MATH 131: Linear Algebra I

University of California, Riverside Group Examination 3 Solutions July 11, 2019

- (20pts) 1. For this question, you will need to refer to the definitions in Chapter 3, Sections A-B, of your Axler textbook to find the answers.
 - (4pts) a. Write down the properties of a *linear map* from V to W.

Properties. From Definition 3.2 of Axler: A *linear map* from V to W is a function $T: V \rightarrow W$ is the following properties:

- Additivity: T(u + v) = Tu + Tv for all $u, v \in V$;
- Homogeneity: $T(\lambda v) = \lambda(Tv)$ for all $\lambda \in \mathbb{F}$ and for all $v \in V$.

The set of all linear maps from V to W is denoted $\mathcal{L}(V, W)$.

(4pts) b. Write down the differentiation and integration maps, and prove that they are linear.

Definition. From Example 3.4 of Axler:

- Differentiation: Define $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ by Dp = p'. The map D is linear because it satisfies
 - Additivity: D(p+q) = (p+q)' = p' + q' = Dp + Dq for all $p, q \in \mathcal{P}(\mathbb{R})$;
 - Homogeneity: $D(\lambda p) = (\lambda p)' = \lambda p' = \lambda Dp$ for all $\lambda \in \mathbb{F}$ and for all $p \in \mathcal{P}(\mathbb{R})$.
- Integration: Define $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathbb{R})$ by $Tp = \int_0^1 p(x) dx$. The map T is linear because it satisfies

- Additivity:
$$T(p+q) = \int_0^1 (p(x) + q(x)) dx = \int_0^1 p(x) dx + \int_0^1 q(x) dx = Tp + Tq$$
 for all $p, q \in \mathcal{P}(\mathbb{R})$;

- Homogeneity:
$$T(\lambda p) = \int_0^1 (\lambda p)(x) dx = \int_0^1 \lambda p(x) dx = \lambda \int_0^1 p(x) dx = \lambda T p$$
 for all $\lambda \in \mathbb{F}$ and for all $p \in \mathcal{P}(\mathbb{R})$.

(4pts) b. Write down the definitions of *addition* and *scalar multiplication* on $\mathcal{L}(V, W)$.

Definition. From Definition 3.6 of Axler: Suppose $S, T \in \mathcal{L}(V, W)$ and $\lambda \in \mathbb{F}$.

- The sum $S + T : V \to W$ are the linear maps defined by (S + T)v = Sv + Tv for all $v \in V$.
- The *product* (: $V \to W$ are the linear maps defined by $(\lambda T)v = \lambda(Tv)$ for all $v \in V$.
- (4pts) c. Write down the definitions of *null space* and *range*.

Definition. From Definitions 3.12 and 3.17 of Axler:

- For all $T \in \mathcal{L}(V, W)$, the *null space* of T is the subset of V consisting of those vectors that T maps to 0: null $T = \{v \in V : Tv = 0\}$.
- For all $T \in \mathcal{L}(V, W)$, the *range* of *T* is the subset of *W* consisting of those vectors that are of the form Tv for some $v \in V$: range $T = \{Tv : v \in V\}$.

(4pts) d. Write down the definitions of *injective* and *surjective*.

Definition. From Definitions 3.15 and 3.20 of Axler:

- A function $T: V \to W$ is called *injective* if Tu = Tv implies u = v.
- A function $T: V \to W$ is called *surjective* if its range equals W; that is, if we have range T = W.
- (20pts) 2. Which of the following maps $T : \mathbb{R}^2 \to \mathbb{R}^2$ is linear? If the map is linear, prove it. If not, give a counterexample to show that some property of a linear map that is not satisfied.

(4pts) a. $T(x_1, x_2) = (x_1 + 1, x_2)$

Proof. We will prove that this map is not linear.

• Homogeneity is not satisfied. Let $\lambda = 2 \in \mathbb{F}$ and let $(x_1, x_2) = (1, 1) \in \mathbb{R}^2$. Then

$$T(\lambda(x_1, x_2)) = T(2(1, 1))$$

= T(2, 2)
= (2 + 1, 2)
= (3, 2)

and

$$\lambda T(x_1, x_2) = 2T(1, 1)$$

= 2(1 + 1, 1)
= 2(2, 1)
= (4, 2).

Since we have $(3, 2) \neq (4, 2)$, we conclude $T(\lambda(x_1, x_2)) \neq \lambda T(x_1, x_2)$.

Since one of the two properties of a linear map are not satisfied, this map is not linear.

(4pts) b. $T(x_1, x_2) = (x_2, x_1)$

Proof. We will prove that this map is linear.

• Additivity: For all $(x_1, x_2), (y_1, y_2) \in \mathbb{R}^2$, we have

$$T((x_1, x_2) + (y_1, y_2)) = T(x_1 + y_1, x_2 + y_2)$$

= $(x_2 + y_2, x_1 + y_1)$
= $(x_2, x_1) + (y_2, y_1)$
= $T(x_1, x_2) + T(y_1, y_2).$

• Homogeneity: For all $\lambda \in \mathbb{F}$ and for all $(x_1, x_2) \in \mathbb{R}^2$, we have

$$T(\lambda(x_1, x_2)) = T(\lambda x_1, \lambda x_2)$$
$$= (\lambda x_2, \lambda x_1)$$
$$= \lambda(x_2, x_1)$$
$$= \lambda T(x_1, x_2).$$

Since the two properties of a linear map are satisfied, this map is linear.

(4pts) c. $T(x_1, x_2) = (|x_1|, x_2)$

Proof. We will prove that this map is not linear.

• Homogeneity is not satisfied. Let $\lambda = -1 \in \mathbb{F}$ and let $(x_1, x_2) = (1, 1) \in \mathbb{R}^2$. Then

$$T(\lambda(x_1, x_2)) = T(-1(1, 1))$$

= T(-1, -1)
= (| - 1|, -1)
= (1, -1)

and

$$\lambda T(x_1, x_2) = -1T(1, 1)$$

= -1(|1|, 1)
= -1(1, 1)
= (-1, -1).

Since we have $(1, -1) \neq (-1, -1)$, we conclude $T(\lambda(x_1, x_2)) \neq \lambda T(x_1, x_2)$. Since one of the two properties of a linear map are not satisfied, this map is not linear.

(4pts) d. $T(x_1, x_2) = (\sin x_1, x_2)$

Proof. We will prove that this map is not linear.

• Additivity is not satisfied. Let $(x_1, x_2) = (\frac{\pi}{2}, 0), (y_1, y_2) = (\frac{\pi}{2}, 1) \in \mathbb{R}^2$. Then

$$T((x_1, x_2) + (y_1, y_2)) = T\left(\left(\frac{\pi}{2}, 0\right) + \left(\frac{\pi}{2}, 1\right)\right)$$

= $T(\pi, 1)$
= $(\sin \pi, 1)$
= $(0, 1)$

and

$$T(x_1, x_2) + T(y_1, y_2) = T\left(\frac{\pi}{2}, 0\right) + T\left(\frac{\pi}{2}, 1\right)$$
$$= \left(\sin\frac{\pi}{2}, 0\right) + \left(\sin\frac{\pi}{2}, 1\right)$$
$$= (1, 0) + (1, 1)$$
$$= (2, 1).$$

Since we have
$$(0, 1) \neq (2, 1)$$
, we conclude $T(\lambda(x_1, x_2)) \neq \lambda T(x_1, x_2)$.

Since one of the two properties of a linear map are not satisfied, this map is not linear.

(4pts) e. $T(x_1, x_2) = (x_1 - x_2, 0)$

Proof. We will prove that this map is linear.

• Additivity: For all $(x_1, x_2), (y_1, y_2) \in \mathbb{R}^2$, we have

$$T((x_1, x_2) + (y_1, y_2)) = T(x_1 + y_1, x_2 + y_2)$$

= $((x_1 + y_1) - (x_2 + y_2), 0)$
= $(x_1 - x_2 + y_1 - y_2, 0)$
= $(x_1 - x_2, 0) + (y_1 - y_2, 0)$
= $T(x_1, x_2) + T(y_1, y_2).$

• Homogeneity: For all $\lambda \in \mathbb{F}$ and for all $(x_1, x_2) \in \mathbb{R}^2$, we have

$$T(\lambda(x_1, x_2)) = T(\lambda x_1, \lambda x_2)$$

= $(\lambda x_1 - \lambda x_2, 0)$
= $(\lambda(x_1 - x_2), 0)$
= $\lambda(x_1 - x_2, 0)$
= $\lambda T(x_1, x_2).$

Since the two properties of a linear map are satisfied, this map is linear.

(20pts) 3. Consider a linear map $T : \mathbb{R}^3 \to \mathbb{R}^2$ that satisfies T(1, -1, 1) = (1, 0) and T(1, 1, 1) = (0, 1).

(12pts) a. Show that there exists such a map.

Hint: First verify that (1, -1, 1), (1, 1, 1) is a linearly independent list of vectors in \mathbb{R}^3 . Then use 2.33 of Axler to show that this linearly independent list extends to a basis of \mathbb{R}^3 . Finally, use 3.5 of Axler to arrive at your desired conclusion.

Proof. Following the hint, we will show that (1, -1, 1), (1, 1, 1) is linearly independent. Suppose $a_1, a_2 \in \mathbb{F}$ satisfy

$$a_1(1, -1, 1) + a_2(1, 1, 1) = (0, 0, 0).$$

The left-hand side of the above equation becomes

$$(a_1 + a_2, -a_1 + a_2, a_1 + a_2) = (0, 0, 0),$$

which means we obtain a system of equations

$$a_1 + a_2 = 0,$$

 $-a_1 + a_2 = 0,$

from which system-solving gives $a_1 = 0$, $a_2 = 0$. Therefore, (1, -1, 1), (1, 1, 1) is a linearly independent list. By 2.33 of Axler, we can extend this list to a basis of \mathbb{R}^3 . Since (1, 0), (0, 1) is the standard basis of \mathbb{R}^3 , we can use 3.5 of Axler to assert that there exists a unique map satisfying

$$T(1, -1, 1) = (1, 0)$$
$$T(1, 1, 1) = (0, 1)$$
$$T(x_1, x_2, x_3) = (y_1, y_2),$$

where $(x_1, x_2, x_3) \in \mathbb{R}^3$ is some value such that the resulting list $(1, -1, 1), (1, 1, 1), (x_1, x_2, x_3)$ is a basis of \mathbb{R}^3 , and $(y_1, y_2) \in \mathbb{R}^2$ is the output from *T* of (x_1, x_2, x_3) . All the three equations above came out of 3.5 of Axler, but only the first two are necessary to complete this proof.

(8pts) b. Compute T(-5, 1, -5).

Proof. Since T is linear, we can use additivity and homogeneity of T to get

$$T(-5, 1, -5) = T((-3, 3, -3) + (-2, -2, -2))$$

= $T(-3, 3, -3) + T(-2, -2, -2)$
= $T(-3(1, -1, 1)) + T(-2(1, 1, 1))$
= $-3T(1, -1, 1) - 2T(1, 1, 1)$
= $-3(1, 0) - 2(0, 1)$
= $(-3, 0) + (0, -2)$
= $(-3 + 0, 0 - 2)$
= $(-3, -2),$

as desired.

(20pts) 4. Suppose V and W are both finite-dimensional. Prove that there exists an injective map $T \in \mathcal{L}(V, W)$ if and only if dim $V \leq \dim W$.

Proof. Forward direction: If there exists a injective linear map $T \in \mathcal{L}(V, W)$, then dim $V \leq \dim W$. Suppose there exists a injective linear map $T \in \mathcal{L}(V, W)$, which means by 3.16 of Axler we have null $T = \{0\}$. Since 3.19 of Axler says that range T is a subspace of W, by 2.38 of Axler, we have dim range $T \leq \dim W$. By the Fundamental Theorem of Linear Maps (3.22 of Axler), we have

$$\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$$
$$= \dim \{0\} + \dim \operatorname{range} T$$
$$= 0 + \dim \operatorname{range} T$$
$$= \dim \operatorname{range} T$$
$$\leq \dim W,$$

or dim $W \leq \dim V$, as desired.

Backward direction: If dim $V \le \dim W$, then there exists an injective linear map $T \in \mathcal{L}(V, W)$. Suppose we have dim $V \le \dim W$. Since V and W are finite-dimensional, according to 2.32 of Axler, there exist a basis v_1, \ldots, v_n of V and a basis w_1, \ldots, w_m of W. For brevity in notation, let $m = \dim W$ and $n = \dim V$, which means $n \le m$. Define $T : V \to W$ by

$$T(a_1v_1 + \dots + a_nv_n) = a_1w_1 + \dots + a_mw_m$$

for some $a_1, \ldots, a_n, \ldots, a_m \in \mathbb{F}$. Then *T* is linear and indeed defines a function, according to the proof for 3.5 in Axler. Now suppose we have $a_1v_1 + \cdots + a_nv_n \in \text{null } T$. Then we have $T(a_1v_1 + \cdots + a_nv_n) = 0$, or

 $a_1w_1+\cdots+a_mw_m=0.$

Since w_1, \ldots, w_m is a basis of W, it is linearly independent, which means all the scalars are zero; that is, we have

$$a_1=0,\ldots,a_m=0.$$

Since $n \le m$, we have in particular the first n of the m scalars are zero; that is, we have $a_1 = 0, \ldots, a_m = 0$. So we have

$$a_1v_1 + \dots + a_nv_n = 0,$$

which means we have null $T \subset \{0\}$. But 3.14 of Axler says that null T is a subspace in V, which means in particular that null T contains the additive identity, or $\{0\} \subset$ null T. Therefore, we have the set equality null $T = \{0\}$. Finally, by 3.16 of Axler, T is injective.

(20pts) 5. Suppose V and W are both finite-dimensional. Prove that there exists a surjective map $T \in \mathcal{L}(V, W)$ if and only if dim $V \ge \dim W$.

Proof. Forward direction: If there exists a surjective linear map $T \in \mathcal{L}(V, W)$, then dim $V \ge \dim W$. Suppose there exists a surjective map $T \in \mathcal{L}(V, W)$, which means we have range T = W, and so dim range $T = \dim W$. Since T is a linear map, by 3.11 of Axler we have T(0) = 0. So we have $\{0\} \subset \text{null } T$, and so, by 2.38 of Axler, we have $0 = \dim\{0\} \le \dim \text{null } T$. By the Fundamental Theorem of Linear Maps (3.22 of Axler), we have

$$\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$$
$$= \dim \operatorname{null} T + \dim W$$
$$\geq \dim \{0\} + \dim W$$
$$= 0 + \dim W$$
$$= \dim W,$$

as desired.

Backward direction: If dim $V \ge \dim W$, then there exists a surjective map $T \in \mathcal{L}(V, W)$. Suppose we have dim $V \le \dim W$. Since V and W are finite-dimensional, according to 2.32 of Axler, there exist a basis of V and a basis of W. For brevity in notation, let $m = \dim W$ and $n = \dim V$, which means $n \ge m$. Define $T : V \to W$ by

$$T(a_1v_1 + \dots + a_nv_n) = a_1w_1 + \dots + a_mw_n$$

for some $a_1, \ldots, a_m, \ldots, a_n \in \mathbb{F}$. Then *T* is linear and indeed defines a function, according to the proof for 3.5 in Axler. Since w_1, \ldots, w_n is a basis of *W*, every vector in *W* is a linear combination of w_1, \ldots, w_n and can therefore be written $a_1w_1 + \cdots + a_mw_m$. This implies that we have range T = W, and so *T* is surjective.