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(25pts) 1. Match the key terms with their correct definitions. Write the letter in upper-case corresponding to the definition in the blank
next to the key term. Each blank is worth 1 point, for a total of 26 points, which means you can receive 1 point of extra credit
if all your answers to this question are correct.

P addition A. There exist a1, . . . , am ∈ F, not all 0, such that a1v1 + · · · + amvm = 0.

Z basis B. The linear map π : V → V/U defined by π(v) = v + U for all v ∈ V .

Y dimension C. A vector space V ′ of all linear functionals on V ; in other words, V ′ = L(V, F).

S dual basis D. A set V along with an addition on V and a scalar multiplication on V such that the
following properties hold: commutativity, associativity, additive identity, additive
inverse, multiplicative identity, and distributive properties.

L dual map E. A linear map T : V → F, or, equivalently, an element of L(V, F).

C dual space F. There exist a0, . . . , am ∈ F such that p(z) = a0 + a1z + a2z2 + · · · + amzm for all
z ∈ F.

K finite-dimensional G. A rectangular array of elements of F with m rows and n columns.

X injective H. If T : V → W is a map, then this is a subset of V consisting of all vectors v ∈ V such
that Tv = 0.

V invertible I. A subset U of V that is also a vector space, using the same addition and scalar
multiplication as on V .

T isomorphism J. The set of all linear combinations of a list of vectors v1, . . . , vm in V .

M linear combination K. Some list of vectors in this type of vector space spans the space.

E linear functional M. A list v1, . . . , vm of vectors in V that is of the form a1v1 + · · · + amvm for some
a1, . . . , am ∈ F.

A linearly dependent L. If T ∈ L(V,W), then T ′ ∈ L(W ′,V ′) is the linear map defined by T ′(ϕ) = ϕ ◦ T for
ϕ ∈ W ′.

Q linearly independent N. A function T : V → W that satisfies T(u + v) = Tu + Tv and T(λv) = λ(Tv) for all
λ ∈ F and for all u, v ∈ V .

N linear map O. A function T : V → W satisfies range T = W .

G matrix P. A function that assigns an element u + v ∈ V to each pair of elements u, v ∈ V .

H null space Q. The only choice of a1, . . . , am ∈ F that satisfies a1v1 + · · · + amvm = 0 is a1 = · · · =

am = 0.

F polynomial R. A function that assigns an element λv ∈ V to each λ ∈ F and each v ∈ V .

B quotient map S. If v1, . . . , vn is a basis of V , then this is the list of ϕ1, . . . , ϕn of elements of V ′, where
each ϕj is the linear functional on V such that ϕj(vk) = 1 if k = j and ϕj(vk) = 0 if
k , j.

W quotient space T. An invertible linear map.

U range U. If T : V → W is a map, then this is a subset of W consisting of all vectors of the
form Tv for some v ∈ V .

R scalar multiplication V. A map T ∈ L(V,W) is called this if there exists a map S ∈ L(W,V) such that we
have ST = IV and TS = IW , where IV and IW are the respective identity maps on V
and W .

J span W. The set V/U = {v + U : v ∈ V} of all affine subsets of V parallel to U.

I subspace X. A function T : V → W that satisfies this property: Tu = Tv implies u = v.

O surjective Y. Length of any basis of a finite-dimensional vector space.

D vector space Z. Every v ∈ V can be written uniquely in the form v = a1v1 + · · · + anvn for some
a1, . . . , an ∈ F.



(25pts) 2. Let V be a vector space and suppose that U1,U2,U3 are subspaces of V . Answer each of the following questions with either a
proof or a counterexample.

(8pts) a. Is the operation of addition on the subspaces of V commutative? In other words, is it true that we have

U1 + U2 = U2 + U1?

Proof. This statement is true. Suppose we have u ∈ U1 + U2. Then we can write u = u1 + u2 for some u1 ∈ U1 and for
some u2 ∈ U2. Since U1 and U2 are subspaces of V , we have in fact u1, u2 ∈ V . As V is a vector space, it satisfies in
particular commutativity. So we have

u = u1 + u2

= u2 + u1

∈ U2 + U1,

and so we get U1 +U2 ⊂ U2 +U1. To prove the other set containment, suppose we have w ∈ U2 +U1. Then we can write
w = w2 + w1 for some w2 ∈ U2 and for some w1 ∈ U1. Since U1 and U2 are subspaces of V , we have in fact w1,w2 ∈ V .
As V is a vector space, it satisfies in particular commutativity. So we have

w = w2 + w1

= w1 + w2

∈ U1 + U2,

and so we get U2 + U1 ⊂ U1 + U2. So we conclude the set equality U1 + U2 = U2 + U1. �

(8pts) a. Is the operation of addition on the subspaces of V associative? In other words, is it true that we have

(U1 + U2) + U3 = U1 + (U2 + U3)?

