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(20pts) 1. For this question, you will need to refer to the definitions in Chapter 3, Sections C-D, of your Axler textbook to find the
answers.

(4pts) a. Write down the definitions of matrix and matrix of a linear map.
Definition. From Definitions 3.30 and 3.32 of Axler:

• Let m, n be positive integers. An m× n matrix A is a rectangular array of elements of F with m rows and n columns:

A =
©­­«

a1,1 · · · a1,n
...

. . .
...

am,1 · · · am,n

ª®®¬ ,
where the notation aj,k denotes the entry in row j, column k of A, for any j = 1, . . . ,m and for any k = 1, . . . , n.
• Suppose T ∈ L(V,W), and suppose v1, . . . , vn is a basis of V and w1, . . . ,wn is a basis of W . The matrix of

a linear map T with respect to these bases is the m × n matrix M(T) whose entries aj,k are defined by Tvk =

a1,kw1 + · · · + am,kwm.

(6pts) b. Write down the definitions of matrix addition, scalar multiplication of a matrix, and matrix multiplication.
Definition. From Definitions 3.35, 3.37, and 3.41 of Axler:

• Matrix addition is the sum of two matrices of the same size, which is obtained by adding corresponding entries in
the matrices:

©­­«
A1,1 · · · A1,n
...

. . .
...

Am,1 · · · Am,n

ª®®¬ +
©­­«

C1,1 · · · C1,n
...

. . .
...

Cm,1 · · · Cm,n

ª®®¬ =
©­­«

A1,1 + C1,1 · · · A1,n + C1,n
...

. . .
...

Am,1 + Cm,1 · · · Am,n + Cm,n

ª®®¬ .
In other words, we have (A + C)j,k = Aj,k + Cj,k for any j = 1, . . . ,m and for any k = 1, . . . , n.
• Scalar multiplication of a matrix is the product of a scalar and a matrix, which is obtained by multiplying each entry

in the matrix by the scalar:

λ
©­­«

A1,1 · · · A1,n
...

. . .
...

Am,1 · · · Am,n

ª®®¬ =
©­­«
λA1,1 · · · λA1,n
...

. . .
...

λAm,1 · · · λAm,n

ª®®¬ .
In other words, we have (λA)j,k = λaj,k for any j = 1, . . . ,m and for any k = 1, . . . , n.
• Let m, n, p be positive integers. Suppose A is an m × n matrix and C is an n × p matrix. Then AC is defined to be

the m × p matrix whose entry in row j, column k is given by

(AC)j,k =

n∑
r=1

Aj,rCr,k .

(4pts) c. Write down the definitions of an invertible linear map T and an inverse of T .
Definition. From Definitions 3.53 of Axler:

• A map T ∈ L(V,W) is called invertible if there exists S ∈ L(W,V) such that ST = IV and ST = IW , where IV , IW
are respectively the identity maps on V,W .
• A map S ∈ L(W,V) satisfying ST = IV and TS = IW is called an inverse of T .

(4pts) d. Write down the definitions of an isomorphism and two vector spaces being isomorphic.
Definition. From Definitions 3.58 of Axler:

• An isomorphism is an invertible linear map.
• Two vector spaces are called isomorphic if there is an isomorphism from one vector space onto the other one.

(2pts) e. Write down the definition of a matrix of a vector.
Definition. From Definitions 3.62 of Axler:

• Suppose v1, . . . , vn is a basis of V . The matrix of the vector v ∈ V with respect to this basis is the n × 1 matrix

M(v) =
©­­«
c1
...

cn

ª®®¬ ,
where c1, . . . , cn ∈ F satisfy v = c1v1 + · · · + cnvn.



(20pts) 2. Suppose T ∈ L(Fn, Fm) has a matrix representation

M(T) =
©­­«

a1,1 · · · a1,n
...

. . .
...

am,1 · · · am,n

ª®®¬
with the respect to the standard bases of Fn and Fm. Prove that we have

T(x1, . . . , xn) = (a1,1x1 + · · · + a1,nxn, . . . , am,1x1 + · · · + am,nxn)

for all (x1, . . . , xn) ∈ Fn.

Hint: Write (x1, . . . , xn) ∈ Fn as a linear combination of standard basis vectors (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1) of
Fn; namely, write

(x1, . . . , xn) = (x1, 0, . . . , 0) + (0, x2, 0, . . . , 0) + · · · + (0, . . . , 0, xn)

= x1(1, 0, . . . , 0) + x2(0, 1, 0, . . . , 0) + · · · + xn(0, . . . , 0, 1).

Then use 3.62 and 3.65 of Axler to computeM(T(x1, . . . , xn)), which you can use—along with the standard basis of Fm—to
find T(x1, . . . , xn).

Proof. According to the given hint, we write

(x1, . . . , xn) = (x1, 0, . . . , 0) + (0, x2, 0, . . . , 0) + · · · + (0, . . . , 0, xn)

= x1(1, 0, . . . , 0) + x2(0, 1, 0, . . . , 0) + · · · + xn(0, . . . , 0, 1).

By 3.62 of Axler, we have

M((x1, . . . , xn)) =
©­­«

x1
...

xn

ª®®¬ .
By 3.65 of Axler, we have

M(T(x1, . . . , xn)) =M(T)M((x1, . . . , xn))

=
©­­«

a1,1 · · · a1,n
...

. . .
...

am,1 · · · am,n

ª®®¬
©­­«

x1
...

xn

ª®®¬
=

©­­«
a1,1x1 + · · · + a1,nxn

...
am,1x1 + · · · + am,nxn

ª®®¬ .
The standard basis of Fm is the list of the m vectors (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1). Using this basis and taking
the entries ofM(T(x1, . . . , xn)), we obtain

T(x1, . . . , xn) = (a1,1x1 + · · · + a1,nxn)(1, 0, . . . , 0) + · · · + (am,1x1 + · · · + am,nxn)(0, . . . , 0, 1)
= (a1,1x1 + · · · + a1,nxn, . . . , am,1x1 + · · · + am,nxn),

as desired. �

(20pts) 3. Let V be a vector space over F. Suppose v1, . . . , vn is a basis of V . Prove that the map T : V → Fn,1 defined by

Tv =M(v)

is an isomorphism of V onto Fn,1; hereM(v) is the matrix of v ∈ V with respect to the basis v1, . . . , vn.

Proof. To show that T : V → Fn,1 is an isomorphism, we need to show that T is linear and invertible. First, we will show that
T is linear. Since v1, . . . , vn is a basis of V , there exist a1, . . . , an, b1, . . . , bn ∈ F such that

u = a1v1 + · · · + anvn

and
v = b1v1 + · · · + bnvn.



So, for all u, v ∈ V and for all λ ∈ F, we have

T(u + v) =M(u + v)

=M((a1v1 + · · · + anvn) + (b1v1 + · · · + bnvn))

=M((a1 + b1)v1 + · · · + (an + bn)vn)

=
©­­«

a1 + b1
...

an + bn

ª®®¬
=

©­­«
a1
...

an

ª®®¬ +
©­­«

b1
...

bn

ª®®¬
=M(a1v1 + · · · + anvn) +M(b1v1 + · · · + bnvn)

=M(u) +M(v)

= Tu + Tv,

satisfying additivity, and

T(λu) =M(λu)

=M(λ(a1v1 + · · · + anvn))

=M((λa1)v1 + · · · + (λan)vn)

=
©­­«
λa1
...

λan

ª®®¬
= λ

©­­«
a1
...

an

ª®®¬
= λM(a1v1 + · · · + anvn)

= λM(u)

= λTu,

satisfying homogeneity. So T is linear. Next, we will show that T is invertible. According to 3.56 of Axler, this is equivalent
to showing that T is injective and surjective. First, we will show that T is injective. Suppose Tu = 0. Since we have from
earlier u = a1v1 + · · · + anvn, we get

M(a1v1 + · · · + anvn) =M(u)

= Tu

= 0.

We can write both sides of the above equation as matrices:

©­­«
a1
...

an

ª®®¬ =
©­­«
0
...
0

ª®®¬ .
So our scalars are a1 = 0, . . . , an = 0, which means

u = a1v1 + · · · + anvn
= 0v1 + · · · + 0vn
= 0.

So null T = {0}, which means, by 3.16 of Axler, T is injective. Next, we will show that T is surjective. We have

Tu =M(u)

=M(a1v1 + · · · + anvn)

=
©­­«
a1
...

an

ª®®¬ .
Since a1, . . . , an ∈ F are arbitrary values, we conclude that T is also surjective. Therefore, T is both injective and surjective,
which means T is invertible. Moreover, T is both linear and invertible, which means T is an isomorphism. �



(20pts) 4. Let V and W be vector spaces over F and suppose that T : V → W is an isomorphism. Prove that the map ϕ : L(V) → L(W)
defined by

ϕ(S) = TST−1

is an isomorphism.

Note: Observe that ϕ is a map between linear spaces L(V) and L(W), not between vector spaces V and W . Also, to clarify,
we have S ∈ L(V) and ϕ(S) = TST−1 ∈ L(W), and L(V) = L(V,V) and L(W) = L(W,W).

Proof. To show that ϕ : L(V) → L(W) is an isomorphism, we need to show that ϕ is linear and invertible. First, we will
show that ϕ is linear.

• Additivity: For all R, S ∈ L(V), we apply the left and right distributive properties of L(V) to obtain

ϕ(R + S) = T(R + S)T−1

= (T R + TS)T−1

= (T R)T−1 + (TS)T−1

= T RT−1 + TST−1

= ϕ(R) + ϕ(S).

• Homogeneity: For all λ ∈ F and for all R ∈ L(V), we have

ϕ(λS) = T(λS)T−1

= T(λ(ST−1))

= λT(ST−1)

= λ(TST−1)

= λϕ(S).

Since the two properties of a linear map are satisfied, this map is linear. Finally, we will show that ϕ is injective. Suppose we
have S ∈ null ϕ, which means we have ϕ(S) = 0. So we get

S = IV SIV

= (T−1T)S(T−1T)

= T−1(TST−1)T

= T−1ϕ(S)T

= T−10T

= T−1(0(T))

= T−1(0)
= 0,

where IV is the identity map on V . Therefore, we conclude null ϕ ⊂ {0}. At the same time, 3.14 of Axler states that null ϕ is a
subspace of L(V), which means in particular that we have {0} ⊂ null ϕ. So we conclude the set equality null ϕ = {0}. Finally,
by 3.16 of Axler, we conclude that ϕ is injective. Next, we will show that ϕ is surjective. Suppose we have U ∈ L(W). Then
we have T−1UT ∈ L(V) and

ϕ(T−1UT) = T(T−1UT)T−1

= (TT−1)U(TT−1)

= IWUIW
= U,

where IW is the identity map on W . So we get U ∈ range ϕ, and so we have the set containment L(W) ⊂ range ϕ. But 3.19 of
Axler says that range ϕ is a subsapce of L(W). So we conclude the set equality range ϕ = L(W), which means ϕ is surjective.
So we have established that ϕ is both injective and surjective, which implies, by 3.56 of Axler, that ϕ is invertible. Therefore,
ϕ is both linear and invertible, which means it is an isomorphism. �

(20pts) 5. Let V be a finite-dimensional vector space over F, and suppose T ∈ L(V). Prove that T is a scalar multiple of the identity if
and only if ST = TS for all S ∈ L(V).

Proof. Forward direction: If T is a sclar multiple of the identity, then ST = TS for all S ∈ L(V). Suppose T is the scalar
multiple of the identity map on V . Then there exists λ ∈ F such that we have T = λIV , where IV is the identity map on V .



Therefore, for all S ∈ L(V), we get

ST = S(λIV )

= λSIV
= λS

= (λIV )S

= TS,

as desired.

Backward direction: If ST = TS for all S ∈ L(V), then T is a sclar multiple of the identity. Suppose that we have ST = TS
for all S ∈ L(V). First, we will show that, for all v ∈ V , the list v,Tv is linearly dependent. Suppose instead by contradiction
that v,Tv is linearly independent. Then, according to 2.33 of Axler, we can extend v,Tv to a basis v,Tv, u1, . . . , un of V . (This
means the dimension of V is dim V = n + 2, but that is not really important in this proof.) So every vector in V can be written
in the form av + bTv + c1u1 + · · · + cnun for some a, b, c1, . . . , cn ∈ F. This means that we can define S ∈ L(V) by

S(av + bTv + c1u1 + · · · + cnun) = bv,

which satisfies in particular S(Tv) = v and Sv = 0. Therefore, since ST = TS, we obtain

v = S(Tv)

= (ST)v

= (TS)v

= T(Sv)

= T(0)
= 0,

using 3.11 of Axler to justify the last equality above. So we can choose nonzero scalars such as a1 = 1, a2 = 1 ∈ F to satisfy

a1v + a2Tv = (1)(0) + (1)T(0)
= (1)(0) + (1)(0)
= 0 + 0
= 0,

meaning that the list v,Tv is linearly dependent. But this contradicts our assumption at the beginning that v,Tv is linearly
independent. Therefore, the list v,Tv must be linearly dependent. By the Linear Dependence Lemma (2.21 of Axler), we
have Tv ∈ span(v). In other words, for all nonzero v ∈ V , there exists λv ∈ F (the subscript notation signifies that the scalar
λv depends on our choice of some vector v) such that Tv = λvv, which means T = λv IV , where once again IV is the identity
map on V . At this stage, we have almost completed our proof. To show that T is a scalar multiple of the identity, we need to
establish T = λIV , where λ ∈ F does not depend on v. In other words, it is not enough to stop at Tv = λvv; we need to show
that λv is actually constant in v, at which point would allow us to write λv = λ. Let w ∈ V be another arbitrary vector. Then
v,w form a list that is either linearly independent or linearly dependent. Consider λv, λw, λv+w ∈ F, the scalars that depend on
v,w, v + w, respectively. In the first case, assume that v,w is linearly independent. Applying Tv = λvv, we obtain

(λv+w − λv)v + (λv+w − λw)w = λv+wv − λvv + λv+ww − λww

= λv+w(v + w) − λvv − λww

= T(v + w) − λvv − λww

= Tv + Tw − λvv − λww

= λvv + λww − λvv − λww

= 0.

Since v,w is linearly independent, all scalars are zero; that is, we have

λv+w − λv = 0, λv+w − λw = 0,

or λv = λv+w = λw . Any function that outputs the same value such as λv = λw for all input values such as v,w ∈ V must be a
constant function; in other words, we conclude that λv is constant, or λv = λ. Therefore, we conclude T = λv IV = λIV , which
means that T is a scalar multiple of the identity. �


