MATH 131: Linear Algebra I

University of California, Riverside Group Examination 1 Solutions June 27, 2019

- (20pts) 1. For this question, you will need to refer to the definitions in Chapter 1 of your Axler textbook to find the answers. (This is one of the reasons this examination is open book, open notes, open homework, and open classmates.)
 - (4pts) a. Write down the definitions of *addition* and *scalar multiplication* on a set V.

Definition. From Definition 1.18 of Axler:

- An *addition* on a set V is a function that assigns an element $u + v \in V$ to each pair of elements $u, v \in V$.
- A *scalar multiplication* on a set V is a function that assigns an element $\lambda v \in V$ to each $\lambda \in \mathbb{F}$ and each $v \in V$.
- (12pts) b. Now assume that V is a vector space over a field \mathbb{F} . Write down all the properties of a vector space.

Definition. From Definition 1.19 of Axler: A *vector space* is a set V along with an addition on V and a scalar multiplication on V such that the following properties hold:

- *commutativity:* u + v = v + u for all $u, v \in V$;
- *associativity*: (u + v) + w = u + (v + w) and (ab)v = a(bv) for all $u, v, w \in V$ and for all $a, b \in \mathbb{F}$;
- *additive identity:* there exists an element $0 \in V$ such that v + 0 = v for all $v \in V$;
- *additive inverse:* for every $v \in V$, there exists $w \in V$ such that v + w = 0;
- *multiplicative identity:* 1v = v for all $v \in V$;
- *distributive properties:* a(u + v) = au + av and (a + b)v = av + bv for all $a, b \in \mathbb{F}$ and for all $u, v \in V$.

(4pts) c. Write down the definition of a subspace U of V.

Definition. From Definition 1.32 of Axler:

• A subset U of V is called a *subspace* of V if U is also a vector space, using the same addition and scalar multiplication as on V.

(20pts) 2. Let *n* be a positive integer, let $\lambda \in \mathbb{F}$ be a scalar, and let $x, y \in \mathbb{F}^n$ be lists of length *n*. Define on \mathbb{F}^n the operations of "addition"

$$x "+" y = x - y$$

and "scalar multiplication"

$$\lambda$$
 "×" $x = -\lambda x$.

Is \mathbb{F}^n a vector space over \mathbb{F} with respect to these operations? If so, prove it. If not, prove which of the properties of a vector space are satisfied and give counterexamples for the properties of a vector space that are not satisfied.

Proof. We will list all the properties, determine whether or not they are satisfied, and prove or give a counterexample to each property as appropriate. In the case of counterexamples, we will let n = 2, so that the list $(x_1, \ldots, x_n) \in \mathbb{F}^n$ becomes $(x_1, x_2) \in \mathbb{F}^2$; this is to ensure that our counterexamples are explicit.

• Commutativity is not satisfied. Let $(x_1, x_2) = (1, 1), (y_1, y_2) = (2, 2) \in \mathbb{F}^2$. Then

$$(x_1, x_2) "+" (y_1, y_2) = (x_1, x_2) - (y_1, y_2)$$
$$= (1, 1) - (2, 2)$$
$$= (-1, -1)$$

and

$$(y_1, y_2)$$
 "+" $(x_1, x_2) = (y_1, y_2) - (x_1, x_2)$
= $(2, 2) - (1, 1)$
= $(1, 1)$.

Since we have $(-1, -1) \neq (1, 1)$, we conclude (x_1, x_2) "+" $(y_1, y_2) \neq (y_1, y_2)$ "+" (x_1, x_2) .

• Associativity is not satisfied. Let $(x_1, x_2) = (1, 1), (y_1, y_2) = (2, 2), (z_1, z_2) = (3, 3) \in \mathbb{F}^2$. Then

$$((x_1, x_2) "+" (y_1, y_2)) "+" (z_1, z_2) = ((x_1, x_n) - (y_1, y_2)) "+" (z_1, z_2)$$
$$= ((x_1, x_2) - (y_1, y_2)) - (z_1, z_2)$$
$$= (x_1, x_2) - (y_1, y_2) - (z_1, z_2)$$
$$= (1, 1) - (2, 2) - (3, 3)$$
$$= (-4, -4)$$

and

$$(x_1, x_2) "+" ((y_1, y_2) "+" (z_1, z_2)) = (x_1, x_2) "+" ((y_1, y_2) - (z_1, z_2))$$
$$= (x_1, x_2) - ((y_1, y_2) - (z_1, z_2))$$
$$= (x_1, x_2) - (y_1, y_2) + (z_1, z_2)$$
$$= (1, 1) - (2, 2) + (3, 3)$$
$$= (2, 2).$$

Since we have $(-4, -4) \neq (2, 2)$, we conclude $((x_1, x_2) + (y_1, y_2)) + (z_1, z_2) \neq (x_1, x_2) + ((y_1, y_2) + (z_1, z_2))$. • Additive identity is satisfied. Suppose we have $(0, 0) \in \mathbb{F}^2$. Then, for all $(x_1, x_2) \in \mathbb{F}^2$, we have

$$(x_1, x_2) "+" (0, 0) = (x_1, x_2) - (0, 0)$$
$$= (x_1 - 0, x_2 - 0)$$
$$= (x_1, x_2).$$

• Additive inverse is satisfied. For all $(x_1, x_2) \in \mathbb{F}^2$, we have

$$(x_1, x_2) "+" (x_1, x_2) = (x_1, x_2) - (x_1, x_2)$$
$$= (x_1 - x_1, x_2 - x_2)$$
$$= (0, 0).$$

• Multiplicative identity is not satisfied. Let $\lambda = 1 \in \mathbb{F}$ and $(x_1, x_2) = (1, 1) \in \mathbb{F}^2$. Then

$$\lambda$$
 "×" $(x_1, x_2) = -\lambda(x_1, x_2)$
= -1(1, 1)
= (-1, -1)

and

$$\lambda(x_1, x_2) = 1(1, 1) = (1, 1).$$

Since we have $(-1, 1) \neq (1, 1)$, we conclude λ "×" $(x_1, x_2) \neq \lambda(x_1, x_2)$.

• Distributive properties are not satisfied. It is true that the operations satisfy the left distributive property: for all $a, b \in \mathbb{F}$ and for all $(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in \mathbb{F}^n$, we have

$$a ``×`' ((x_1, ..., x_n) ``+`' (y_1, ..., y_n)) = a ``×`' ((x_1, ..., x_n) - (y_1, ..., y_n))$$

= a ``×`' (x_1 - y_1, ..., x_n - y_n)
= -a(x_1 - y_1, ..., x_n - y_n)
= -a((x_1, ..., x_n) - (y_1, ..., y_n))
= (-a(x_1, ..., x_n)) - (-a(y_1, ..., y_n))
= (a ``×`' (x_1, ..., x_n)) - (a ``×'' (y_1, ..., y_n))
= (a ``×'' (x_1, ..., x_n)) ``+`' (a ``×'' (y_1, ..., y_n)).

However, the operations do not satisfy the right distributive property. Let $a = 1, b = 2 \in \mathbb{F}$ and $(x_1, \ldots, x_n) = (1, \ldots, 1) \in \mathbb{F}^n$. Then we have

$$(a + b)$$
 "×" $(x_1, x_2) = -(a + b)(x_1, x_2)$
= $-(1 + 2)(1, 1)$
= $(-3, -3)$

and

$$(a ``×`` (x_1, x_2)) ``+`` (b ``×`` (y_1, y_2)) = (-a(x_1, x_2)) ``+`` (-b(y_1, y_2))$$

= (-a(x_1, x_2)) - (-b(x_1, x_2))
= -a(x_1, x_2) + b(x_1, x_2)
= -1(1, 1) + 2(2, 2)
= (1, 1).

Since we have $(-3, 3) \neq (1, 1)$, we conclude

$$(a + b)$$
 "×" $(x_1, x_2) \neq (a$ "×" (x_1, x_2)) "+" $(b$ "×" (y_1, y_2)).

Therefore, we conclude that \mathbb{F}^n is not a vector space with respect to the specified operations because it does not satisfy all the properties of a vector space.

(20pts) 3. For each of the following subsets of \mathbb{F}^3 , determine whether it is a subspace of \mathbb{F}^3 . If so, prove it. If not, give a counterexample to show some property of a subspace that is not satisfied.

(5pts) a. $\{(x_1, x_2, x_3) \in \mathbb{F}^3 : x_1 + 2x_2 + 3x_3 = 0\};$

Proof. We will prove that $U_1 = \{(x_1, x_2, x_3) \in \mathbb{F}^3 : x_1 + 2x_2 + 3x_3 = 0\}$ is a subspace of \mathbb{F}^3 .

- Additive identity: Since (0) + 2(0) + 3(0) = 0, we have $(0, 0, 0) \in U_1$.
- Closed under addition: Suppose we have $(x_1, x_2, x_3), (y_1, y_2, y_3) \in U_1$. Then we have $x_1 + 2x_2 + 3x_3 = 0$ and $y_1 + 2y_2 + 3y_3 = 0$. These imply

$$(x_1 + y_1) + 2(x_2 + y_2) + 3(x_3 + y_3) = (x_1 + 2x_2 + 3x_3) + (y_1 + 2y_2 + 3y_3)$$

= 0 + 0
= 0.

So we conclude $(x_1, x_2, x_3) + (y_1, y_2, y_3) = (x_1 + y_1, x_2 + y_2, x_3 + y_3) \in U_1$.

• Closed under scalar multiplication: Suppose we have $\lambda \in \mathbb{F}$ and $(x_1, x_2, x_3) \in U_1$. Then we have $x_1 + 2x_2 + 3x_3 = 0$. This implies

$$(\lambda x_1) + 2(\lambda x_2) + 3(\lambda x_3) = \lambda(x_1 + 2x_2 + 3x_3)$$

= $\lambda \cdot 0$
= 0

So we conclude $\lambda(x_1, x_2, x_3) = (\lambda x_1, \lambda x_2, \lambda x_3) \in U_1$.

Since we satisfied all the properties of a subspace, we conclude that U_1 is a subspace of \mathbb{F}^3 .

(5pts) b. $\{(x_1, x_2, x_3) \in \mathbb{F}^3 : x_1 + 2x_2 + 3x_3 = 4\};$

Proof. We will prove that $U_2 = \{(x_1, x_2, x_3) \in \mathbb{F}^3 : x_1 + 2x_2 + 3x_3 = 4\}$ is not a subspace of \mathbb{F}^3 .

• Additive identity is not satisfied. Since we have $0 + 2(0) + 3(0) = 0 \neq 4$, we conclude $(0, 0, 0) \notin U_2$.

Since we showed that one of the properties of a subspace is not satisfied, we conclude that U_2 is not a subspace of \mathbb{F}^3 . \Box

(5pts) c. $\{(x_1, x_2, x_3) \in \mathbb{F}^3 : x_1 x_2 x_3 = 0\};$

Proof. We will prove that $U_3 = \{(x_1, x_2, x_3) \in \mathbb{F}^3 : x_1 x_2 x_3 = 0\}$ is not a subspace of \mathbb{F}^3 .

• Closed under addition is not satisfied. Let $(x_1, x_2, x_3) = (0, 1, 0), (y_1, y_2, y_3) = (1, 0, 1) \in \mathbb{F}^3$. Then we have $x_1 x_2 x_3 = (0)(1)(0)$ and $y_1 y_2 y_3 = (1)(0)(1) = 0$, which means we have $(x_1, x_2, x_3), (y_1, y_2, y_3) \in U_3$. But these imply

$$(x_1 + y_1)(x_2 + y_2)(x_3 + y_3) = (0 + 1)(1 + 0)(0 + 1)$$

= (1)(1)(1)
= 1
\$\neq 0.\$

which means we have $(x_1, x_2, x_3) + (y_1, y_2, y_3) = (x_1 + y_1, x_2 + y_2, x_3 + y_3) \notin U_3$.

Since we showed that one of the properties of a subspace is not satisfied, we conclude that U_3 is not a subspace of \mathbb{F}^3 . \Box

(5pts) d. $\{(x_1, x_2, x_3) \in \mathbb{F}^3 : x_1 = 5x_3\}.$

Proof. We will prove that $U_4 = \{(x_1, x_2, x_3) \in \mathbb{F}^3 : x_1 = 5x_3\}$ is a subspace of \mathbb{F}^3 .

- Additive identity: Since (0) = 5(0), we have $(0, 0, 0) \in U_4$.
- Closed under addition: Suppose we have $(x_1, x_2, x_3), (y_1, y_2, y_3) \in U_4$. Then we have $x_1 = 5x_3$ and $y_1 = 5y_3$. These imply

$$x_1 + y_1 = 5x_3 + 5y_3$$

= 5(x_3 + y_3).

So we conclude $(x_1, x_2, x_3) + (y_1, y_2, y_3) = (x_1 + y_1, x_2 + y_2, x_3 + y_3) \in U_1$.

• Closed under scalar multiplication: Suppose we have $\lambda \in \mathbb{F}$ and $(x_1, x_2, x_3) \in U_1$. Then we have $x_1 = 5x_3$. This implies

$$\lambda x_1 = \lambda(5x_3)$$
$$= 5(\lambda x_3).$$

So we conclude $\lambda(x_1, x_2, x_3) = (\lambda x_1, \lambda x_2, \lambda x_3) \in U_1$.

Since we satisfied all the properties of a subspace, we conclude that U_4 is a subspace of \mathbb{F}^3 .

(20pts) 4. Let $\mathbb{R}^{\mathbb{R}}$ be the set of all real-valued functions $f : \mathbb{R} \to \mathbb{R}$. A real-valued function $f : \mathbb{R} \to \mathbb{R}$ is called *even* if

$$f(-x) = f(x)$$

for all $x \in \mathbb{R}$. A real-valued function $f : \mathbb{R} \to \mathbb{R}$ is called *odd* if

$$f(-x) = -f(x)$$

for all $x \in \mathbb{R}$. Let U_e denote the set of real-valued even functions on \mathbb{R} , and let U_o denote the set of real-valued odd functions on \mathbb{R} . Show that we have $\mathbb{R}^{\mathbb{R}} = U_e \oplus U_o$.

Proof. First, we need to show that U_e and U_o are subspaces of $\mathbb{R}^{\mathbb{R}}$.

- Additive identity: For all $x \in \mathbb{R}$, the zero function satisfies 0(x) = 0 = 0(-x) and 0(x) = 0 = -0 = -0(x). So we have $0 \in U_e$ and $0 \in U_o$.
- Closed under addition: Let $g_1, g_2 \in U_e$ and $h_1, h_2 \in U_o$ be arbitrary. Then, g_1, g_2 are even and h_1, h_2 are odd; in other words, for all $x \in \mathbb{R}$, we have $g_1(x) = g_1(-x), g_2(x) = g_2(-x), h_1(-x) = -h_1(x)$, and $h_2(-x) = -h_2(x)$. So, for all $x \in \mathbb{R}$, we have

$$(g_1 + g_2)(-x) = g_1(-x) + g_2(-x)$$

= $g_1(x) + g_2(x)$
= $(g_1 + g_2)(x)$

and

$$(h_1 + h_2)(-x) = h_1(-x) + h_2(-x)$$

= $-h_1(x) - h_2(x)$
= $-(h_1(x) + h_2(x))$
= $-(h_1 + h_2)(x)$.

So $g_1 + g_2$ is even and $h_1 + h_2$ is odd; in other words, we have $g_1 + g_2 \in U_e$ and $h_1 + h_2 \in U_o$.

• Closed under scalar multiplication: Let $\lambda \in \mathbb{F}$, $g \in U_e$, and $h \in U_o$ be arbitrary. Then, g is even and h is odd; in other words, for all $x \in \mathbb{R}$, we have g(-x) = g(x) and h(-x) = -h(x). So, for all $x \in \mathbb{R}$, we have

$$\begin{aligned} (\lambda g)(-x) &= \lambda g(-x) \\ &= \lambda g(x) \\ &= (\lambda g)(x) \end{aligned}$$

and

$$(\lambda h)(-x) = \lambda h(-x)$$
$$= \lambda(-h(x))$$
$$= -\lambda h(x)$$
$$= (\lambda h)(x).$$

So λg is even and λh is odd; in other words, we have $\lambda g \in U_e$ and $\lambda h \in U_o$.

Since we satisfied all the properties of a subspace, we conclude that U_e and U_o are subspaces of $\mathbb{R}^{\mathbb{R}}$. Next, we need to show $\mathbb{R}^{\mathbb{R}} = U_e + U_o$. In other words, we will show that we can write every function $f \in \mathbb{R}^{\mathbb{R}}$ as a sum of an even function and an odd function. Define for all $x \in \mathbb{R}$ the functions $g, h \in \mathbb{R}^{\mathbb{R}}$ by

$$g(x) = \frac{f(x) + f(-x)}{2}$$
$$h(x) = \frac{f(x) - f(-x)}{2}.$$

and

$$h(x) = \frac{f(x) - f(-x)}{2}.$$

Then

$$g(-x) = \frac{f(-x) + f(-(-x))}{2}$$

= $\frac{f(-x) + f(x)}{2}$
= $\frac{f(x) + f(-x)}{2}$
= $g(x)$,

which means g is even, or $g \in U_e$. Similarly,

$$h(-x) = \frac{f(-x) - f(-(-x))}{2}$$
$$= -\frac{f(x) - f(-x)}{2}$$
$$= -h(x),$$

which means h is odd, or $h \in U_o$. Finally, for all $x \in \mathbb{R}$, we have

$$(g+h)(x) = g(x) + h(x)$$

= $\frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2}$
= $\frac{(f(x) + f(-x)) + (f(x) - f(-x))}{2}$
= $\frac{2f(x)}{2}$
= $f(x)$,

and so f = g + h, which establishes $\mathbb{R}^{\mathbb{R}} = U_e + U_o$. At this point, it remains to show $\mathbb{R}^{\mathbb{R}} = U_e \oplus U_o$. According to 1.45 of Axler, we only need to show $U_e \cap U_o = \{0\}$. So suppose we have $f \in U_e \cap U_o$. Then $f \in U_e$ and $f \in U_o$, which means f is both even and odd. In other words, f satisfies both f(-x) = f(x) and f(-x) = -f(x) for all $x \in \mathbb{R}$. Combining the two equations gives us -f(x) = f(x), which implies f(x) = 0 for all $x \in \mathbb{R}$. Therefore, $f = 0 \in \{0\}$, and so we have $U_e \cap U_0 \subset \{0\}$. On the other hand, since $U_e \cap U_o$ is a subspace of $\mathbb{R}^{\mathbb{R}}$, we have in fact the set equality $U_e \cap U_0 = \{0\}$. By 1.45 of Axler, we conclude $\mathbb{R}^{\mathbb{R}} = U_e \oplus U_o$.

(20pts) 5. Let $\mathbb{C}^{\mathbb{R}}$ be the set of all complex-valued functions $f : \mathbb{R} \to \mathbb{C}$. Define on $\mathbb{C}^{\mathbb{R}}$ the usual operations of addition

$$(f+g)(x) = f(x) + g(x)$$

and scalar multiplication

$$(\lambda f)(x) = \lambda f(x)$$

for all scalars $\lambda \in \mathbb{F}$ and complex-valued functions $f, g \in \mathbb{C}^{\mathbb{R}}$. Also let U be the set of all complex-valued functions $f : \mathbb{R} \to \mathbb{C}$ such that

 $f(-x) = \overline{f(x)}$

for all $x \in \mathbb{R}$, where the bar denotes the complex conjugate.

(12pts) a. Show that $\mathbb{C}^{\mathbb{R}}$ is a vector space over \mathbb{R} with the operations defined above.

Proof. Let $f, g, h \in \mathbb{C}^{\mathbb{R}}$ be arbitrary; this means we will argue for all $f, g, h \in \mathbb{C}^{\mathbb{R}}$.

• Commutativity: For all $x \in \mathbb{R}$, we have

$$(f + g)(x) = f(x) + g(x)$$

= $g(x) + f(x)$
= $(g + f)(x)$,

and so we conclude f + g = g + f.

• Associativity: For all $x \in \mathbb{R}$, we have

$$\begin{aligned} ((f+g)+h)(x) &= (f+g)(x) + h(x) \\ &= (f(x)+g(x)) + h(x) \\ &= f(x) + (g(x) + h(x)) \\ &= f(x) + (g+h)(x) \\ &= (f+(g+h))(x), \end{aligned}$$

and so we conclude (f + g) + h = f + (g + h).

• Additive identity: Suppose we have the zero function $0 \in \mathbb{C}^{\mathbb{R}}$. For all $x \in \mathbb{R}$, we have

$$(f + 0)(x) = f(x) + 0(x)$$

= $f(x) + 0$
= $f(x)$,

and so we conclude f + 0 = f.

• Additive inverse: Suppose we have $-f \in \mathbb{C}^{\mathbb{R}}$. For all $x \in \mathbb{R}$, we have

$$(f + (-f))(x) = f(x) + (-f)(x)$$

= $f(x) - f(x)$
= 0,

and so we conclude f + (-f) = 0, which means -f is the additive inverse.

• Multiplicative identity: Suppose we have the identity function $1 \in \mathbb{C}^{\mathbb{R}}$. For all $x \in \mathbb{R}$, we have

$$(1f)(x) = 1f(x)$$
$$= f(x),$$

and so we conclude 1f = f.

• Distributive properties: Let $\lambda \in \mathbb{R}$ be arbitrary. Then, for all $x \in \mathbb{R}$, we have

$$\begin{aligned} (\lambda(f+g))(x) &= \lambda(f+g)(x) \\ &= \lambda(f(x)+g(x)) \\ &= \lambda f(x) + \lambda g(x) \\ &= (\lambda f + \lambda g)(x), \end{aligned}$$

and so we conclude $\lambda(f + g) = \lambda f + \lambda g$.

Since we satisfied all the properties of a vector space, we conclude that $\mathbb{C}^{\mathbb{R}}$ is a vector space.

(8pts) b. Show that U is a subspace of $\mathbb{C}^{\mathbb{R}}$.

Proof. Let $f, g \in U$ be arbitrary; this means we will be arguing for all $f, g \in U$.

- Additive identity: For all x ∈ ℝ, the zero function 0 ∈ C^ℝ satisfies 0(x) = 0 = 0 = 0(x) for all x ∈ ℝ, and so we conclude 0 ∈ U.
- Closed under addition: Since we assumed $f, g \in U$, we have $f(-x) = \overline{f(x)}$ and $g(-x) = \overline{g(x)}$ for all $x \in \mathbb{R}$. These imply

$$(f+g)(-x) = f(-x) + g(-x)$$
$$= \overline{f(x)} + \overline{g(x)}$$
$$= \overline{f(x)} + g(x)$$
$$= \overline{f(x)} + g(x)$$
$$= \overline{(f+g)(x)}$$

for all $x \in \mathbb{R}$, and so we conclude $f + g \in U$.

• Closed under scalar multiplication: Let $\lambda \in \mathbb{R}$ be arbitrary. Since we assumed $f \in U$, we have $f(-x) = \overline{f(x)}$ for all $x \in \mathbb{R}$. This implies

$$(\lambda f)(-x) = \lambda f(-x)$$
$$= \lambda \overline{f(x)}$$
$$= \overline{\lambda f(x)}$$
$$= \overline{\lambda f(x)}$$
$$= \overline{\lambda f(x)}$$
$$= \overline{\lambda f(x)}$$

for all $x \in \mathbb{R}$, and so we conclude $\lambda f \in U$.

Since we satisfied all the properties of a subspace, we conclude that U is a subspace of $\mathbb{C}^{\mathbb{R}}$.