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(20pts) 1. For this question, you will need to refer to the definitions in Chapter 3, Sections E-F, of your Axler textbook to find the
answers.

(4pts) a. Write down the definition of v + U and the quotient space V/U.
Definition. From Definitions 3.79 and 3.83 of Axler: Suppose U is a subspace of V .

• Suppose we have v ∈ V . Then v + U is the subset of V defined by v + U = {v + u : u ∈ U}.
• The quotient space V/U is the set of all affine subsets of V parallel to U; that is, we have V/U = {v + U : v ∈ V}.

(4pts) b. Write down the definitions of addition and scalar multiplication on V/U.
Definition. From Definition 3.86 of Axler: Suppose U is a subspace of V .

• Addition is defined on V/U by (v + U) + (w + U) = (v + w) + U for all v,w ∈ V .
• Scalar multiplication is defined on V/U by λ(v + U) = (λv) + U for all λ ∈ F and for all v ∈ V .

(2pts) c. Write down the definition of a quotient map.
Definition. From Definition 3.88 of Axler: Suppose U is a subspace of V .

• The quotient map π : V → V/U is a linear map defined by π(v) = v + U for all v ∈ V .

(4pts) d. Write down the definitions of a linear functional and a dual space.
Definition. From Definitions 3.92 and 3.94 of Axler:

• A linear functional on V is a linear map from V to F ; that is, it is an element of L(V, F).
• The dual space of V , denoted V ′, is the vector space of all linear funtionals on V ; that is, we haave V ′ = L(V, F).

(4pts) e. Write down the definitions of a dual basis and a dual map.
Definition. From Definition 3.96 and 3.99 of Axler:

• If v1, . . . , vn is a basis of V , then the dual basis of v1, . . . , vn is the list ϕ1, . . . , ϕn of elements of V ′, where each ϕj

is the linear functional on V such that we have

ϕj(vk) =

{
1 if k = j,
0 if k , j .

• If T ∈ L(V,W), then the dual map of T is the linear map T ′ ∈ L(W ′,V ′) deifned by T ′(ϕ) = ϕ ◦ T for all ϕ ∈ W ′.

(2pts) f. Write down the definition of the transpose of a matrix A.
Definition. From Definition 3.111 of Axler:

• The transpose of a matrix A, denoted At , is the matrix obatined from A by interchanging the rowns and columns.
More specifically, if A is an m × n matrix, then At is the n × m matrix whose entries are given by the equation
(At )k, j = Aj,k .

(20pts) 2. Suppose T ∈ L(V,W) and U is a subspace of V . Let π : V → V/U be the quotient map. Prove that there exists S ∈ L(V/U,W)
such that T = S ◦ π if and only if U ⊂ null T .

Proof. Forward direction: If there exists S ∈ L(V/U,W) such that T = S ◦ π, then U ⊂ null T . Suppose there exists
S ∈ L(V/U),W) such that T = S ◦ π. Let u ∈ U be arbitrary. We have v − 0 = v ∈ U, and so, by 3.85—(a) implies (b)—of
Axler, we have v + U = 0 + U. So, using 3.88 of Axler, for all u ∈ U, we have

Tu = (S ◦ π)u

= S(π(u))

= S(u + U)

= S(0 + U)

= 0,

where we also used 3.11 of Axler in the last equality above. So we have u ∈ null T , and so we conclude U ⊂ null T .

Backward direction: If U ⊂ null T , then there exists S ∈ L(V/U,W) such that T = S ◦ π. Suppose that we have U ⊂ null T .
Let v ∈ V be arbitrary, and define S : V/U → W by

S(v + U) = Tv.



Consider another vector v̂ ∈ V that satisfies v + U = v̂ + U. Since we assumed U ⊂ null T , we have v − v̂ ∈ null T , which
means we have T(v − v̂) = 0. So we get

S(v + U) = Tv

= T((v − v̂) + v̂)

= T(v − v̂) + T v̂

= 0 + T v̂

= T v̂

= S(v̂ + U),

which means S indeed defines a function. Next, we need to show that S is linear, given already that T is linear. For all λ ∈ F
and for all v,w ∈ V , we have

S((v + U) + (w + U)) = S((v + w) + U)

= T(v + w)

= Tv + Tw

= S(v + U) + S(w + U),

satisfying additivity, and

S(λ(v + U)) = S(λv + U)

= T(λv)

= λTv

= λS(v + U),

satisfying homogeneity. So S is linear. Finally, for all v ∈ V , we have

(S ◦ π)v = S(π(v))

= S(v + V)

= Tv,

from which we conclude T = S ◦ π. �

(20pts) 3. Suppose U is a subspace of V . Define Γ : L(V/U,W) → L(V,W) by

Γ(S) = S ◦ π.

(8pts) a. Show that Γ is a linear map.

