equation. We will find a function q(G, H) that
satisfies

mq(G, H)
mG

= " (G, H),

mq(G, H)
mH

= # (G, H).

We can integrate with respect to G both sides of
mq(G, H)
mG

= " (G, H)

to obtain

q(G, H) =
∫

" (G, H) 3G

=

∫
H2 cos(G) + 4H 3G

= H2 sin(G) + G4H + ℎ(H).



Next, we can differentiate with respect to H our q(G, H) to obtain

mq(G, H)
mH

=
m

mH
(H2 sin(G) + G4H + ℎ(H))

= 2H sin(G) + G4H + ℎ′(H)
= # (G, H) + ℎ′(H).

But we assumed also
mq(G, H)
mH

= # (G, H).

So we deduce ℎ′(H) = 0, which implies ℎ(H) = 2, and so we obtain

q(G, H) = H2 sin(G) + G4H + 2,

where 2 is a constant. Next, we set
q(G, H) = 3,

where 3 is another constant. Then we can equate the two expressions of q(G, H) to deduce

H2 sin(G) + G4H + 2 = 3,

which is equivalent to

H2 sin(G) + G4H = � ,

where � = 3 − 2 is yet again a constant. This is an implicit expression of the general solution H. �

6. Determine whether the differential equation

(4C3H3 − 2CH) 3C + (3C4H2 − C2) 3H = 0

is exact. If yes, solve it.

Solution. We recall that an equation in differential form

" (C, H) 3C + # (C, H) 3H = 0

is exact if we have
m"

mH
=
m#

mC
.

For this exercise, we have

" (C, H) = 4C3H3 − 2CH,

# (C, H) = 3C4H2 − C2.

We obtain the partial derivatives are

m" (C, H)
mH

=
m

mH
(4C3H3 − 2CH)

= 12C3H2 − 2C

and

m# (C, H)
mC

=
m

mC
(3C4H2 − C2)

= 12C3H2 − 2C.

We see that we have
m" (C, H)
mH

=
m# (C, H)
mC

.

meaning that the differential equation is exact. Now it remains to solve the equation. We will find a function q(C, H) that
satisfies

mq(C, H)
mC

= " (C, H),

mq(C, H)
mH

= # (C, H).



We can integrate with respect to C both sides of
mq(C, H)
mC

= " (C, H)

to obtain

q(C, H) =
∫

" (C, H) 3C

=

∫
4C3H3 − 2CH 3C

= C4H3 − C2H + ℎ(H).

Next, we can differentiate with respect to H our q(C, H) to obtain

mq(C, H)
mH

=
m

mH
(C4H3 − C2H + ℎ(H))

= 3C4H2 − C2 + ℎ′(H)
= # (G, H) + ℎ′(H).

But we assumed also
mq(C, H)
mH

= # (G, H).

So we deduce ℎ′(H) = 0, which implies ℎ(H) = 2, and so we obtain

q(C, H) = C4H3 − C2H + 2,

where 2 is a constant. Next, we set
q(G, H) = 3,

where 3 is another constant. Then we can equate the two expressions of q(G, H) to deduce

C4H3 − C2H + 2 = 3,

which is equivalent to

C4H3 − C2H = � ,

where � = 3 − 2 is yet again a constant. This is an implicit expression of the general solution H. �


