Homework 6 solutions

1. Find the general solution of

$$y'' - 6y' + 10y = 0.$$

Solution. Let $y = e^{\lambda x}$, where λ is a number. Then we obtain the first and second derivatives

$$y' = \lambda e^{\lambda x},$$
$$y'' = \lambda^2 e^{\lambda x}.$$

So we have

$$0 = y'' - 6y' + 10y$$

= $\lambda^2 e^{\lambda x} - 6\lambda e^{\lambda x} + 10e^{\lambda x}$
= $e^{\lambda x} (\lambda^2 - 6\lambda + 10).$

Since we know $e^{\lambda x} \neq 0$, we must conclude $\lambda^2 - 6\lambda + 10 = 0$, which gives the imaginary roots $\lambda_1 = 3 - i$ and $\lambda_2 = 3 + i$. So the general solution is

$$y = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$$

= $C_1 e^{(3-i)x} + C_2 e^{(3+i)x}$
= $e^{3x} (C_1 e^{ix} + C_2 e^{-ix})$
= $e^{3x} (C_1 \cos(x) + C_2 \sin(x))$

where C_1, C_2 are constants.

2. Given that $y_1 = x^2$ is a solution of

$$x^2y'' + xy' - 4y = 0,$$

find the general solution using reduction of order.

Solution. Write $y = x^2 u$, where u = u(x). Then we obtain the first and second derivatives

$$y' = 2xu + x^2u',$$

 $y'' = 2u + 4xu' + x^2u''.$

So we obtain

$$0 = x^{2}y'' + xy' - 4y$$

= $x^{2}(2u + 4xu' + x^{2}u'') + x(2xu + x^{2}u') - 4x^{2}u$
= $2x^{2}u + 4x^{3}u' + x^{4}u'' + 2x^{2}u + x^{3}u' - 4x^{2}u$
= $x^{4}u'' + 5x^{3}u'$
= $x^{3}(xu'' + 5u')$,

which implies either x = 0 or xu'' + 5u' = 0. If we have x = 0, then $y = x^2u = 0^2u = 0$, which is a trivial solution. But we are interested only in a nontrivial solution, which means we should assume

$$xu^{\prime\prime} + 5u^{\prime} = 0.$$

Let w = u'. Then we obtain

$$xw' + 5w = 0$$

which is a separable first-order equation in w. We can rewrite the separable equation as

$$\frac{1}{w}\,dw = -\frac{5}{x}\,dx,$$

and we can integrate both sides of the separable equation, writing

$$\int \frac{1}{w} \, dw = \int -\frac{5}{x} \, dx,$$

in order to obtain

$$\ln(|w|) = -5\ln(|x|) + \ln(C_0),$$

or equivalently the solution

$$u' = w = \frac{C_0}{x^5}$$

where C_0 is an arbitrary constant. We can rewrite this separable equation as

$$du = \frac{C_0}{x^5} \, dx,$$

and we can integrate both sides of the separable equation, writing

$$\int 1 \, du = \int \frac{C_0}{x^5} \, dx$$

where C_0 is an arbitrary constant, in order to obtain

$$\frac{y}{x^2} = u = \frac{C_1}{x^4} + C_2,$$

or equivalently

$$y = x^2 \left(\frac{C_1}{x^4} + C_2 \right)$$
$$= \boxed{\frac{C_1}{x^2} + C_2 x^2},$$

where C_1, C_2 are arbitrary constants.

3. Find the solution of the initial value problem

$$y'' - 4y' + 5y = 0,$$

 $y(0) = 3,$
 $y'(0) = 1.$

Solution. Let $y = e^{\lambda x}$, where λ is a number. Then we obtain the first and second derivatives

$$y' = \lambda e^{\lambda x},$$
$$y'' = \lambda^2 e^{\lambda x}.$$

So we have

$$0 = y'' - 4y' + 5y$$

= $\lambda^2 e^{\lambda x} - 4\lambda e^{\lambda x} + 5e^{\lambda x}$
= $e^{\lambda x} (\lambda^2 - 4\lambda + 5).$

Since we know $e^{\lambda x} \neq 0$, we must conclude $\lambda^2 - 4\lambda + 5 = 0$, which gives the imaginary roots $\lambda_1 = 2 + i$ and $\lambda_2 = 2 - i$. So the general solution is

$$y = C_1 e^{A_1 x} + C_2 e^{A_2 x}$$

= $C_1 e^{(2+i)x} + C_2 e^{(2-i)x}$
= $e^{2x} (C_1 e^{ix} + C_2 e^{-ix})$
= $e^{2x} (C_1 \cos(x) + C_2 \sin(x)),$

where C_1, C_2 are constants. We also obtain the derivative

$$y' = 2e^{2x}(C_1\cos(x) + C_2\sin(x)) + e^{2x}(-C_1\sin(x) + C_2\cos(x))$$

= $e^{2x}((2C_1 + C_2)\cos(x) + (2C_2 - C_1)\sin(x)).$

Now, we can apply the initial condition y(0) = 3 and y'(0) = 1 to obtain the linear system of equations

$$3 = C_1,$$

 $1 = 2C_1 + C_2,$

from which we can solve simultaneously to deduce $C_1 = 3$ and $C_2 = -5$. Therefore,

$$y = e^{2x} (C_1 \cos(x) + C_2 \sin(x)))$$

= $e^{2x} (3\cos(x) - 5\sin(x)),$

is the solution to the initial value problem.

4. Find the solution of

$$y'' - 5y' + 6y = e^{3x}$$
.

Solution. First, we will find the homogeneous solution y_h , which solves

$$y_h'' - 5y_h' + 6y_h = 0$$

Let $y_h = e^{\lambda x}$, where λ is a number. Then we obtain the first and second derivatives

$$y'_{h} = \lambda e^{\lambda x},$$

$$y''_{h} = \lambda^{2} e^{\lambda x}.$$

So we have

$$0 = y''_h - 5y'_h + 6y_h$$

= $\lambda^2 e^{\lambda x} - 5\lambda e^{\lambda x} + 6e^{\lambda x}$
= $e^{\lambda x} (\lambda^2 - 5\lambda + 6)$
= $e^{\lambda x} (\lambda - 2) (\lambda - 3).$

Since we know $e^{\lambda x} \neq 0$, we must conclude $(\lambda - 2)(\lambda - 3) = 0$, which gives the distinct real roots $\lambda_1 = 2$ and $\lambda_2 = 3$. So the homogeneous solution is

$$y_h = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$$

= $C_1 e^{2x} + C_2 e^{3x}$,

where C_1, C_2 are constants. Now, we will find the particular solution y_p , which solves

$$y_p'' - 5y_p' + 6y_p = e^{3x},$$

using the method of undetermined coefficients. We cannot assume the form $y_p = Ae^{3x}$ because that would make y_p a linear combination of y_h . Instead, the particular solution takes the form $y_p = Axe^{3x}$, where A is a constant. We obtain the derivatives

$$y'_p = Ae^{3x}(3x+1),$$

 $y''_p = 3Ae^{3x}(3x+2).$

So we have

$$e^{3x} = y_p'' - 5y_p' + 6y_p$$

= $3Ae^{3x}(3x + 2) - 5(Ae^{3x}(3x + 1)) + 6Axe^{3x}$
= $9Axe^{3x} + 6Ae^{3x} - 15Axe^{3x} - 5Ae^{3x} + 6Axe^{3x}$
= Ae^{3x} ,

from which we deduce A = 1, and so our particular solution is

$$y_p = Axe^{3x}$$
$$= xe^{3x}.$$

Therefore,

$$y = y_h + y_p$$

= $C_1 e^{2x} + C_2 e^{3x} + x e^{3x}$

is the general solution to the problem.

5. Find the solution of

$$y'' + y' + 2y = x^2 + 4.$$

Solution. First, we will find the homogeneous solution y_h , which solves

$$y_h'' + y_h' + 2y_h = 0.$$

Let $y_h = e^{\lambda x}$, where λ is a number. Then we obtain the first and second derivatives

$$y'_{h} = \lambda e^{\lambda x},$$

$$y''_{h} = \lambda^{2} e^{\lambda x}$$

So we have

$$0 = y_h'' + y_h' + 2y_h$$

= $\lambda^2 e^{\lambda x} + \lambda e^{\lambda x} + 2e^{\lambda x}$
= $e^{\lambda x} (\lambda^2 + \lambda + 2).$

Since we know $e^{\lambda x} \neq 0$, we must conclude $\lambda^2 + \lambda + 2 = 0$, which gives the imaginary roots $\lambda_1 = -\frac{1}{2} + \frac{\sqrt{7}}{2}i$ and $\lambda_2 = -\frac{1}{2} - \frac{\sqrt{7}}{2}i$. So the homogeneous solution is

$$y_{h} = C_{1}e^{\lambda_{1}x} + C_{2}e^{\lambda_{2}x}$$

= $C_{1}e^{\left(-\frac{1}{2} + \frac{\sqrt{7}}{2}i\right)x} + C_{2}e^{\left(-\frac{1}{2} - \frac{\sqrt{7}}{2}i\right)x}$
= $e^{-\frac{1}{2}x}\left(C_{1}e^{\frac{\sqrt{7}}{2}ix} + C_{2}e^{-\frac{\sqrt{7}}{2}ix}\right)$
= $e^{-\frac{1}{2}x}\left(C_{1}\cos\left(\frac{\sqrt{7}}{2}x\right) + C_{2}\sin\left(\frac{\sqrt{7}}{2}x\right)\right)$

where C_1, C_2 are constants. Now, we will find the particular solution y_p , which solves

$$y_p'' + y_p' + 2y_p = x^2 + 4,$$

using the method of undetermined coefficients. The particular solution takes the form $y_p = Ax^2 + Bx + C$, where A, B, C are constants. We obtain the derivatives

$$y'_p = 2Ax + B,$$

$$y''_p = 2A.$$

So we have

$$\begin{aligned} x^{2} + 4 &= y_{p}'' + y_{p}' + 2y_{p} \\ &= 2A + (2Ax + B) + 2(Ax^{2} + Bx + C) \\ &= 2A + 2Ax + B + 2Ax^{2} + 2Bx + 2C \\ &= 2Ax^{2} + (2A + 2B)x + (2A + B + 2C), \end{aligned}$$

from which we can equate the coefficients to obtain a linear system of equations

$$2A = 1,$$
$$2A + 2B = 0,$$
$$2A + B + 2C = 4.$$

We can solve simultaneously this linear system to deduce $A = \frac{1}{2}$, $B = -\frac{1}{2}$, $C = \frac{7}{4}$. So our particular solution is

$$y_p = Ax^2 + Bx + C$$

= $\frac{1}{2}x^2 - \frac{1}{2}x + \frac{7}{4}$.

Therefore,

$$y = y_h + y_p$$

= $e^{-\frac{1}{2}x} \left(C_1 \cos\left(\frac{\sqrt{7}}{2}x\right) + C_2 \sin\left(\frac{\sqrt{7}}{2}x\right) \right) + \frac{1}{2}x^2 - \frac{1}{2}x + \frac{7}{4}$

is the general solution to the problem.

6. Find the solution of

$$y'' + y' = \sin(x)$$

Solution. First, we will find the homogeneous solution y_h , which solves

$$y_h^{\prime\prime} + y_h^{\prime} = 0.$$

Let $z = y'_h$. Then we obtain

z' + z = 0,

which is a separable first-order equation in z. We can rewrite the separable equation as

$$-\frac{1}{z}\,dz=dx,$$

and we can integrate both sides of the separable equation, writing

$$\int -\frac{1}{z} \, dz = \int 1 \, dx,$$

in order to obtain

 $y'_h = z = e^{-C_0} e^{-x},$

 $-\ln(|z|) = x + C_0$,

where C_0 is an arbitrary constant. We can rewrite this separable equation as

$$dy_h = e^{-C_0} e^{-x} \, dx,$$

and we can integrate both sides of the separable equation, writing

$$\int 1\,dy_h = \int e^{-C_0} e^{-x}\,dx,$$

in order to obtain the homogeneous solution

$$y_h = C_1 e^{-x} + C_2,$$

where C_1, C_2 are arbitrary constants. Now, we will find the particular solution y_p , which solves

$$y_p'' + y_p' = \sin(x),$$

using the method of undetermined coefficients. The particular solution takes the form $y_p = A\cos(x) + B\sin(x)$, where A, B are constants. We obtain the derivatives

$$y'_p = -A\sin(x) + B\cos(x),$$

$$y''_p = -A\cos(x) - B\sin(x).$$

So we have

$$sin(x) = y_p'' + y_p'$$

= (-A cos(x) - B sin(x)) + (-A sin(x) + B cos(x))
= (-A + B) cos(x) + (-A - B) sin(x),

from which we can equate the coefficients to obtain a linear system of equations

$$-A + B = 0,$$

$$-A - B = 1.$$

We can solve simultaneously this linear system to deduce $A = -\frac{1}{2}$ and $B = -\frac{1}{2}$. So our particular solution is

$$y_p = A\cos(x) + B\sin(x)$$

= $-\frac{1}{2}\cos(x) - \frac{1}{2}\sin(x)$.

Therefore,

$$y = y_h + y_p$$

= $C_1 e^{-x} + C_2 - \frac{1}{2} \cos(x) - \frac{1}{2} \sin(x)$,

is the general solution to the problem.