Proof. This statement is true. Suppose we have u ∈ (U1 + U2) + U3. Then we can write u = (u1 + u2) + u3 for some
u1 ∈ U1, for some u2 ∈ U2, and for some u3 ∈ U3. Since U1,U2,U3 are subspaces of V , we have in fact u1, u2, u3 ∈ V .
As V is a vector space, it satisfies in particular associativity. So we have

u = (u1 + u2) + u3

= u1 + (u2 + u3)

∈ U1 + (U2 + U3),

and so we get (U1 +U2)+U3 ⊂ U1 + (U2 +U3). To prove the other set containment, suppose we have w ∈ U1 + (U2 +U3).
Then we can write w = w1 + (w2 +w3) for some w1 ∈ U1, for some w2 ∈ U2, and for some w3 ∈ U3. Since U1,U2,U3 are
subspaces of V , we have in fact w1,w2,w3 ∈ V . As V is a vector space, it satisfies in particular associativity. So we have

w = w1 + (w2 + w3)

= (w1 + w2) + w3

∈ (U1 + U2) + U3,

and so we get U1 + (U2 + U3) ⊂ (U1 + U2) + U3. So we conclude the set equality (U1 + U2) + U3 = U1 + (U2 + U3). �

(9pts) a. Does the left distributive property for the intersections and sums of the subspaces of V hold? In other words, is it true
that we have

U1 ∩ (U2 + U3) = U1 ∩U2 + U1 ∩U3?

Proof. This statement is false. We will use a counterexample. Consider, for example, the vector space V = R2 with the
usual operations of addition and scalar multiplication. And consider, for example, the following subsets of R2:

U1 = {(x1, x2) ∈ R
2 : x1 = x2},

U2 = {(x1, x2) ∈ R
2 : x2 = 0},

U3 = {(x1, x2) ∈ R
2 : x1 = 0}.

We will prove that U1,U2,U3 are subspaces of R2.

• Additive identity: Since 0 ∈ R, for all x1, x2 ∈ R, we have

(x1, x2) + (0, 0) = (x1 + 0, x2 + 0) = (x1, x2),

(x1, 0) + (0, 0) = (x1 + 0, 0 + 0) = (x1, 0),
(0, x2) + (0, 0) = (0 + 0, x2 + 0) = (0, x2).

So we conclude (0, 0) ∈ U1, (0, 0) ∈ U2, and (0, 0) ∈ U3, respectively, which means that U1,U2,U3 all contain the
additive identity.



• Closed under addition: For all x1, x2, y1, y2 ∈ R, we have

(x1, x2) + (y1 + y2) = (x1 + y1, x2 + y2) ∈ U1,

(x1, 0) + (y1, 0) = (x1 + y1, 0 + 0) = (x1 + y1, 0) ∈ U2,

(0, x2) + (0, y2) = (0 + 0, x2 + y2) = (0, x2 + y2) ∈ U3.

So U1,U2,U3 are all closed under addition.
• Closed under scalar multiplication: For all λ ∈ F and for all x1, x2 ∈ R, we have

λ(x1, x2) = (λx1, λx2) ∈ U1,

λ(x1, 0) = (λx1, λ · 0) = (λx1, 0) ∈ U2,

λ(0, x2) = (λ · 0, λx2) = (0, λx2) ∈ U3.

So U1,U2,U3 are all closed under scalar multiplication.

Therefore, U1,U2,U3 as defined above are all subspaces of R2. Now, let u1 ∈ U1 be arbitrary. Then we have u1 = (x1, x2)

for some x1, x2 ∈ R. In fact, we have

u1 = (x1, x2)

= (x1, 0) + (0, x2)

∈ U1 + U2,

and so we have U1 ⊂ U2 + U3. By elementary set theory, this set containment implies the set equality

U1 ∩ (U2 + U3) = U1.

On the other hand, if we consider the vectors u ∈ U1 ∩ U2 = {(0, 0)} and v ∈ U1 ∩ U3 = {(0, 0)}, then we must have
u = (0, 0) and v = (0, 0), and so we get

U1 ∩U2 + U1 ∩U3 = {u + v : u ∈ U1 ∩U2, v ∈ U1 ∩U3}

= {(0, 0) + (0, 0) : (0, 0) ∈ U1 ∩U2, (0, 0) ∈ U1 ∩U3}

= {(0 + 0, 0 + 0) : (0, 0) ∈ U1 ∩U2, (0, 0) ∈ U1 ∩U3}

= {(0, 0) : (0, 0) ∈ U1 ∩U2, (0, 0) ∈ U1 ∩U3}

= {(0, 0)}.

Therefore, as we have U1 , {(0, 0)}, we conclude U1∩(U2 +U3) , U1∩U2 +U1∩U3, signifying that the left distributive
property does not necessarily hold. �

(50pts) 3. (Double-weighted question) Let n ≥ 2 be an integer. Define the following vectors in the vector space Rn:

v1 = (1, 1, 0, 0, 0, . . . , 0, 0, 0),
v2 = (0, 1, 1, 0, 0, . . . , 0, 0, 0),
v3 = (0, 0, 1, 1, 0, . . . , 0, 0, 0),
v4 = (0, 0, 0, 1, 1, . . . , 0, 0, 0),
...

vn−2 = (0, 0, 0, 0, 0, . . . , 1, 1, 0),
vn−1 = (0, 0, 0, 0, 0, . . . , 0, 1, 1).

Also consider for all t ∈ R the vector w(t) ∈ Rn defined by

w(t) = (t, 0, 0, 0, 0, . . . , 0, 0, 1).

Note: To answer both parts of this question, you must apply directly the definitions of the terms “linearly independent” and
“linearly dependent”. While arranging the vectors in the list as a matrix and taking the determinant of that matrix constitutes
a valid approach to the correct answers, zero credit will be given for that approach because the Axler textbook does not talk
about determinants in the chapters we covered in our course.

(30pts) a. For which value(s) of t ∈ R is the list v1, . . . , vn−1,w(t) linearly independent (and therefore a basis of Rn)? Prove your
answer.

Proof. Suppose there exist a1, . . . , an−1, b ∈ F that satisfy

a1v1 + · · · + an−1vn−1 + bw(t) = (0, . . . , 0).



On the other hand, we have

a1v1 + · · · + an−1vn−1 + bw(t) = a1(1, 1, 0, 0, 0, . . . , 0, 0, 0) + a2(0, 1, 1, 0, 0, . . . , 0, 0, 0) + a3(0, 0, 1, 1, 0, . . . , 0, 0, 0)
+ a4(0, 0, 0, 1, 1, . . . , 0, 0, 0) + · · · + an−2(0, 0, 0, 0, 0, . . . , 1, 1, 0)
+ an−1(0, 0, 0, 0, 0, . . . , 0, 1, 1) + b(t, 0, 0, 0, 0, . . . , 0, 0, 1)

= (a1, a1, 0, 0, 0, . . . , 0, 0, 0) + (0, a2, a2, 0, 0, . . . , 0, 0, 0) + (0, 0, a3, a3, 0, . . . , 0, 0, 0)
+ (0, 0, 0, a4, a4, . . . , 0, 0, 0) + · · · + (0, 0, 0, 0, 0, . . . , an−2, an−2, 0)
+ (0, 0, 0, 0, 0, . . . , 0, an−1, an−1) + (bt, 0, 0, 0, 0, . . . , 0, 0, b)

= (a1 + bt, a1 + a2, a2 + a3, a3 + a4, . . . , an−3 + an−2, an−2 + an−1, an−1 + b).

Therefore, we obtain the equality

a1v1 + · · · + an−1vn−1 + bw(t) = (0, 0, 0, 0, 0, . . . , 0, 0, 0),

from which we can equate the coordinates of both sides to obtain the following system of equations

a1 + bt = 0,
a1 + a2 = 0,
a2 + a3 = 0,
a3 + a4 = 0,

...

an−3 + an−2 = 0,
an−2 + an−1 = 0,

an−1 + b = 0.

The first equation a1 + bt = 0 implies a1 = −bt. The second equation a1 + a2 = 0 with a1 = −bt implies a2 = bt. The
third equation a2 + a3 = 0 with a2 = bt implies a3 = −bt. The fourth equation a3 + a4 = 0 with a3 = bt implies a4 = bt.
After continuing this process, we notice the pattern here: for each j = 1, . . . , n − 2, we have

aj =

{
−bt if j is odd,
bt if j is even.

Writing all the n equations, we have

a1 = −bt,

a2 = bt,

a3 = −bt,

a4 = bt,
...

an−3 = (−1)n−1bt,

an−2 = (−1)nbt,

an−1 = −b.

The equation an−2 = (−1)nbt with one of our earlier equations an−2 + an−1 = 0 implies the resulting equation

b((−1)nt − 1) = (−1)nbt − b

= (−1)nbt + (−b)

= an−2 + an−1

= 0.

For the list v1, . . . , vn−1,w(t) is linearly independent, we require that all scalars a1, . . . , an−1, b be zero. In particular, we
require b = 0. If t , (−1)n, then the above equation b((−1)nt − 1) = 0 implies b = 0, which in turn implies that all the
scalars are zero:

a1 = 0, . . . , an−1 = 0, b = 0.

Therefore, if t , (−1)n, then v1, . . . , vn−1,w(t) is linearly independent. �

(20pts) b. For which value(s) of t ∈ R is the list v1, . . . , vn−1,w(t) linearly dependent? Prove your answer.



Proof. We found in part (a) of this question that, if t , (−1)n, then the list v1, . . . , vn−1,w(t) is linearly independent. On
the other hand, we claim that, if t = (−1)n, then the list v1, . . . , vn−1,w(t) is linearly dependent. Suppose indeed that we
have t = (−1)n. To establish that the list is linearly dependent, we need to find a1, . . . , an−1, b ∈ F, not all zero, that
satisfy

a1v1 + · · · + an−1vn−1 + bw((−1)n) = 0.

Choose, for example, b = (−1)n, a value that coincides with t = (−1)n. Then the solutions a1, . . . , an−1, b to our system
of equations in our proof of part (a) with t = (−1)n become

a1 = −bt = −(−1)n(−1)n = −(−1)2n = −1,

a2 = bt = (−1)n(−1)n = (−1)2n = 1,

a3 = −bt = −(−1)n(−1)n = −(−1)2n = −1,

a4 = bt = (−1)n(−1)n = (−1)2n = 1,
...

an−3 = (−1)n−1bt = (−1)n−1(−1)n(−1)n = (−1)n−1(−1)2n = (−1)n−1,

an−2 = (−1)nbt = (−1)n(−1)n(−1)n = (−1)n(−1)2n = (−1)n,

an−1 = −b = −(−1)n = (−1)n+1 = (−1)n−1,

b = (−1)n.

In particular, not only is our above choice of b ∈ F nonzero, but also all the elements a1, . . . , an, b ∈ F, are all nonzero.
And they satisfy

a1 + b(−1)n = (−1) + (−1)n(−1)n = 0,
a1 + a2 = (−1) + 1 = 0,
a2 + a3 = 1 + (−1) = 0,
a3 + a4 = (−1) + 1 = 0,

...

an−3 + an−2 = (−1)n−1 + (−1)n = 0,

an−2 + an−1 = (−1)n + (−1)n−1 = 0,

an−1 + b = (−1)n−1 + (−1)n = 0.

So we have

a1v1 + · · · + an−1vn−1 + bw((−1)n) = a1(1, 1, 0, 0, 0, . . . , 0, 0, 0) + a2(0, 1, 1, 0, 0, . . . , 0, 0, 0) + a3(0, 0, 1, 1, 0, . . . , 0, 0, 0)
+ a4(0, 0, 0, 1, 1, . . . , 0, 0, 0) + · · · + an−2(0, 0, 0, 0, 0, . . . , 1, 1, 0)
+ an−1(0, 0, 0, 0, 0, . . . , 0, 1, 1) + b((−1)n, 0, 0, 0, 0, . . . , 0, 0, 1)

= (a1, a1, 0, 0, 0, . . . , 0, 0, 0) + (0, a2, a2, 0, 0, . . . , 0, 0, 0) + (0, 0, a3, a3, 0, . . . , 0, 0, 0)
+ (0, 0, 0, a4, a4, . . . , 0, 0, 0) + · · · + (0, 0, 0, 0, 0, . . . , an−2, an−2, 0)
+ (0, 0, 0, 0, 0, . . . , 0, an−1, an−1) + (b(−1)n, 0, 0, 0, 0, . . . , 0, 0, b)

= (a1 + b(−1)n, a1 + a2, a2 + a3, a3 + a4, . . . , an−3 + an−2, an−2 + an−1, an−1 + b)

= (0, 0, 0, 0, 0, . . . , 0, 0, 0).

Therefore, if t = (−1)n, then the list v1, . . . , vn−1,w(t) is linearly dependent. �

(25pts) 4. Let V be a vector space, and suppose we have T ∈ L(V) = L(V,V). A scalar λ ∈ F is called an eigenvalue of T if there exists
a corresponding eigenvector, which is a vector v ∈ V that satisfies v , 0 and

Tv = λv.

Suppose also that, for all a ∈ F, there exist vectors u,w ∈ V that satisfy

Tu = aw

and
Tw = au.

Prove that a and −a are both eigenvalues of T .

Remark: If a = 0, then T has of course only one eigenvalue instead of two eigenvalues.

Hint: Work with the vectors u + w, u − w ∈ V .



Proof. For all u,w ∈ V , we have

T(v + w) = Tv + Tw

= aw + av

= a(w + v)

= a(v + w)

and

T(v − w) = Tv − Tw

= aw − av

= a(w − v)

= −a(v − w).

Next, we claim that, if v , 0 and w , 0, then v + w , 0 and v − w , 0. It is much easier to prove the contrapositive of our
claim: If v + w = 0 or v − w = 0, then v = 0 and w = 0. If v + w = 0, then v = −w, which means

−2w = −w − w

= v − w

= 0,

from which we get w = 0, and in turn v = −w = 0. Similarly, if v − w = 0, then v = w, which means

2w = w + w

= v + w

= 0,

from which we get w = 0, and in turn v = w = 0. This completes the proof of the the contrapositive of our claim and hence
our claim itself. Therefore, if v +w and v −w are nonzero, it follows that a and −a are eigenvalues of T , with v +w and v −w

being their respective eigenvectors. �

(25pts) 5. Let n ≥ 0 be an integer. Define the map T : Pn(R) → Rn+1 by

T p =

(∫ 1

0
p(x) dx,

∫ 3

2
p(x) dx,

∫ 5

4
p(x) dx, . . . ,

∫ 2n−1

2n−2
p(x) dx,

∫ 2n+1

2n
p(x) dx

)
.

Show that T is an isomorphism.

Note: For your proof of this question, you may use without their proofs the following results:

• The sets null T and range T are subspaces of Fn.

• (Fundamental Theorem of Linear Maps) If V is a finite-dimensional vector space and T is a linear map on V , then range T
is finite-dimensional and dim V = dim null T + dim range T .

• (Fundamental Theorem of Algebra) Every non-constant polynomial of degree n has at most n distinct roots on R; that
is, for each p ∈ Pn(R) with p , 0, there exist at most n distinct values of x ∈ R that satisfy p(x) = 0.

• A linear map T is invertible if and only if it is injective and surjective.

• A linear map T is injective if and only if null T = {0}.

• If U is a subspace of Fn that satisfies dim U = dimFn, then U = Fn.

Proof. To show that T : Pn(R) → Rn+1 is an isomorphism, we need to show that T is linear and invertible. First, we will
show that T is linear.



• Additivity: For all p, q ∈ Pn(R), we have

T(p + q) =

(∫ 1

0
(p + q)(x) dx,

∫ 3

2
(p + q)(x) dx,

∫ 5

4
(p + q)(x) dx, . . . ,

∫ 2n−1

2n−2
(p + q)(x) dx,

∫ 2n+1

2n
(p + q)(x) dx

)
=

(∫ 1

0
p(x) + q(x) dx,

∫ 3

2
p(x) + q(x) dx,

∫ 5

4
p(x) + q(x) dx,

. . . ,

∫ 2n−1

2n−2
p(x) + q(x) dx,

∫ 2n+1

2n
p(x) + q(x) dx

)
=

(∫ 1

0
p(x) dx +

∫ 1

0
q(x) dx,

∫ 3

2
p(x) dx +

∫ 3

2
q(x) dx,

∫ 5

4
p(x) dx +

∫ 5

4
q(x) dx,

. . . ,

∫ 2n−1

2n−2
p(x) dx +

∫ 2n−1

2n−2
q(x) dx,

∫ 2n+1

2n
p(x) dx +

∫ 2n+1

2n
q(x) dx

)
=

(∫ 1

0
p(x) dx,

∫ 3

2
p(x) dx,

∫ 5

4
p(x) dx, . . . ,

∫ 2n−1

2n−2
p(x) dx,

∫ 2n+1

2n
p(x) dx

)
+

(∫ 1

0
q(x) dx,

∫ 3

2
q(x) dx,

∫ 5

4
q(x) dx, . . . ,

∫ 2n−1

2n−2
q(x) dx,

∫ 2n+1

2n
q(x) dx

)
= T p + Tq.

• Homogeneity: For all λ ∈ F and for all p ∈ Pn(R), we have

T(λp) =

(∫ 1

0
(λp)(x) dx,

∫ 3

2
(λp)(x) dx,

∫ 5

4
(λp)(x) dx, . . . ,

∫ 2n−1

2n−2
(λp)(x) dx,

∫ 2n+1

2n
(λp)(x) dx

)
=

(∫ 1

0
λp(x) dx,

∫ 3

2
λp(x) dx,

∫ 5

4
λp(x) dx, . . . ,

∫ 2n−1

2n−2
λp(x) dx,

∫ 2n+1

2n
λp(x) dx

)
=

(
λ

∫ 1

0
p(x) dx, λ

∫ 3

2
p(x) dx, λ

∫ 5

4
p(x) dx, . . . , λ

∫ 2n−1

2n−2
p(x) dx, λ

∫ 2n+1

2n
p(x) dx

)
= λ

(∫ 1

0
p(x) dx,

∫ 3

2
p(x) dx,

∫ 5

4
p(x) dx, . . . ,

∫ 2n−1

2n−2
p(x) dx,

∫ 2n+1

2n
p(x) dx

)
= λT p.

Since the two properties of a linear map are satisfied, this map is linear. Next, we will show that T is injective. Suppose we
have p ∈ null T , which means we have T p = (0, . . . , 0). Combining this with the original definition of T , we get(∫ 1

0
p(x) dx,

∫ 3

2
p(x) dx,

∫ 5

4
p(x) dx, . . . ,

∫ 2n−1

2n−2
p(x) dx,

∫ 2n+1

2n
p(x) dx

)
= (0, 0, 0, . . . , 0, 0),

from which we can equate the coordinates of both sides to obtain∫ 1

0
p(x) dx = 0,∫ 3

2
p(x) dx = 0,∫ 5

4
p(x) dx = 0,

...∫ 2n−1

2n−2
p(x) dx = 0,∫ 2n+1

2n
p(x) dx = 0.

We claim that, if every one of these equations above holds, then we must have p = 0; that is, the polynomial p must be equal to
the zero map. Suppose by contradiction that there exists a polynomial p ∈ Pn(R) with p , 0 that satisfies the above equations.
Consider the interval [2i, 2i + 1] ⊂ R for each i = 0, 1, . . . ,m. Then there exists a nonempty subset Ui ( [2i, 2i + 1] with
Ui , [2i, 2i + 1] such that p is positive on Ui and negative on its set complement [2i, 2i + 1] \ Ui , in such a way that p also
satisfies ∫ 2i+1

2i
p(x) dx = 0.

If p did not cross the x-axis on the interval [2i, 2i + 1], then p is either positive or negative on all of [2i, 2i + 1], meaning that
we would have ∫ 2i+1

2i
p(x) dx , 0,



which contradicts the previous displayed equation. So p must cross the x-axis at least once on [2i, 2i + 1]. In other words,
there exists at least one root of p on [2i, 2i + 1] for all i = 0, 1, . . . , n. This means that there exist at least n + 1 distinct roots of
p on the union of intervals

[0, 1] ∪ [2, 3] ∪ [4, 5] ∪ · · · ∪ [2n − 2, 2n − 1] ∪ [2n, 2n + 1].

As such a union of intervals is a subset of R, we can say more simply that there exist at least n + 1 distinct roots of p ∈ Pn(R).
However, this contradicts the Fundamental Theorem of Algebra, which states that every p ∈ Pn(R) with p , 0 has at most n
distinct roots on R. Therefore, we must have p(x) = 0 for all x ∈ R in order to satisfy the above equations without obtaining
a contradiction. In other words, we must have p = 0, and so we get null T ⊂ {0}. But we also have T(0) = (0, . . . , 0),
which means {0} ⊂ null T . So we conclude the set equality null T = {0}, and so T is injective. Next, we will prove that T is
surjective. Since we have dimPn(R) = n, it follows that Pn(R) is finite-dimensional. So the Fundamental Theorem of Linear
Maps asserts that range T is finite-dimensional and

dim range T = dimPn(R) − dim null T

= dimPn(R) − dim{0}
= (n + 1) − 0
= n + 1

= dimRn+1.

Since range T is a subspace of Rn+1, we conclude range T = Rn+1, and so T is surjective. We have established that T is both
injective and surjective, which means that T is invertible. Therefore, T is both linear and invertible, which means it is an
isomorphism. �

(50pts) 6. (Double-weighted question) Suppose V is a finite-dimensional vector space and U is a subspace of V . Recall that

U0 = {ϕ ∈ V ′ : ϕ(u) = 0 for all u ∈ U}

is the annihilator of U. We will prove in two different ways that the dimension of U0 is the difference of the dimension of V
and the dimension of U.

(25pts) a. Use the inclusion map i ∈ L(U,V)—defined by i(u) = u for all u ∈ U—to establish

dim U + dim U0 = dim V .

Note: For your proof of this part of the question, you may use without their proofs the following results:

• (Fundamental Theorem of Linear Maps) If V is a finite-dimensional vector space and T is a linear map on V , then
range T is finite-dimensional and dim V = dim null T + dim range T .
• If V ′ is the dual space of V , then we have dim V ′ = dim V .
• If V is finite-dimensional, then every linear map on a subspace U of V can be extended to a linear map on V .
• If U is a subspace of V , then the dual space U ′ is also a subspace of V .
• The set range i′ is a subspace of U ′.

Hint: Apply the Fundamental Theorem of Linear Maps to the dual map i′ ∈ L(V ′,U ′) of the inclusion map i.

Proof (3.106 of Axler). Suppose i ∈ L(U,V) is the inclusion map defined as given in the problem statement. First, we
will prove i′ ∈ L(V ′,U ′). Let ϕ, ψ ∈ V ′ and λ ∈ F be arbitrary.

• Additivity: For all u ∈ U, we have

(i′(ϕ + ψ))(u) = ((ϕ + ψ) ◦ i)(u)

= (ϕ + ψ)(i(u))

= (ϕ + ψ)(u)

= ϕ(u) + ψ(u)

= ϕ(i(u)) + ψ(i(u))

= (ϕ ◦ i)(u) + (ψ ◦ i)(u)

= (ϕ ◦ i + ψ ◦ i)(u)

= (i′(ϕ) + i′(ψ))(u).

So we conclude i′(ϕ + ψ) = i′(ϕ) + i′(ψ).



• Homogeneity: For all u ∈ U, we have

(i′(λϕ))(u) = ((λϕ) ◦ i)(u)

= (λϕ)(i(u))

= (λϕ)(u)

= λϕ(u)

= λϕ(i(u))

= λ(ϕ ◦ i)(u)

= (λ(ϕ ◦ i))(u)

= (λi′(ϕ))(u).

So we conclude i′(λϕ) = λi′(ϕ).

Since additivity and homogeneity of i′ are satisfied, i′ is linear. Next, we will prove null i′ = U0. We have

null i′ = {ϕ ∈ V ′ : i′(ϕ) = 0}
= {ϕ ∈ V ′ : ϕ ◦ i = 0}
= {ϕ ∈ V ′ : ϕ ◦ i(u) = 0 for all u ∈ U}

= {ϕ ∈ V ′ : ϕ(u) = 0 for all u ∈ U}

= U0,

as we claimed. Next, we will prove range i′ = U. Suppose we have ϕ ∈ U ′. Since U is a subspace of V , we can extend
ϕ to linear functional ψ on V . Now, for all v ∈ V , we have

(i′(ψ))(v) = (ψ ◦ i)(v)

= ψ(i(v))

= ψ(v),

from which we conclude i′(ψ) = ψ. In particular, for all v ∈ U, we have ψ = ϕ, and so we get i′(ψ) = ψ = ϕ, which
means we have ϕ ∈ range i′. Therefore, we obtain U ⊂ range i′. But range i′ is a subspace of U. So we conclude the set
equality range i′ = U, as we claimed. Therefore, we have

dim U + dim U0 = dim range i′ + dim null i′

= dim V ′

= dim V,

as desired. �

(25pts) b. Suppose m and n are positive integers that satisfy m ≤ n. Choose u1, . . . , um to be a basis of U, and extend it to a basis
u1, . . . , um, . . . , un of V . Let ϕ1, . . . , ϕm, . . . , ϕn be the corresponding dual basis of V ′. Prove that ϕm+1, . . . , ϕn is a basis
of U0. Then find the dimensions of U,U0,V to conclude

dim U + dim U0 = dim V .

Proof. To prove that ϕm+1, . . . , ϕn is a basis of U0, we need to prove that it is linearly independent and spans U0. First,
we will show that ϕm+1, . . . , ϕn is linearly independent. Suppose cm+1, . . . , cn ∈ F satisfy

cm+1ϕm+1 + · · · + cnϕn = 0.

Then we have

0 = cm+1ϕm+1 + · · · + cnϕn
= 0ϕ1 + · · · + 0ϕm + cm+1ϕm+1 + · · · + cnϕn.

Since we assumed in the premises that ϕ1, . . . , ϕm, . . . , ϕn is the dual basis of V ′, it is linearly independent, which means
all the scalars are zero. In particular, we have

cm+1 = 0, . . . , cn = 0.

Therefore, ϕm+1, . . . , ϕn is linearly independent. Next, we will show that ϕm+1, . . . , ϕn spans V . In other words, we need
to prove span(ϕm+1, . . . , ϕn) = V . Suppose we have ϕ ∈ span(ϕm+1, . . . , ϕm). Then we can write

ϕ = cm+1ϕm+1 + · · · + cnϕn

for some cm+1, . . . , cn ∈ F. Additionally, since we assumed in the premises that u1, . . . , um is a basis of U, we can write
every u ∈ U uniquely as

u = a1u1 + · · · + amum



for some a1, . . . , am ∈ F. So, for all u ∈ U, we have

ϕ(u) = ϕ(a1u1 + · · · + amum)

= (cm+1ϕm+1 + · · · + cnϕn)(a1u1 + · · · + amum)

= cm+1ϕm+1(a1u1 + · · · + amum) + · · · + cnϕn(a1u1 + · · · + amum)

= cm+1(a1ϕm+1(u1) + · · · + amϕm+1(um)) + · · · + cn(a1ϕn(u1) + · · · + amϕn(um))

= cm+1(a1 · 0 + · · · + am · 0) + · · · + cn(a1 · 0 + · · · + am · 0)
= 0.

Therefore, we have ϕ ∈ U0, and so we have span(ϕm+1, . . . , ϕn) ⊂ U0. Now, to prove the other set containment, suppose
that we have ϕ ∈ U0. Since the dual basis ϕ1, . . . , ϕm, . . . , ϕn is a basis of the dual space V ′, we can write

ϕ = c1ϕ1 + · · · + cmϕm + · · · + cnϕn

for some c1, . . . , cm, . . . , cn ∈ F. For each j = 1, . . . ,m, we have u j ∈ U since u1, . . . , um is a basis of U. So, for each
j = 1, . . . ,m, we have

0 = ϕ(u j)

= (c1ϕ1 + · · · + cmϕm + · · · + cnϕn)(u j)

= (c1ϕ1 + · · · + cjϕj · · · + cmϕm + · · · + cnϕn)(u j)

= c1ϕ1(u j) + · · · + cjϕj(u j) + · · · + cmϕm(u j) + · · · + cnϕn(u j)

= c1 · 0 + · · · + cj · 1 + · · · + cm · 0 + · · · + cn · 0
= cj .

In other words, we have
c1 = 0, . . . , cm = 0,

and so we can write

ϕ = c1ϕ1 + · · · + cmϕm + · · · + cnϕn
= c1ϕ1 + · · · + cmϕm + cm+1ϕm+1 + · · · + cnϕn
= 0 · ϕ1 + · · · + 0 · ϕm + cm+1ϕm+1 + · · · + cnϕn
= cm+1ϕm+1 + · · · + cnϕn.

Therefore, we have ϕ ∈ span(ϕm+1, . . . , ϕn), and so we have U0 ⊂ span(ϕm+1, . . . , ϕn). So we conclude the desired set
equality span(ϕm+1, . . . , ϕn) = U0, which means ϕm+1, . . . , ϕn spans U0. Therefore, we conclude that ϕm+1, . . . , ϕn is
a basis of U0. Furthermore, we get dim(U0) = n − m. Also, the assumptions of this problem imply dim U = m and
dim V = n. Therefore, we conclude

dim U + dim U0 = m + (n − m)

= n

= dim V,

as desired. �


