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(20pts) 1. For this question, you will need to refer to the definitions in Chapter 2 of your Axler textbook to find the answers.

(4pts) a. Write down the definitions of linear combination and span.
Definition. From Definitions 2.3 and 2.5 of Axler:

• A linear combination of a list v1, . . . , vm of vectors in V is a vector of the form a1v1 + · · · + amvm for some
a1, . . . , am ∈ F.

• The set of all linear combinations of a list of vectors v1, . . . , vm in V is called the span of v1, . . . , vm, denoted
span(v1, . . . , vm) = {a1v1 + · · · amvm : a1, . . . , am ∈ F}.

(4pts) b. Write down the definitions of linearly independent and linearly dependent.
Definition. From Definitions 2.17 and 2.19 of Axler:

• A list v1, . . . , vm of vectors in V is called linearly independent if the only choice of a1, . . . , am ∈ F that satisfies
a1v1 + · · · + amvm = 0 is a1 = 0, . . . , am = 0.

• A list v1, . . . , vm of vectors in V is called linearly dependent if there exist a1, . . . , am ∈ F, not all 0, such that
a1v1 + · · · + amvm = 0.

(4pts) c. Write down the definitions of finite-dimensional vector space and infinite-dimensional vector space.
Definition. From Definitions 2.10 and 2.15 of Axler:

• A vector space is called finite-dimensional if some list of vectors v1, . . . , vm in it spans the space; in other words, if
we have span(v1, . . . , vm) = V .
• A vector space is called infinite-dimensional if it is not finite-dimensional.

(4pts) d. Write down the definitions of polynomial and degree of a polynomial.
Definition. From Definitions 2.11 and 2.12 of Axler:

• A function p : F → F is called a polynomial with coefficients in F if there exist a0, . . . , am ∈ F such that p(z) =

a0 + a1z + a2z2 + · · · + amzm for all z ∈ F. The set of all polynomials with coefficients in F is denoted P(F).
• A polynomial p ∈ P(F) is said to have degree m if there exist scalars a0, a1, . . . , am ∈ F with am , 0 such that

p(z) = a0 + a1z + · · · + amzm for all z ∈ F. If p has degree m, we write deg p = m.

(4pts) e. Write down the definitions of basis and dimension.
Definition. From Definitions 2.27 and 2.36 of Axler:

• A basis of V is a list of vector in V that is linearly independent and spans V .
• The dimension of a finite-dimensional vector space is the length in any basis of the vector space. The dimension of

of the vector space V is denoted by dim V .

(20pts) 2. Suppose v1, v2, v3, . . . , vm is a linearly independent list of vectors in the vector space V .

(8pts) a. Prove that 5v1 − 4v2, v2, v3, . . . , vm is linearly independent.

Proof. Suppose a1, . . . , am ∈ F satisfy

a1(5v1 − 4v2) + a2v2 + a3v3 + · · · + amvm = 0.

Algebraically rearranging the left-hand side of the above equation gives

(5a1)v1 + (−4a1 + a2)v2 + a3v3 + · · · + amvm = 0.

Since v1, v2, v3, . . . , vm is linearly independent, all scalars are zero, which means we have

5a1 = 0,−4a1 + a2 = 0, a3 = 0, . . . , am = 0.

The first equation 5a1 = 0 implies a1 = 0. The second equation −4a1 + a2 = 0 with a1 = 0 implies a2 = 0. So we have

a1 = 0, a2 = 0, a3 = 0, . . . , am = 0,

and so we conclude that 5v1 − 4v2, v2, v3, . . . , vm is linearly independent. �

(8pts) b. If λ ∈ F satisfies λ , 0, prove that λv1, λv2, λv3, . . . , λvm is linearly independent.



Proof. Suppose a1, . . . , am ∈ F satisfy
a1(λv1) + · · · + am(λvm) = 0.

Rewriting the parentheses on the left-hand side of the above equation gives

(a1λ)v1 + · · · + (amλ)vm = 0.

Since v1, . . . , vm is linearly independent, all scalars are zero, which means we have

a1λ = 0, . . . , amλ = 0.

Because we assumed λ , 0, we arrive at
a1 = 0, . . . , am = 0,

and so we conclude that λv1, λv2, λv3, . . . , λvm is linearly independent. �

(4pts) c. Assume that w1, . . . ,wm is also a linearly independent list of vectors in V . Give a counterexample to show that the list
v1 + w1, . . . , vm + wm is not linearly independent.

Proof. This is a false statement; we will give a counterexample. Let m = 2, let V = R2, let v1 = (1, 0), v2 = (0, 1) be a
list of vectors in R2, and let w1 = −v1 = (−1, 0) and w2 = −v2 = (0,−1). Suppose a1, a2 satisfy

a1v1 + a2v2 = (0, 0).

Then we have

(0, 0) = a1v1 + a2v2

= a1(1, 0) + a2(0, 1)
= (a1, 0) + (0, a2)

= (a1, a2),

from which we get a1 = 0, a2 = 0, and so v1, v2 is linearly independent. Similarly, we have

(0, 0) = b1w1 + b2w2

= b1(−1, 0) + b2(0,−1)
= (−b1, 0) + (0,−b2)

= (−b1,−b2),

from which we get −b1 = 0,−b2 = 0, or equivalently b1 = 0, b2 = 0, and so w1,w2 is linearly independent. However, if
we choose c1 = 1, c2 = 1, then we have

c1(v1 + w1) + c2(v2 + w2) = 1((1, 0) + (−1, 0)) + 1((0, 1) + (0,−1))
= 1(0, 0) + 1(0, 0)
= (0, 0) + (0, 0)
= (0, 0),

which means v1 + w1, v2 + w2 is not linearly independent. �

(20pts) 3. Consider the vector space F3 with the standard basis (1, 0, 0), (0, 1, 0), (0, 0, 1).

(15pts) a. Show that the list (1, 0,−1), (1, 2, 1), (0,−3, 2) is a basis of F3.

Proof. First, we need to show that (1, 0,−1), (1, 2, 1), (0,−3, 2) is a linearly independent set that spans R3. To do this,
suppose a1, a2, a3 ∈ F satisfy

a1(1, 0,−1) + a2(1, 2, 1) + a3(0,−3, 2) = (0, 0, 0).

Then we have

(0, 0, 0) = a1(1, 0,−1) + a2(1, 2, 1) + a3(0,−3, 2)
= (a1, 0,−a1) + (a2, 2a2, a2) + (0,−3a3, 2a3)

= (a1 + a2, 2a2 − 3a3,−a1 + a2 + 2a3).

Equating the coordinates gives us the system of equations

a1 + a2 = 0,
2a2 − 3a3 = 0,

−a1 + a2 + 2a3 = 0,

from which system-solving gives a1 = 0, a2 = 0, a3 = 0. Therefore, (1, 0,−1), (1, 2, 1), (0,−3, 2) is a linearly independent
list. Furthermore, since (1, 0,−1), (1, 2, 1), (0,−3, 2) has length 3 and we have dimR3 = 3, it is of the right length, which
means, by 2.39 of Axler, this list is a basis of R3. �



Alternate proof. First, we will prove that the list (1, 0,−1), (1, 2, 1), (0,−3, 2) spans R3. This means we need to show that,
for all vectors (x1, x2, x3) ∈ R

3, there exist a1, a3, a3 ∈ F such that

(x1, x2, x3) = a1(1, 0,−1) + a2(1, 2, 1) + a3(0,−3, 2).

With that said, we have

(x1, x2, x3) = a1(1, 0,−1) + a2(1, 2, 1) + a3(0,−3, 2)
= (a1, 0,−a1) + (a2, 2a2, a2) + (0,−3a3, 2a3)

= (a1 + a2, 2a2 − 3a3,−a1 + a2 + 2a3).

Equating the coordinates gives us the system of equations

a1 + a2 = x1,

2a2 − 3a3 = x2,

−a1 + a2 + 2a3 = x3,

from which system-solving gives

a1 =
7
10

x1 −
1
5

x2 −
3

10
x3,

a2 =
3

10
x1 +

1
5

x2 +
3

10
x3,

a3 =
1
5

x1 −
1
5

x2 +
1
5

x3.

So we found a1, a2, a3 ∈ F that depend on the coordinates of the (x1, x2, x3) ∈ R
3, which means (1, 0,−1), (1, 2, 1), (0,−3, 2)

spans R3. Next, we need to prove the list (1, 0,−1), (1, 2, 1), (0,−3, 2) is linearly independent. To do this, suppose
a1, a2, a3 ∈ F satisfy

a1(1, 0,−1) + a2(1, 2, 1) + a3(0,−3, 2) = (0, 0, 0).

The above equation is only
(x1, x2, x3) = a1(1, 0,−1) + a2(1, 2, 1) + a3(0,−3, 2)

with x1 = 0, x2 = 0, x3 = 0. Substituting x1 = 0, x2 = 0, x3 = 0 into our expressions of the scalars a1, a2, a3, we get

a1 =
7

10
(0) −

1
5
(0) −

3
10
(0) = 0,

a2 =
3

10
(0) +

1
5
(0) +

3
10
(0) = 0,

a3 =
1
5
(0) −

1
5
(0) +

1
5
(0) = 0.

So the list (1, 0,−1), (1, 2, 1), (0,−3, 2) is linearly independent. Therefore, (1, 0,−1), (1, 2, 1), (0,−3, 2) is a basis of R3. �

(5pts) b. Express the standard basis vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) as a linear combination of the list in part (a).

Proof. Let us write each vector (1, 0, 0), (0, 1, 0), (0, 0, 1) as a linear combination of the list (1, 0,−1), (1, 2, 1), (0,−3, 2).
In other words, we need to find a1, a2, a3, b1, b2, b3, c1, c2, c3 ∈ F such that

(1, 0, 0) = a1(1, 0,−1) + a2(1, 2, 1) + a3(0,−3, 2),
(0, 1, 0) = b1(1, 0,−1) + b2(1, 2, 1) + b3(0,−3, 2),
(0, 0, 1) = c1(1, 0,−1) + c2(1, 2, 1) + c3(0,−3, 2).

System-solving the first equation as done exactly in part (a) and substituting x1 = 1, x2 = 0, x3 = 0, we obtain

a1 =
7

10
(1) −

1
5
(0) −

3
10
(0) =

7
10
,

a2 =
3

10
(1) +

1
5
(0) +

3
10
(0) =

3
10
,

a3 =
1
5
(1) −

1
5
(0) +

1
5
(0) =

1
5
.

System-solving the second equation as done exactly in part (a) and substituting x1 = 0, x2 = 1, x3 = 0, we obtain

b1 =
7

10
(0) −

1
5
(1) −

3
10
(0) = −

1
5
,

b2 =
3

10
(0) +

1
5
(1) +

3
10
(0) =

1
5
,

b3 =
1
5
(0) −

1
5
(1) +

1
5
(0) = −

1
5
.



System-solving the third equation as done exactly in part (a) and substituting x1 = 0, x2 = 0, x3 = 1, we obtain

c1 =
7

10
(0) −

1
5
(0) −

3
10
(1) = −

3
10
,

c2 =
3

10
(0) +

1
5
(0) +

3
10
(1) =

3
10
,

c3 =
1
5
(0) −

1
5
(0) +

1
5
(1) =

1
5
.

This completes our proof. �

(20pts) 4. Let V be a vector space. Suppose v1, v2, v3, v4 is a basis of V . Prove that the list

v1 − v2, v2 − v3, v3 − v4, v4

is also a basis of V .

Proof. Suppose a1, a2, a3, a4 ∈ F satisfy

a1(v1 − v2) + a2(v2 − v3) + a3(v3 − v4) + a4v4 = 0.

Algebraically rearranging the terms, we get

a1v1 + (−a1 + a2)v2 + (−a2 + a3)v3 + (−a3 + a4)v4 = 0.

Since v1, v2, v3, v4 is linearly independent, all scalars are zero, which means we have

a1 = 0,−a1 + a2 = 0,−a2 + a3 = 0,−a3 + a4 = 0.

The second equation −a1 + a2 = 0 with a1 = 0 implies a2 = 0. The third equation −a2 + a3 = 0 with a2 = 0 implies a3 = 0.
The fourth equation −a3 + a4 = 0 with a3 = 0 implies a4 = 0. So we have

a1 = 0, a2 = 0, a3 = 0, a4 = 0,

and so we conclude v1 − v2, v2 − v3, v3 − v4, v4 is linearly independent. Next, we need to prove that v1 − v2, v2 − v3, v3 − v4, v4
spans V . Since v1, v2, v3, v4 spans V , there exist a1, a2, a3, a4 ∈ F such that

v = a1v1 + a2v2 + a3v3 + a4v4.

Furthermore, observe that we can write

v1 = (v1 − v2) + (v2 − v3) + (v3 − v4) + v4,

v2 = (v2 − v3) + (v3 − v4) + v4,

v3 = (v3 − v4) + v4.

So we have

v = a1v1 + a2v2 + a3v3 + a4v4

= a1((v1 − v2) + (v2 − v3) + (v3 − v4) + v4) + a2((v2 − v3) + (v3 − v4) + v4) + a3((v3 − v4) + v4) + a4v4

= a1(v1 − v2) + (a1 + a2)(v2 − v3) + (a1 + a2 + a3)(v3 − v4) + (a1 + a2 + a3 + a4)v4.

Since we also have a1, a1 + a2, a1 + a2 + a3, a1 + a2 + a3 + a4 ∈ F, it follows that the list v1 − v2, v2 − v3, v3 − v4, v4 spans V .
Therefore, v1 − v2, v2 − v3, v3 − v4, v4 is a basis of V . �

(20pts) 5. Consider the sets
U1 = {(x1, x2, x3, x4) ∈ F

4 : x1 + x2 = 0}

and
U2 = {(x1, x2, x3, x4) ∈ F

4 : x1 + x3 = 0}.

(6pts) a. Show that U1 and U2 are subspaces of F4.

Proof. We will prove that U1 = {(x1, x2, x3, x4) ∈ F
4 : x1 + x2 = 0} and U2 = {(x1, x2, x3, x4) ∈ F

4 : x1 + x3 = 0} are
subspaces of F4.

• Additive identity: Since (0) + (0) = 0, we have (0, 0, 0, 0) ∈ U1 and (0, 0, 0, 0) ∈ U2. Both U1 and U2 contain the
same additive identity.



• Closed under addition: Suppose we have (x1, x2, x3, x4), (y1, y2, y3, y4) ∈ U1. Then x1 + x2 = 0 and y1 + y2 = 0. So
we have

(x1 + y1) + (x2 + y2) = x1 + x2 + y1 + y2

= 0 + 0
= 0.

So we conclude (x1, x2, x3, x4) + (y1, y2, y3, y4) = (x1 + y1, x2 + y2, x3 + y3, x4 + y4) ∈ U1, and so U1 is closed under
addition. Similarly, suppose we have (z1, z2, z3, z4), (w1,w2,w3,w4) ∈ U1. Then x1 + x3 = 0 and y1 + y3 = 0. So we
have

(z1 + w1) + (z3 + w3) = z1 + z3 + w1 + w3

= 0 + 0
= 0.

So we conclude (z1, z2, z3, z4)+ (w1,w2,w3,w4) = (z1 +w1, z2 +w2, z3 +w3, z4 +w4) ∈ U2, and so U2 is closed under
addition.
• Closed under scalar multiplication: Suppose we have λ ∈ F and (x1, x2, x3) ∈ U1. Then we have x1 + x2 = 0. This

implies

(λx1) + (λx2) = λ(x1 + x2)

= λ · 0
= 0.

So we conclude λ(x1, x2, x3, x4) = (λx1, λx2, λx3, λx4) ∈ U1, and so U1 is closed under scalar multiplication. Simi-
larly, suppose we have λ ∈ F and (z1, z2, z3) ∈ U1. Then we have z1 + z3 = 0. This implies

(λz1) + (λz3) = λ(z1 + z3)

= λ · 0
= 0.

So we conclude λ(z1, z2, z3, z4) = (λz1, λz2, λz3, λz4) ∈ U2, and so U2 is closed under scalar multiplication.

Since we satisfied all the properties of a subspace, we conclude that U1 and U2 are subspaces of F4. �

(12pts) b. Find the dimensions of U1, U2, U1 + U2, and U1 ∩U2. For this part of the question, do NOT use the formula provided by
2.43 of Axler to find the dimension of U1 + U2; any justification using that formula will receive an automatic zero score
for part (b).
Hint: Find a basis of each of the three sets, and prove that they are indeed bases of their respective sets. What is the
length of each basis?

Proof. First, we will work with U1. Let (x1, x2, x3, x4) ∈ U1 be arbitrary. Then we have x1 + x2 = 0, and so we can write

(x1, x2, x3, x4) = (x1,−x1, x3, x4)

= (x1,−x1, 0, 0) + (0, 0, x3, 0) + (0, 0, 0, x4)

= x1(1,−1, 0, 0) + x3(0, 0, 1, 0) + x4(0, 0, 0, 1)

which means the list (1,−1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) spans U1. Also, suppose x1, x3, x4 ∈ F satisfy

x1(1,−1, 0, 0) + x3(0, 0, 1, 0) + x4(0, 0, 0, 1) = (0, 0, 0, 0).

The equation then becomes
(x1,−x1, x3, x4) = (0, 0, 0, 0),

from which we get x1 = 0, x3 = 0, x4 = 0. So the list (1,−1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) is also linearly independent.
Therefore, (1,−1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) is a basis of U1. Since the basis of U1 has length 3, we have dim U1 = 3.
Next, we will work with U2. Let (x1, x2, x3, x4) ∈ U2 be arbitrary. Then we have x1 + x3 = 0, and so we can write

(x1, x2, x3, x4) = (x1, x2,−x1, x4)

= (x1, 0,−x1, 0) + (0, x2, 0, 0) + (0, 0, 0, x4)

= x1(1, 0,−1, 0) + x2(0, 0, 1, 0) + x4(0, 0, 0, 1),

which means the list (1, 0,−1, 0), (0, 0, 1, 0), (0, 0, 0, 1) spans U2. Also, suppose x1, x3, x4 ∈ F satisfy

x1(1, 0,−1, 0) + x2(0, 0, 1, 0) + x4(0, 0, 0, 1) = (0, 0, 0, 0).



The equation then becomes
(x1, x2,−x1, x4) = (0, 0, 0, 0),

from which we get x1 = 0, x2 = 0, x4 = 0. So the list (1, 0,−1, 0), (0, 0, 1, 0), (0, 0, 0, 1) is also linearly independent.
Therefore, (1, 0,−1, 0), (0, 0, 1, 0), (0, 0, 0, 1) is a basis of U2. Since the basis of U2 has length 3, we have dim U2 = 3.
Finally, we will work with

U1 ∩U2 = {(x1, x2, x3, x4) ∈ F
4 : x1 + x2 = 0 and x1 + x3 = 0}.

Let (x1, x2, x3, x4) ∈ U1 ∩U2 be arbitrary. Then we have x1 + x2 = 0 and x1 + x3 = 0, and so we can write

(x1, x2, x3, x4) = (x1,−x1,−x1, x4)

= (x1,−x1,−x1, 0) + (0, 0, 0, x4)

= x1(1,−1,−1, 0) + x4(0, 0, 0, 1),

which means the list (1,−1,−1, 0), (0, 0, 0, 1) spans U1. Also, suppose x1, x3, x4 ∈ F satisfy

x1(1,−1,−1, 0) + x4(0, 0, 0, 1) = (0, 0, 0, 0).

The equation then becomes
(x1,−x1,−x1, x4) = (0, 0, 0, 0),

from which we get x1 = 0, x4 = 0. So the list (1,−1,−1, 0), (0, 0, 0, 1) is also linearly independent. Therefore,
(1,−1,−1, 0), (0, 0, 0, 1) is a basis of U1 ∩U2. Since the basis of U1 ∩U2 contains 3 elements, we have dim(U1 ∩U2) = 3.
Finally, consider the elements in either the basis of U1 or the basis of U2:

(1,−1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 0,−1, 0), (0, 0, 1, 0), (0, 0, 0, 1).

Since (0, 0, 1, 0) and (0, 0, 0, 1) is printed twice, we can delete the vectors from the above list to write down the reduced
list

(1,−1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 0,−1, 0).

We will show that this reduced list is a basis of U1 + U2. Let (x1, x2, x3, x4) + (y1, y2, y3, y4) ∈ U1 + U2 be an arbitrary
vector. Then we have (x1, x2, x3, x4) ∈ U1, (y1, y2, y3, y4) ∈ U2, which means the points satisfy x1 +x2 = 0 and y1 +y3 = 0.
So we have

(x1, x2, x3, x4) + (y1, y2, y3, y4) = (x1,−x1, x3, x4) + (y1, y2,−y1, y4)

= ((x1,−x1, 0, 0) + (0, 0, x3, 0) + (0, 0, 0, x4)) + ((y1, 0,−y1, 0) + (0, y2, 0, 0) + (0, 0, 0, y4))

= x1(1,−1, 0, 0) + x3(0, 0, 1, 0) + x4(0, 0, 0, 1) + y1(1, 0,−1, 0) + y2(0, 1, 0, 0) + y4(0, 0, 0, 1)
= x1(1,−1, 0, 0) + (x3 + y2)(0, 1, 0, 0) + (x4 + y4)(0, 0, 0, 1).

Since we have x1, x3 + y2, x4 + y4 ∈ F, we can write every (x1, x2, x3, x4)+(y1, y2, y3, y4) ∈ U1 +U2 as a linear combination
of the list

(1,−1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 0,−1, 0).

Now we need to prove that this list is linearly independent. Suppose a1, a2, a3, a4 ∈ F satisfy

a1(1,−1, 0, 0) + a2(0, 0, 1, 0) + a3(0, 0, 0, 1) + a4(1, 0,−1, 0) = (0, 0, 0, 0).

Applying addition and scalar multiplication of vectors in F to the left-hand side of the above equation, we get

(a1 + a4,−a1, a2 − a4, a3) = (0, 0, 0, 0),

So from which we can equate the coordinates to get

a1 + a4 = 0,−a1 = 0, a2 − a4 = 0, a3 = 0.

The second equation −a1 = 0 implies a1 = 0. The first equation a1 + a4 = 0 with a1 = 0 implies a4 = 0. The third
equation a2 − a4 = 0 with a4 = 0 implies a2 = 0. So we have

a1 = 0, a2 = 0, a3 = 0, a4 = 0,

and so the list (1,−1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 0,−1, 0) is linearly independent. So this list is linearly independent
and spans U1 + U2, which means (1,−1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 0,−1, 0) is a basis of U1 + U2, and so we have
dim(U1 + U2) = 4. �

(2pts) c. Write down the formula from 2.43 of Axler that represents the dimension of U1 + U2. Substitute the values you obtained
in part (b) into the formula to verify that it holds true for our subspaces U1 and U2.



Proof. The formula for the dimension of the sum of U1 and U2 is

dim(U1 + U2) = dim U1 + dim U2 − dim(U1 ∩U2).

According to our answers to part (b), we have dim(U1 + U2) = 4, dim U1 = dim U2 = 3, and dim(U1 ∩U2) = 2. So we
have

4 = dim(U1 + U2)

= dim U1 + dim U2 − dim(U1 ∩U2)

= 3 + 3 − 2,

which is a true statement. �


