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(20pts) 1. For this question, you will need to refer to the definitions in Chapter 1 of your Axler textbook to find the answers. (This is one
of the reasons this examination is open book, open notes, open homework, and open classmates.)

(4pts) a. Write down the definitions of addition and scalar multiplication on a set V .
Definition. From Definition 1.18 of Axler:

• An addition on a set V is a function that assigns an element u + v ∈ V to each pair of elements u, v ∈ V .
• A scalar multiplication on a set V is a function that assigns an element λv ∈ V to each λ ∈ F and each v ∈ V .

(12pts) b. Now assume that V is a vector space over a field F. Write down all the properties of a vector space.
Definition. From Definition 1.19 of Axler: A vector space is a set V along with an addition on V and a scalar multipli-
cation on V such that the following properties hold:

• commutativity: u + v = v + u for all u, v ∈ V ;
• associativity: (u + v) + w = u + (v + w) and (ab)v = a(bv) for all u, v,w ∈ V and for all a, b ∈ F;
• additive identity: there exists an element 0 ∈ V such that v + 0 = v for all v ∈ V ;
• additive inverse: for every v ∈ V , there exists w ∈ V such that v + w = 0;
• multiplicative identity: 1v = v for all v ∈ V ;
• distributive properties: a(u + v) = au + av and (a + b)v = av + bv for all a, b ∈ F and for all u, v ∈ V .

(4pts) c. Write down the definition of a subspace U of V .
Definition. From Definition 1.32 of Axler:

• A subset U of V is called a subspace of V if U is also a vector space, using the same addition and scalar multiplication
as on V .

(20pts) 2. Let n be a positive integer, let λ ∈ F be a scalar, and let x, y ∈ Fn be lists of length n. Define on Fn the operations of “addition”

x “+” y = x − y

and “scalar multiplication”
λ “×” x = −λx.

Is Fn a vector space over F with respect to these operations? If so, prove it. If not, prove which of the properties of a vector
space are satisfied and give counterexamples for the properties of a vector space that are not satisfied.

Proof. We will list all the properties, determine whether or not they are satisfied, and prove or give a counterexample to
each property as appropriate. In the case of counterexamples, we will let n = 2, so that the list (x1, . . . , xn) ∈ Fn becomes
(x1, x2) ∈ F

2; this is to ensure that our counterexamples are explicit.

• Commutativity is not satisfied. Let (x1, x2) = (1, 1), (y1, y2) = (2, 2) ∈ F2. Then

(x1, x2) “+” (y1, y2) = (x1, x2) − (y1, y2)

= (1, 1) − (2, 2)
= (−1,−1)

and

(y1, y2) “+” (x1, x2) = (y1, y2) − (x1, x2)

= (2, 2) − (1, 1)
= (1, 1).

Since we have (−1,−1) , (1, 1), we conclude (x1, x2) “+” (y1, y2) , (y1, y2) “+” (x1, x2).

• Associativity is not satisfied. Let (x1, x2) = (1, 1), (y1, y2) = (2, 2), (z1, z2) = (3, 3) ∈ F2. Then

((x1, x2) “+” (y1, y2)) “+” (z1, z2) = ((x1, xn) − (y1, y2)) “+” (z1, z2)

= ((x1, x2) − (y1, y2)) − (z1, z2)

= (x1, x2) − (y1, y2) − (z1, z2)

= (1, 1) − (2, 2) − (3, 3)
= (−4,−4)



and

(x1, x2) “+” ((y1, y2) “+” (z1, z2)) = (x1, x2) “+” ((y1, y2) − (z1, z2))

= (x1, x2) − ((y1, y2) − (z1, z2))

= (x1, x2) − (y1, y2) + (z1, z2)

= (1, 1) − (2, 2) + (3, 3)
= (2, 2).

Since we have (−4,−4) , (2, 2), we conclude ((x1, x2) “+” (y1, y2)) “+” (z1, z2) , (x1, x2) “+” ((y1, y2) “+” (z1, z2)).

• Additive identity is satisfied. Suppose we have (0, 0) ∈ F2. Then, for all (x1, x2) ∈ F
2, we have

(x1, x2) “+” (0, 0) = (x1, x2) − (0, 0)
= (x1 − 0, x2 − 0)
= (x1, x2).

• Additive inverse is satisfied. For all (x1, x2) ∈ F
2, we have

(x1, x2) “+” (x1, x2) = (x1, x2) − (x1, x2)

= (x1 − x1, x2 − x2)

= (0, 0).

• Multiplicative identity is not satisfied. Let λ = 1 ∈ F and (x1, x2) = (1, 1) ∈ F2. Then

λ “×” (x1, x2) = −λ(x1, x2)

= −1(1, 1)
= (−1,−1)

and

λ(x1, x2) = 1(1, 1)
= (1, 1).

Since we have (−1, 1) , (1, 1), we conclude λ “×” (x1, x2) , λ(x1, x2).

• Distributive properties are not satisfied. It is true that the operations satisfy the left distributive property: for all a, b ∈ F
and for all (x1, . . . , xn), (y1, . . . , yn) ∈ F

n, we have

a “×” ((x1, . . . , xn) “+” (y1, . . . , yn)) = a “×” ((x1, . . . , xn) − (y1, . . . , yn))

= a “×” (x1 − y1, . . . , xn − yn)

= −a(x1 − y1, . . . , xn − yn)

= −a((x1, . . . , xn) − (y1, . . . , yn))

= (−a(x1, . . . , xn)) − (−a(y1, . . . , yn))

= (a “×” (x1, . . . xn)) − (a “×” (y1, . . . , yn))

= (a “×” (x1, . . . xn)) “+” (a “×” (y1, . . . , yn)).

However, the operations do not satisfy the right distributive property. Let a = 1, b = 2 ∈ F and (x1, . . . , xn) = (1, . . . , 1) ∈
Fn. Then we have

(a + b) “×” (x1, x2) = −(a + b)(x1, x2)

= −(1 + 2)(1, 1)
= (−3,−3)

and

(a “×” (x1, x2)) “+” (b “×” (y1, y2)) = (−a(x1, x2)) “+” (−b(y1, y2))

= (−a(x1, x2)) − (−b(x1, x2))

= −a(x1, x2) + b(x1, x2)

= −1(1, 1) + 2(2, 2)
= (1, 1).

Since we have (−3, 3) , (1, 1), we conclude

(a + b) “×” (x1, x2) , (a “×” (x1, x2)) “+” (b “×” (y1, y2)).



Therefore, we conclude that Fn is not a vector space with respect to the specified operations because it does not satisfy all the
properties of a vector space. �

(20pts) 3. For each of the following subsets of F3, determine whether it is a subspace of F3. If so, prove it. If not, give a counterexample
to show some property of a subspace that is not satisfied.

(5pts) a. {(x1, x2, x3) ∈ F
3 : x1 + 2x2 + 3x3 = 0};

Proof. We will prove that U1 = {(x1, x2, x3) ∈ F
3 : x1 + 2x2 + 3x3 = 0} is a subspace of F3.

• Additive identity: Since (0) + 2(0) + 3(0) = 0, we have (0, 0, 0) ∈ U1.
• Closed under addition: Suppose we have (x1, x2, x3), (y1, y2, y3) ∈ U1. Then we have x1 + 2x2 + 3x3 = 0 and

y1 + 2y2 + 3y3 = 0. These imply

(x1 + y1) + 2(x2 + y2) + 3(x3 + y3) = (x1 + 2x2 + 3x3) + (y1 + 2y2 + 3y3)

= 0 + 0
= 0.

So we conclude (x1, x2, x3) + (y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3) ∈ U1.
• Closed under scalar multiplication: Suppose we have λ ∈ F and (x1, x2, x3) ∈ U1. Then we have x1 + 2x2 + 3x3 = 0.

This implies

(λx1) + 2(λx2) + 3(λx3) = λ(x1 + 2x2 + 3x3)

= λ · 0
= 0.

So we conclude λ(x1, x2, x3) = (λx1, λx2, λx3) ∈ U1.

Since we satisfied all the properties of a subspace, we conclude that U1 is a subspace of F3. �

(5pts) b. {(x1, x2, x3) ∈ F
3 : x1 + 2x2 + 3x3 = 4};

Proof. We will prove that U2 = {(x1, x2, x3) ∈ F
3 : x1 + 2x2 + 3x3 = 4} is not a subspace of F3.

• Additive identity is not satisfied. Since we have 0 + 2(0) + 3(0) = 0 , 4, we conclude (0, 0, 0) < U2.

Since we showed that one of the properties of a subspace is not satisfied, we conclude that U2 is not a subspace of F3. �

(5pts) c. {(x1, x2, x3) ∈ F
3 : x1x2x3 = 0};

Proof. We will prove that U3 = {(x1, x2, x3) ∈ F
3 : x1x2x3 = 0} is not a subspace of F3.

• Closed under addition is not satisfied. Let (x1, x2, x3) = (0, 1, 0), (y1, y2, y3) = (1, 0, 1) ∈ F3. Then we have x1x2x3 =

(0)(1)(0) and y1y2y3 = (1)(0)(1) = 0, which means we have (x1, x2, x3), (y1, y2, y3) ∈ U3. But these imply

(x1 + y1)(x2 + y2)(x3 + y3) = (0 + 1)(1 + 0)(0 + 1)
= (1)(1)(1)
= 1
, 0,

which means we have (x1, x2, x3) + (y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3) < U3.

Since we showed that one of the properties of a subspace is not satisfied, we conclude that U3 is not a subspace of F3. �

(5pts) d. {(x1, x2, x3) ∈ F
3 : x1 = 5x3}.

Proof. We will prove that U4 = {(x1, x2, x3) ∈ F
3 : x1 = 5x3} is a subspace of F3.

• Additive identity: Since (0) = 5(0), we have (0, 0, 0) ∈ U4.
• Closed under addition: Suppose we have (x1, x2, x3), (y1, y2, y3) ∈ U4. Then we have x1 = 5x3 and y1 = 5y3. These

imply

x1 + y1 = 5x3 + 5y3

= 5(x3 + y3).

So we conclude (x1, x2, x3) + (y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3) ∈ U1.
• Closed under scalar multiplication: Suppose we have λ ∈ F and (x1, x2, x3) ∈ U1. Then we have x1 = 5x3. This

implies

λx1 = λ(5x3)

= 5(λx3).

So we conclude λ(x1, x2, x3) = (λx1, λx2, λx3) ∈ U1.



Since we satisfied all the properties of a subspace, we conclude that U4 is a subspace of F3. �

(20pts) 4. Let RR be the set of all real-valued functions f : R→ R. A real-valued function f : R→ R is called even if

f (−x) = f (x)

for all x ∈ R. A real-valued function f : R→ R is called odd if

f (−x) = − f (x)

for all x ∈ R. Let Ue denote the set of real-valued even functions on R, and let Uo denote the set of real-valued odd functions
on R. Show that we have RR = Ue ⊕ Uo.

Proof. First, we need to show that Ue and Uo are subspaces of RR.

• Additive identity: For all x ∈ R, the zero function satisfies 0(x) = 0 = 0(−x) and 0(x) = 0 = −0 = −0(x). So we have
0 ∈ Ue and 0 ∈ Uo.

• Closed under addition: Let g1, g2 ∈ Ue and h1, h2 ∈ Uo be arbitrary. Then, g1, g2 are even and h1, h2 are odd; in other
words, for all x ∈ R, we have g1(x) = g1(−x), g2(x) = g2(−x), h1(−x) = −h1(x), and h2(−x) = −h2(x). So, for all
x ∈ R, we have

(g1 + g2)(−x) = g1(−x) + g2(−x)

= g1(x) + g2(x)

= (g1 + g2)(x)

and

(h1 + h2)(−x) = h1(−x) + h2(−x)

= −h1(x) − h2(x)

= −(h1(x) + h2(x))

= −(h1 + h2)(x).

So g1 + g2 is even and h1 + h2 is odd; in other words, we have g1 + g2 ∈ Ue and h1 + h2 ∈ Uo.

• Closed under scalar multiplication: Let λ ∈ F, g ∈ Ue, and h ∈ Uo be arbitrary. Then, g is even and h is odd; in other
words, for all x ∈ R, we have g(−x) = g(x) and h(−x) = −h(x). So, for all x ∈ R, we have

(λg)(−x) = λg(−x)

= λg(x)

= (λg)(x)

and

(λh)(−x) = λh(−x)

= λ(−h(x))

= −λh(x)

= (λh)(x).

So λg is even and λh is odd; in other words, we have λg ∈ Ue and λh ∈ Uo.

Since we satisfied all the properties of a subspace, we conclude that Ue and Uo are subspaces of RR. Next, we need to show
RR = Ue + Uo. In other words, we will show that we can write every function f ∈ RR as a sum of an even function and an
odd function. Define for all x ∈ R the functions g, h ∈ RR by

g(x) =
f (x) + f (−x)

2

and
h(x) =

f (x) − f (−x)
2

.

Then

g(−x) =
f (−x) + f (−(−x))

2

=
f (−x) + f (x)

2

=
f (x) + f (−x)

2
= g(x),



which means g is even, or g ∈ Ue. Similarly,

h(−x) =
f (−x) − f (−(−x))

2

= −
f (x) − f (−x)

2
= −h(x),

which means h is odd, or h ∈ Uo. Finally, for all x ∈ R, we have

(g + h)(x) = g(x) + h(x)

=
f (x) + f (−x)

2
+

f (x) − f (−x)
2

=
( f (x) + f (−x)) + ( f (x) − f (−x))

2

=
2 f (x)

2
= f (x),

and so f = g+h, which establishes RR = Ue+Uo. At this point, it remains to show RR = Ue⊕Uo. According to 1.45 of Axler,
we only need to show Ue ∩Uo = {0}. So suppose we have f ∈ Ue ∩Uo. Then f ∈ Ue and f ∈ Uo, which means f is both
even and odd. In other words, f satisfies both f (−x) = f (x) and f (−x) = − f (x) for all x ∈ R. Combining the two equations
gives us − f (x) = f (x), which implies f (x) = 0 for all x ∈ R. Therefore, f = 0 ∈ {0}, and so we have Ue ∩U0 ⊂ {0}. On the
other hand, since Ue ∩Uo is a subspace of RR, we have in fact the set equality Ue ∩U0 = {0}. By 1.45 of Axler, we conclude
RR = Ue ⊕ Uo. �

(20pts) 5. Let CR be the set of all complex-valued functions f : R→ C. Define on CR the usual operations of addition

( f + g)(x) = f (x) + g(x)

and scalar multiplication
(λ f )(x) = λ f (x)

for all scalars λ ∈ F and complex-valued functions f , g ∈ CR. Also let U be the set of all complex-valued functions f : R→ C
such that

f (−x) = f (x)

for all x ∈ R, where the bar denotes the complex conjugate.

(12pts) a. Show that CR is a vector space over R with the operations defined above.

Proof. Let f , g, h ∈ CR be arbitrary; this means we will argue for all f , g, h ∈ CR.

• Commutativity: For all x ∈ R, we have

( f + g)(x) = f (x) + g(x)

= g(x) + f (x)

= (g + f )(x),

and so we conclude f + g = g + f .
• Associativity: For all x ∈ R, we have

(( f + g) + h)(x) = ( f + g)(x) + h(x)

= ( f (x) + g(x)) + h(x)

= f (x) + (g(x) + h(x))

= f (x) + (g + h)(x)

= ( f + (g + h))(x),

and so we conclude ( f + g) + h = f + (g + h).
• Additive identity: Suppose we have the zero function 0 ∈ CR. For all x ∈ R, we have

( f + 0)(x) = f (x) + 0(x)
= f (x) + 0
= f (x),

and so we conclude f + 0 = f .



• Additive inverse: Suppose we have − f ∈ CR. For all x ∈ R, we have

( f + (− f ))(x) = f (x) + (− f )(x)

= f (x) − f (x)

= 0,

and so we conclude f + (− f ) = 0, which means − f is the additive inverse.
• Multiplicative identity: Suppose we have the identity function 1 ∈ CR. For all x ∈ R, we have

(1 f )(x) = 1 f (x)

= f (x),

and so we conclude 1 f = f .
• Distributive properties: Let λ ∈ R be arbitrary. Then, for all x ∈ R, we have

(λ( f + g))(x) = λ( f + g)(x)

= λ( f (x) + g(x))

= λ f (x) + λg(x)

= (λ f + λg)(x),

and so we conclude λ( f + g) = λ f + λg.

Since we satisfied all the properties of a vector space, we conclude that CR is a vector space. �

(8pts) b. Show that U is a subspace of CR.

Proof. Let f , g ∈ U be arbitrary; this means we will be arguing for all f , g ∈ U.

• Additive identity: For all x ∈ R, the zero function 0 ∈ CR satisfies 0(x) = 0 = 0 = 0(x) for all x ∈ R, and so we
conclude 0 ∈ U.
• Closed under addition: Since we assumed f , g ∈ U, we have f (−x) = f (x) and g(−x) = g(x) for all x ∈ R. These

imply

( f + g)(−x) = f (−x) + g(−x)

= f (x) + g(x)

= f (x) + g(x)

= ( f + g)(x)

for all x ∈ R, and so we conclude f + g ∈ U.
• Closed under scalar multiplication: Let λ ∈ R be arbitrary. Since we assumed f ∈ U, we have f (−x) = f (x) for all

x ∈ R. This implies

(λ f )(−x) = λ f (−x)

= λ f (x)

= λ f (x)

= λ f (x)

= (λ f )(x)

for all x ∈ R, and so we conclude λ f ∈ U.

Since we satisfied all the properties of a subspace, we conclude that U is a subspace of CR. �


