
MATH 131: Linear Algebra I
University of California, Riverside

Group Examination 3 Solutions
July 11, 2019

(20pts) 1. For this question, you will need to refer to the definitions in Chapter 3, Sections A-B, of your Axler textbook to find the
answers.

(4pts) a. Write down the properties of a linear map from V to W .
Properties. From Definition 3.2 of Axler: A linear map from V to W is a function T : V → W is the following properties:

• Additivity: T(u + v) = Tu + Tv for all u, v ∈ V ;
• Homogeneity: T(λv) = λ(Tv) for all λ ∈ F and for all v ∈ V .

The set of all linear maps from V to W is denoted L(V,W).

(4pts) b. Write down the differentiation and integration maps, and prove that they are linear.
Definition. From Example 3.4 of Axler:

• Differentiation: Define D ∈ L(P(R),P(R)) by Dp = p′. The map D is linear because it satisfies
– Additivity: D(p + q) = (p + q)′ = p′ + q′ = Dp + Dq for all p, q ∈ P(R);
– Homogeneity: D(λp) = (λp)′ = λp′ = λDp for all λ ∈ F and for all p ∈ P(R).

• Integration: Define T ∈ L(P(R),R) by T p =
∫ 1

0 p(x) dx. The map T is linear because it satisfies

– Additivity: T(p + q) =
∫ 1

0 (p(x) + q(x)) dx =
∫ 1

0 p(x) dx +
∫ 1

0 q(x) dx = T p + Tq for all p, q ∈ P(R);

– Homogeneity: T(λp) =
∫ 1

0 (λp)(x) dx =
∫ 1

0 λp(x) dx = λ
∫ 1

0 p(x) dx = λT p for all λ ∈ F and for all p ∈ P(R).

(4pts) b. Write down the definitions of addition and scalar multiplication on L(V,W).
Definition. From Definition 3.6 of Axler: Suppose S,T ∈ L(V,W) and λ ∈ F.

• The sum S + T : V → W are the linear maps defined by (S + T)v = Sv + Tv for all v ∈ V .
• The product (: V → W are the linear maps defined by (λT)v = λ(Tv) for all v ∈ V .

(4pts) c. Write down the definitions of null space and range.
Definition. From Definitions 3.12 and 3.17 of Axler:

• For all T ∈ L(V,W), the null space of T is the subset of V consisting of those vectors that T maps to 0: null T =

{v ∈ V : Tv = 0}.
• For all T ∈ L(V,W), the range of T is the subset of W consisting of those vectors that are of the form Tv for some

v ∈ V : range T = {Tv : v ∈ V}.

(4pts) d. Write down the definitions of injective and surjective.
Definition. From Definitions 3.15 and 3.20 of Axler:

• A function T : V → W is called injective if Tu = Tv implies u = v.
• A function T : V → W is called surjective if its range equals W ; that is, if we have range T = W .

(20pts) 2. Which of the following maps T : R2 → R2 is linear? If the map is linear, prove it. If not, give a counterexample to show that
some property of a linear map that is not satisfied.

(4pts) a. T(x1, x2) = (x1 + 1, x2)

Proof. We will prove that this map is not linear.

• Homogeneity is not satisfied. Let λ = 2 ∈ F and let (x1, x2) = (1, 1) ∈ R2. Then

T(λ(x1, x2)) = T(2(1, 1))
= T(2, 2)
= (2 + 1, 2)
= (3, 2)

and

λT(x1, x2) = 2T(1, 1)
= 2(1 + 1, 1)
= 2(2, 1)
= (4, 2).

Since we have (3, 2) , (4, 2), we conclude T(λ(x1, x2)) , λT(x1, x2).

Since one of the two properties of a linear map are not satisfied, this map is not linear. �



(4pts) b. T(x1, x2) = (x2, x1)

Proof. We will prove that this map is linear.

• Additivity: For all (x1, x2), (y1, y2) ∈ R
2, we have

T((x1, x2) + (y1, y2)) = T(x1 + y1, x2 + y2)

= (x2 + y2, x1 + y1)

= (x2, x1) + (y2, y1)

= T(x1, x2) + T(y1, y2).

• Homogeneity: For all λ ∈ F and for all (x1, x2) ∈ R
2, we have

T(λ(x1, x2)) = T(λx1, λx2)

= (λx2, λx1)

= λ(x2, x1)

= λT(x1, x2).

Since the two properties of a linear map are satisfied, this map is linear. �

(4pts) c. T(x1, x2) = (|x1 |, x2)

Proof. We will prove that this map is not linear.

• Homogeneity is not satisfied. Let λ = −1 ∈ F and let (x1, x2) = (1, 1) ∈ R2. Then

T(λ(x1, x2)) = T(−1(1, 1))
= T(−1,−1)
= (| − 1|,−1)
= (1,−1)

and

λT(x1, x2) = −1T(1, 1)
= −1(|1|, 1)
= −1(1, 1)
= (−1,−1).

Since we have (1,−1) , (−1,−1), we conclude T(λ(x1, x2)) , λT(x1, x2).

Since one of the two properties of a linear map are not satisfied, this map is not linear. �

(4pts) d. T(x1, x2) = (sin x1, x2)

Proof. We will prove that this map is not linear.

• Additivity is not satisfied. Let (x1, x2) = ( π2 , 0), (y1, y2) = ( π2 , 1) ∈ R
2. Then

T((x1, x2) + (y1, y2)) = T
(( π

2
, 0

)
+

( π
2
, 1

))
= T(π, 1)
= (sin π, 1)
= (0, 1)

and

T(x1, x2) + T(y1, y2) = T
( π

2
, 0

)
+ T

( π
2
, 1

)
=

(
sin

π

2
, 0

)
+

(
sin

π

2
, 1

)
= (1, 0) + (1, 1)
= (2, 1).

Since we have (0, 1) , (2, 1), we conclude T(λ(x1, x2)) , λT(x1, x2).

Since one of the two properties of a linear map are not satisfied, this map is not linear. �

(4pts) e. T(x1, x2) = (x1 − x2, 0)

Proof. We will prove that this map is linear.



• Additivity: For all (x1, x2), (y1, y2) ∈ R
2, we have

T((x1, x2) + (y1, y2)) = T(x1 + y1, x2 + y2)

= ((x1 + y1) − (x2 + y2), 0)
= (x1 − x2 + y1 − y2, 0)
= (x1 − x2, 0) + (y1 − y2, 0)
= T(x1, x2) + T(y1, y2).

• Homogeneity: For all λ ∈ F and for all (x1, x2) ∈ R
2, we have

T(λ(x1, x2)) = T(λx1, λx2)

= (λx1 − λx2, 0)
= (λ(x1 − x2), 0)
= λ(x1 − x2, 0)
= λT(x1, x2).

Since the two properties of a linear map are satisfied, this map is linear. �

(20pts) 3. Consider a linear map T : R3 → R2 that satisfies T(1,−1, 1) = (1, 0) and T(1, 1, 1) = (0, 1).

(12pts) a. Show that there exists such a map.
Hint: First verify that (1,−1, 1), (1, 1, 1) is a linearly independent list of vectors in R3. Then use 2.33 of Axler to show
that this linearly independent list extends to a basis of R3. Finally, use 3.5 of Axler to arrive at your desired conclusion.

Proof. Following the hint, we will show that (1,−1, 1), (1, 1, 1) is linearly independent. Suppose a1, a2 ∈ F satisfy

a1(1,−1, 1) + a2(1, 1, 1) = (0, 0, 0).

The left-hand side of the above equation becomes

(a1 + a2,−a1 + a2, a1 + a2) = (0, 0, 0),

which means we obtain a system of equations

a1 + a2 = 0,
−a1 + a2 = 0,

from which system-solving gives a1 = 0, a2 = 0. Therefore, (1,−1, 1), (1, 1, 1) is a linearly independent list. By 2.33 of
Axler, we can extend this list to a basis of R3. Since (1, 0), (0, 1) is the standard basis of R3, we can use 3.5 of Axler to
assert that there exists a unique map satisfying

T(1,−1, 1) = (1, 0)
T(1, 1, 1) = (0, 1)

T(x1, x2, x3) = (y1, y2),

where (x1, x2, x3) ∈ R3 is some value such that the resulting list (1,−1, 1), (1, 1, 1), (x1, x2, x3) is a basis of R3, and
(y1, y2) ∈ R

2 is the output from T of (x1, x2, x3). All the three equations above came out of 3.5 of Axler, but only the first
two are necessary to complete this proof. �

(8pts) b. Compute T(−5, 1,−5).

Proof. Since T is linear, we can use additivity and homogeneity of T to get

T(−5, 1,−5) = T((−3, 3,−3) + (−2,−2,−2))
= T(−3, 3,−3) + T(−2,−2,−2)
= T(−3(1,−1, 1)) + T(−2(1, 1, 1))
= −3T(1,−1, 1) − 2T(1, 1, 1)
= −3(1, 0) − 2(0, 1)
= (−3, 0) + (0,−2)
= (−3 + 0, 0 − 2)
= (−3,−2),

as desired. �



(20pts) 4. Suppose V and W are both finite-dimensional. Prove that there exists an injective map T ∈ L(V,W) if and only if dim V ≤
dim W .

Proof. Forward direction: If there exists a injective linear map T ∈ L(V,W), then dim V ≤ dim W . Suppose there exists a
injective linear map T ∈ L(V,W), which means by 3.16 of Axler we have null T = {0}. Since 3.19 of Axler says that range T
is a subspace of W , by 2.38 of Axler, we have dim range T ≤ dim W . By the Fundamental Theorem of Linear Maps (3.22 of
Axler), we have

dim V = dim null T + dim range T

= dim{0} + dim range T

= 0 + dim range T

= dim range T

≤ dim W,

or dim W ≤ dim V , as desired.

Backward direction: If dim V ≤ dim W , then there exists an injective linear map T ∈ L(V,W). Suppose we have dim V ≤
dim W . Since V and W are finite-dimensional, according to 2.32 of Axler, there exist a basis v1, . . . , vn of V and a basis
w1, . . . ,wm of W . For brevity in notation, let m = dim W and n = dim V , which means n ≤ m. Define T : V → W by

T(a1v1 + · · · + anvn) = a1w1 + · · · + amwm

for some a1, . . . , an, . . . , am ∈ F. Then T is linear and indeed defines a function, according to the proof for 3.5 in Axler. Now
suppose we have a1v1 + · · · + anvn ∈ null T . Then we have T(a1v1 + · · · + anvn) = 0, or

a1w1 + · · · + amwm = 0.

Since w1, . . . ,wm is a basis of W , it is linearly independent, which means all the scalars are zero; that is, we have

a1 = 0, . . . , am = 0.

Since n ≤ m, we have in particular the first n of the m scalars are zero; that is, we have a1 = 0, . . . , am = 0. So we have

a1v1 + · · · + anvn = 0,

which means we have null T ⊂ {0}. But 3.14 of Axler says that null T is a subspace in V , which means in particular that null T
contains the additive identity, or {0} ⊂ null T . Therefore, we have the set equality null T = {0}. Finally, by 3.16 of Axler, T
is injective. �

(20pts) 5. Suppose V and W are both finite-dimensional. Prove that there exists a surjective map T ∈ L(V,W) if and only if dim V ≥
dim W .

Proof. Forward direction: If there exists a surjective linear map T ∈ L(V,W), then dim V ≥ dim W . Suppose there exists a
surjective map T ∈ L(V,W), which means we have range T = W , and so dim range T = dim W . Since T is a linear map, by
3.11 of Axler we have T(0) = 0. So we have {0} ⊂ null T , and so, by 2.38 of Axler, we have 0 = dim{0} ≤ dim null T . By
the Fundamental Theorem of Linear Maps (3.22 of Axler), we have

dim V = dim null T + dim range T

= dim null T + dim W

≥ dim{0} + dim W

= 0 + dim W

= dim W,

as desired.

Backward direction: If dim V ≥ dim W , then there exists a surjective map T ∈ L(V,W). Suppose we have dim V ≤ dim W .
Since V and W are finite-dimensional, according to 2.32 of Axler, there exist a basis of V and a basis of W . For brevity in
notation, let m = dim W and n = dim V , which means n ≥ m. Define T : V → W by

T(a1v1 + · · · + anvn) = a1w1 + · · · + amwm

for some a1, . . . , am, . . . , an ∈ F. Then T is linear and indeed defines a function, according to the proof for 3.5 in Axler.
Since w1, . . . ,wn is a basis of W , every vector in W is a linear combination of w1, . . . ,wn and can therefore be written
a1w1 + · · · + amwm. This implies that we have range T = W , and so T is surjective. �


