Homework 8 solutions

1. Find the general solution of

$$4x^2y'' + 4xy' - y = 0.$$

Solution. Let $y = x^{\lambda}$, where λ is a number. Then we obtain the first and second derivatives

$$y' = \lambda x^{\lambda - 1},$$

$$y'' = \lambda (\lambda - 1) x^{\lambda - 2}.$$

So we have

$$0 = 4x^2y'' + 4xy' - y$$

= $4x^2(\lambda(\lambda - 1)x^{\lambda - 2}) + 4x(\lambda x^{\lambda - 1}) - x^{\lambda}$
= $x^{\lambda}(4\lambda^2 - 4\lambda) + x^{\lambda}(4\lambda) - x^{\lambda}$
= $x^{\lambda}(4\lambda^2 - 1).$

If we assume $x^{\lambda} = 0$, then we would have $y = x^{\lambda} = 0$, meaning that the solution would be trivial. As we are interested in a nontrivial solution, we should assume $4\lambda^2 - 1 = 0$, which gives the distinct real roots $\lambda_1 = \frac{1}{2}$ and $\lambda_2 = -\frac{1}{2}$. So the general solution is

$$y = C_1 x^{\lambda_1} + C_2 x^{\lambda_2}$$
$$= C_1 x^{\frac{1}{2}} + C_2 x^{-\frac{1}{2}}$$
$$= C_1 \sqrt{x} + \frac{C_2}{\sqrt{x}}$$

where C_1, C_2 are constants.

2. Find the general solution of

$$x^2y'' - 3xy' + 4y = 0.$$

Solution. Let $y = x^{\lambda}$, where λ is a number. Then we obtain the first and second derivatives

$$y' = \lambda x^{\lambda - 1},$$

$$y'' = \lambda (\lambda - 1) x^{\lambda - 2}$$

So we have

$$0 = x^{2}y'' - 3xy' + 4y$$

= $x^{2}(\lambda(\lambda - 1)x^{\lambda - 2}) - 3x(\lambda x^{\lambda - 1}) + 4x^{\lambda}$
= $x^{\lambda}(\lambda^{2} - \lambda) - x^{\lambda}(3\lambda) + 4x^{\lambda}$
= $x^{\lambda}(\lambda^{2} - 4\lambda + 4)$
= $x^{\lambda}(\lambda - 2)^{2}$.

If we assume $x^{\lambda} = 0$, then we would have $y = x^{\lambda} = 0$, meaning that the solution would be trivial. As we are interested in a nontrivial solution, we should assume $(\lambda - 2)^2 = 0$, which gives the repeated roots $\lambda_1 = 2$. So the general solution is

$$y = C_1 x^{\lambda_1} + C_2 x^{\lambda_1} \ln(x)$$
$$= \boxed{C_1 x^2 + C_2 x^2 \ln(x)},$$

where C_1, C_2 are constants.

3. Find the general solution of

$$2x^2y'' + 11xy' + 4y = 0$$

Solution. Let $y = x^{\lambda}$, where λ is a number. Then we obtain the first and second derivatives

$$y' = \lambda x^{\lambda - 1},$$

$$y'' = \lambda (\lambda - 1) x^{\lambda - 2}.$$

So we have

$$0 = 2x^{2}y'' + 11xy' + 4y$$

= $2x^{2}(\lambda(\lambda - 1)x^{\lambda - 2}) + 11x(\lambda x^{\lambda - 1}) + 4x^{\lambda}$
= $x^{\lambda}(2\lambda^{2} - 2\lambda) + x^{\lambda}(11\lambda) + 4x^{\lambda}$
= $x^{\lambda}(2\lambda^{2} + 9\lambda + 4)$
= $x^{\lambda}(2x + 1)(x + 4).$

If we assume $x^{\lambda} = 0$, then we would have $y = x^{\lambda} = 0$, meaning that the solution would be trivial. As we are interested in a nontrivial solution, we should assume (2x + 1)(x + 4) = 0, which gives the distinct real roots $\lambda_1 = -\frac{1}{2}$ and $\lambda_2 = -4$. So the general solution is

$$y = C_1 x^{\lambda_1} + C_2 x^{\lambda_2}$$

= $C_1 x^{-\frac{1}{2}} + C_2 x^{-4}$
= $\boxed{\frac{C_1}{\sqrt{x}} + \frac{C_2}{x^4}},$

where C_1, C_2 are constants.

4. Find the general solution of

 $x^2y^{\prime\prime} - 2y = 0.$

Solution. Let $y = x^{\lambda}$, where λ is a number. Then we obtain the first and second derivatives

$$y' = \lambda x^{\lambda - 1},$$

$$y'' = \lambda (\lambda - 1) x^{\lambda - 2}.$$

So we have

$$0 = x^2 y'' - 2y$$

= $x^2 (\lambda (\lambda - 1) x^{\lambda - 2}) - 2x^{\lambda}$
= $x^{\lambda} (\lambda^2 - \lambda) - 2x^{\lambda}$
= $x^{\lambda} (\lambda^2 - \lambda - 2)$
= $x^{\lambda} (\lambda - 2) (\lambda + 1).$

If we assume $x^{\lambda} = 0$, then we would have $y = x^{\lambda} = 0$, meaning that the solution would be trivial. As we are interested in a nontrivial solution, we should assume $(\lambda - 2)(\lambda + 1) = 0$, which gives the distinct real roots $\lambda_1 = 2$ and $\lambda_2 = -1$. So the general solution is

$$y = C_1 x^{\lambda_1} + C_2 x^{\lambda_2}$$

= $C_1 x^2 + C_2 x^{-1}$
= $C_1 x^2 + \frac{C_2}{x}$,

where C_1, C_2 are constants.

5. Find the general solution of

Solution. Let $y = x^{\lambda}$, where λ is a number. Then we obtain the first and second derivatives

$$y' = \lambda x^{\lambda - 1},$$

$$y'' = \lambda (\lambda - 1) x^{\lambda - 2}$$

 $x^2 y^{\prime\prime} - 6x y^{\prime} = 0.$

So we have

$$0 = x^{2}y'' - 6xy'$$

= $x^{2}(\lambda(\lambda - 1)x^{\lambda - 2}) - 6x(\lambda x^{\lambda - 1})$
= $x^{\lambda}(\lambda^{2} - \lambda) - 6\lambda x^{\lambda}$
= $x^{\lambda}(\lambda^{2} - \lambda - 6\lambda)$
= $x^{\lambda}(\lambda^{2} - 7\lambda)$
= $x^{\lambda}\lambda(\lambda - 7).$

If we assume $x^{\lambda} = 0$, then we would have $y = x^{\lambda} = 0$, meaning that the solution would be trivial. As we are interested in a nontrivial solution, we should assume $\lambda(\lambda - 7) = 0$, which gives the distinct real roots roots $\lambda_1 = 7$ and $\lambda_2 = 0$. So the general solution is

$$y = C_1 x^{\lambda_1} + C_2 x^{\lambda_2}$$

= $C_1 x^7 + C_2 x^0$
= $C_1 x^7 + C_2$,

where C_1, C_2 are constants.