Proof. For all λ ∈ F and for all S,T ∈ L(V/U,W), we have

Γ(S + T) = (S + T) ◦ π

= S ◦ π + T ◦ π

= Γ(S) + Γ(T),

satisfying additivity, and

Γ(λS) = (λS) ◦ π

= λS ◦ π

= λΓ(S),

satisfying homogeneity. So Γ is linear. �

(6pts) b. Show that Γ is injective.

Proof. Suppose we have S ∈ null Γ, which means Γ(S) = 0. Then we have S ◦ π = Γ(S) = 0, and so for all v ∈ V we
have (S ◦ π)v = 0. Therefore,

0 = (S ◦ π)v

= S(π(v))

= S(v + U).

Since v ∈ V is arbitrary, we must have S = 0, and so null Γ ⊂ {0}. But 3.14 of Axler says that null Γ is a subspace in V ,
which means in particular that null Γ contains the additive identity, or {0} ⊂ null Γ. Therefore, we have the set equality
null Γ = {0}. Finally, by 3.16 of Axler, Γ is injective. �



(6pts) c. Show that range Γ = {T ∈ L(V,W) : Tu = 0 for all u ∈ U}.

Proof. By Exercise 3.E.18 of Axler (or Question 2 of this examination), there exists S ∈ L(V/U,W) satisfying T = S◦π
if and only if we have U ⊂ null T . Therefore, we have

range Γ = {Γ(S) ∈ L(V,W) : S ∈ L(V/U,W)}

= {S ◦ π ∈ L(V,W) : S ∈ L(V/U,W)}

= {T ∈ L(V,W) : T = S ◦ π, S ∈ L(V/U,W)}

= {T ∈ L(V,W) : U ⊂ null T}

= {T ∈ L(V,W) : Tu = 0 for all u ∈ U},

as desired. �

(20pts) 4. We will compute the dual basis of some basis in R3.

(12pts) a. Show that the list (1, 0,−1), (1, 1, 1), (2, 2, 0) is a basis of R3.

Proof. First, we need to show that (1, 0,−1), (1, 1, 1), (2, 2, 0) is a linearly independent set that spans R3. To do this,
suppose a1, a2, a3 ∈ F satisfy

a1(1, 0,−1) + a2(1, 1, 1) + a3(2, 2, 0) = (0, 0, 0).

Then we have

(0, 0, 0) = a1(1, 0,−1) + a2(1, 1, 1) + a3(2, 2, 0)
= (a1, 0,−a1) + (a2, a2, a2) + (2a3, 2a3, 0)
= (a1 + a2 + 2a3, a2 + 2a3,−a1 + a2).

Equating the coordinates gives us the system of equations

a1 + a2 + 2a3 = 0,
a2 + 2a3 = 0,
−a1 + a2 = 0,

from which system-solving gives a1 = 0, a2 = 0, a3 = 0. Therefore, (1, 0,−1), (1, 1, 1), (2, 2, 0) is a linearly independent
list. Furthermore, since (1, 0,−1), (1, 1, 1), (2, 2, 0) has length 3 and we have dimR3 = 3, it is of the right length, which
means, by 2.39 of Axler, this list is a basis of R3. �

Alternate proof. First, we will prove that the list (1, 0,−1), (1, 1, 1), (2, 2, 0) spans R3. This means we need to show that,
for all vectors (x1, x2, x3) ∈ R

3, there exist a1, a3, a3 ∈ F such that

(x1, x2, x3) = a1(1, 0,−1) + a2(1, 1, 1) + a3(2, 2, 0).

With that said, we have

(x1, x2, x3) = a1(1, 0,−1) + a2(1, 1, 1) + a3(2, 2, 0)
= (a1, 0,−a1) + (a2, a2, a2) + (2a3, 2a3, 0)
= (a1 + a2 + 2a3, a2 + 2a3,−a1 + a2).

Equating the coordinates gives us the system of equations

a1 + a2 + 2a3 = x1,

a2 + 2a3 = x2,

−a1 + a2 = x3,

from which system-solving gives

a1 = x1 − x2,

a2 = −x1 + x2 + x3,

a3 =
1
3

x1 −
1
2

x3.

So we found a1, a2, a3 ∈ F that depend on the coordinates of the (x1, x2, x3) ∈ R
3, which means (1, 0,−1), (1, 1, 1), (2, 2, 0)

spans R3. Next, we need to prove the list (1, 0,−1), (1, 1, 1), (2, 2, 0) is linearly independent. To do this, suppose
a1, a2, a3 ∈ F satisfy

a1(1, 0,−1) + a2(1, 1, 1) + a3(2, 2, 0) = (0, 0, 0).



The above equation is only
(x1, x2, x3) = a1(1, 0,−1) + a2(1, 1, 1) + a3(2, 2, 0)

with x1 = 0, x2 = 0, x3 = 0. Substituting x1 = 0, x2 = 0, x3 = 0 into our expressions of the scalars a1, a2, a3, we get

a1 = 0 − 0 = 0
a2 = −0 + 0 + 0 = 0,

a3 =
1
3
(0) −

1
2
(0) = 0.

So the list (1, 0,−1), (1, 1, 1), (2, 2, 0) is linearly independent. Therefore, (1, 0,−1), (1, 1, 1), (2, 2, 0) is a basis of R3. �

(8pts) b. What is the dual basis of the basis in part (a)?

Proof. Define the linear functional ϕ : F3 → F by

ϕj(x1, x2, x3) = c1x1 + c2x2 + c3x3

for all j = 1, 2, 3. Let v1 = (1, 0, 1), v2 = (1, 1, 1), v3 = (2, 2, 0) ∈ F3. First, we have

1 = ϕ1(v1) = ϕ1(1, 0,−1) = c1(1) + c2(0) + c3(−1) = c1 − c3,

0 = ϕ1(v2) = ϕ1(1, 1, 1) = c1(1) + c2(1) + c3(1) = c1 + c2 + c3,

0 = ϕ1(v3) = ϕ1(2, 2, 0) = c1(2) + c2(2) + c3(0) = 2c1 + 2c2,

upon which system-solving gives c1 = 1, c2 = −1, c3 = 0, and so ϕ1(x1, x2, x3) = x1 − x2. Next, we have

0 = ϕ2(v1) = ϕ2(1, 0,−1) = c1(1) + c2(0) + c3(−1) = c1 − c3,

1 = ϕ2(v2) = ϕ2(1, 1, 1) = c1(1) + c2(1) + c3(1) = c1 + c2 + c3,

0 = ϕ2(v3) = ϕ2(2, 2, 0) = c1(2) + c2(2) + c3(0) = 2c1 + 2c2,

upon which system-solving gives c1 = 1, c2 = −1, c3 = − 1
2 , and so ϕ2(x1, x2, x3) = x1 − x2 + x3. Finally, we have

0 = ϕ3(v1) = ϕ3(1, 0,−1) = c1(1) + c2(0) + c3(−1) = c1 − c3,

0 = ϕ3(v2) = ϕ3(1, 1, 1) = c1(1) + c2(1) + c3(1) = c1 + c2 + c3,

1 = ϕ3(v3) = ϕ3(2, 2, 0) = c1(2) + c2(2) + c3(0) = 2c1 + 2c2,

upon which system-solving gives c1 = − 1
2, c2 = 1, c3 = − 1

2 , and so ϕ3(x1, x2, x3) = − 1
2 x1 + x2 −

1
2 x3. So ϕ1, ϕ2, ϕ3 is the

dual basis of the basis (1, 0,−1), (1, 1, 1), (2, 2, 0). �

(20pts) 5. Suppose V is a finite-dimensional vector space and T ∈ L(V,W). We will construct a different proof of the Fundamental
Theorem of Linear Maps (3.22 of Axler) using quotient spaces and isomorphisms.

Note: Avoid using any theorem from the Axler textbook if its corresponding proof depends on the Fundamental Theorem of
Linear Maps. Because we are completing a different proof of the Fundamental Theorem of Linear Maps, any attempt to cite
those results here creates the logical fallacy of circular reasoning. However, you may use any result from Axler whose proofs
do not depend on the Fundamental Theorem of Linear Maps.

(15pts) a. We recall from 3.91 of Axler that V/(null T) is isomorphic to range T and that T̃ : V/(null T) → W defined by

T̃(v + null T) = Tv

is an isomorphism. Use this isomorphism to prove that v1 + null T, . . . , vn + null T is a basis of V/(null T) if and only
if Tv1, . . . ,Tvn is a basis of range T . Conclude that the dimensions of V/(null T) and range T are equal; in other words,
establish

dim(V/(null T)) = dim range T .

Proof. Forward direction: If v1 + null T, . . . , vn + null T is a basis of V/(null T), then Tv1, . . . ,Tvn is a basis of range T .
First, we will show that Tv1, . . . ,Tvn is linearly independent in range T . Suppose a1Tv1 + · · · + anTvn = 0. Then, since
T̃ is an isomorphism, it is linear, and so we have

0 = a1Tv1 + · · · + anTvn
= a1T̃(v1 + null T) + · · · + anT̃(vn + null T)

= T̃(a1(v1 + null T) + · · · + an(vn + null T)).

Since T̃ is an isomorphism, it is injective. By 3.16 of Axler, we have null T̃ = {0 + null T}, and so we must have

a1(v1 + null T) + · · · + an(vn + null T) = 0 + null T .



Since v1 + null T, . . . , vn + null T is a basis of V/(null T), we must have

a1 = 0, . . . , an = 0.

So Tv1, . . . ,Tvn is linearly independent in range T . Next, we will show that Tv1, . . . ,Tvn spans range T . Suppose we
have w = range T . Then w = T̃v for some v ∈ V . Since v1 + null T, . . . , vn + null T is a basis of V/(null T), it spans
V/(null T), meaning that every vector in V/(null T) can be written uniquely as

v + null T = a1(v1 + null T) + · · · + an(vn + null T)

for some a1, . . . , an ∈ F. Since T is linear, we have

w = Tv

= T̃(v + null T)

= T̃(a1(v1 + null T) + · · · + an(vn + null T))

= T̃(a1(v1 + null T)) + · · · + T̃(an(vn + null T))

= a1T̃(v1 + null T) + · · · + anT̃(vn + null T)

= a1Tv1 + · · · + anTvn.

So every w ∈ range T is a linear combination of Tv1, . . . ,Tvn. Therefore, we conclude that Tv1, . . . ,Tvn is a basis of
range T .
Backward direction: If Tv1, . . . ,Tvn is a basis of range T , then v1 + null T, . . . , vm + null T is a basis of V/(null T). First,
we will show that v1 + null T, . . . , vm + null T is linearly independent in V/(null T). Suppose b1, . . . , bn ∈ F satisfy

b1(v1 + null T) + · · · + bn(vn + null T) = 0 + null T .

Then, since T̃ is an isomorphism, it is linear, and so, using 3.11 of Axler, we have

0 = T̃(0 + null T)

= T̃(b1(v1 + null T) + · · · + bn(vn + null T))

= T̃(b1(v1 + null T)) + · · · + T̃(bn(vn + null T))

= b1T̃(v1 + null T) + · · · + bnT̃(vn + null T)

= b1Tv1 + · · · + bnTvn.

Since Tv1, . . . ,Tvn is a basis of T , it is linearly independent in T . So we have

b1 = 0, . . . , bn = 0.

So v1 +null T, . . . , vn+null T is linearly independent in V/(null T). Next, we need to show that v1 +null T, . . . , vn+null T
spans V/(null T). Since Tv1, . . . ,Tvn is a basis of range T , it spans range T , meaning that every vector in range T can be
written uniquely as

Tv = b1Tv1 + · · · + bnTvn

for some b1, . . . , bn ∈ F. Since T̃ is an isomorphism, it is linear and invertible with inverse T̃−1. For all v ∈ V , we have

v + null T = IV/(nullT )(v + null T)

= (T̃−1T̃)(v + null T)

= T̃−1(T̃(v + null T))

= T̃−1(Tv)

= T̃−1(b1Tv1 + · · · + bnTvn)

= b1T̃−1(Tv1) + · · · + bnT̃−1(Tvn)

= b1T̃−1(T̃(v1 + null T)) + · · · + bnT̃−1(T̃(vn + null T))

= b1(T̃−1T̃)(v1 + null T) + · · · + bn(T̃−1T̃)(vn + null T)

= b1IV/(nullT )(v1 + null T) + · · · + bnIV/(nullT )(v + null T)

= b1(v1 + null T) + · · · + bn(vn + null T).

So every v + null T ∈ V/(null T) is a linear combination of v1 + null T, . . . , vn + null T . Therefore, we conclude that
v1 + null T, . . . , vn + null T is a basis of V/(null T).
At this point, we proved that v1 + null T, . . . , vn + null T is a basis of V/(null T) if and only if Tv1, . . . ,Tvn is a basis of
range T . Since both of the bases have length n, it follows that we have dim(V/(null T)) = n and dim range T = n. So we
conclude

dim(V/(null T)) = dim range T,

as desired. �



(5pts) b. Use part (a) of this question and Exercise 3.E.13 of Axler to show that range T is finite-dimensional and that we have

dim V = dim null T + dim range T .

Remark: This is precisely the assertion of the Fundamental Theorem of Linear Maps (3.22 of Axler).

Proof. Because V is finite-dimensional and 3.14 and 3.19 of Axler state that null T and range T are subspaces of V , it
follows by 2.26 of Axler that null T and range T are both finite-dimensional. Furthermore, in part (a) we established

dim(V/(null T)) = dim(range T),

which implies that V/(null T) is finite-dimensional. By 2.39 of Axler, there exist a basis u1, . . . , um of null T and a basis
v1 +null T, . . . , vn +null T of V/(null T), which means we have dim(null T) = m and dim(V/(null T)) = n. Consequently,
Exercise 3.E.13 of Axler asserts that u1, . . . , um, v1, . . . , vn is a basis of V , which means we have dim V = m + n.
Therefore, we conclude

dim V = m + n

= dim null T + dim(V/(null T))

= dim null T + dim range T

as desired. �


