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Solutions to assigned homework problems from Linear Algebra Done Right (third edition) by Sheldon Axler

1.A: 4, 5, 6, 9, 10, 11, 12, 13, 15, 16
1.B: 1, 2, 3, 4
1.C: 1, 3, 4, 6, 10, 11, 12, 19, 24

1.A.4. Show that α + β = β + α for all α, β ∈ C.

Proof. Let α, β ∈ C be arbitrary. Then there exist α1, α2, β1, β2 ∈ R that satisfies α = α1 + α2i and β = β1 + β2i. Using the
definitions of addition and multiplication in C, we have

α + β = (α1 + α2i) + (β1 + β2i)

= (α1 + β1) + (α2 + β2)i

and

β + α = (β1 + β2i) + (α1 + α2i)

= (β + α1) + (β2 + α2)i.

Since commutativity holds in R, we have α1 + β1 = β1 + α1 and α2 + β2 = β2 + α2. Therefore, we conclude α + β = β + α
for all α, β ∈ C. �

1.A.5. Show that (α + β) + λ = α + (β + λ) for all α, β, λ ∈ C.

Proof. Let α, β, λ ∈ C be arbitrary. Then there exist α1, α2, β1, β2, λ1, λ2 ∈ R that satisfies α = α1 + α2i, β = β1 + β2i, and
λ = λ1 + λ2i. Using the definitions of addition and multiplication in C, we have

(α + β) + λ = ((α1 + α2i) + (β1 + β2i)) + (λ1 + λ2i)

= ((α1 + β1) + (α2 + β2)i) + (λ1 + λ2i)

= ((α1 + β1) + λ1) + ((α2 + β2) + λ2)i

and

α + (β + λ) = (α1 + α2i) + ((β1 + β2i) + (λ1 + λ2i))

= (α1 + α2i) + ((β1 + λ1) + (β2 + λ2)i)

= (α1 + (β1 + λ1)) + (α2 + (β2 + λ2))i.

Since associativity holds in R, we have (α1 + β1) + λ1 = α1 + (β1 + λ1) and (α2 + β2) + λ2 = α2 + (β2 + λ2). Therefore, we
conclude (α + β) + λ = α + (β + λ) for all α, β ∈ C. �

1.A.6. Show that (αβ)λ = α(βλ) for all α, β, λ ∈ C.

Proof. Let α, β, λ ∈ C be arbitrary. Then there exist α1, α2, β1, β2, λ1, λ2 ∈ R that satisfies α = α1 + α2i, β = β1 + β2i, and
λ = λ1 + λ2i. Using the definitions of addition and multiplication in C, we have

(αβ)λ = ((α1 + α2i)(β1 + β2i))(λ1 + λ2i)

= ((α1β1 − α2β2) + (α1β2 + α2β1)i)(λ1 + λ2i)

= ((α1β1 − α2β2)λ1 − (α1β2 + α2β1)λ2) + ((α1β1 − α2β2)λ2 + (α1β2 + α2β1)λ1)i

and

α(βλ) = (α1 + α2i)((β1 + β2i)(λ1 + λ2i))

= (α1 + α2i)((β1λ1 − β2λ2) + (β1λ2 + β2λ1)i)

= (α1(β1λ1 − β2λ2) − α2(β1λ2 + β2λ1)) + (α1(β1λ2 + β2λ1) + α2(β1λ1 − β2λ2))i.

Since associativity, commutativity, and distributive properties hold in R, we have

(α1β1 − α2β2)λ1 − (α1β2 + α2β1)λ2 = α1β1λ1 − α2β2λ1 − α1β2λ2 − α2β1λ2

= α1β1λ1 − α1β2λ2 − α2β1λ2 − α2β2λ1

= α1(β1λ1 − β2λ2) − α2(β1λ2 + β2λ1)



and

(α1β1 − α2β2)λ2 + (α1β2 + α2β1)λ1 = α1β1λ2 − α2β2λ2 + α1β2λ1 + α2β1λ1

= α1β1λ2 + α1β2λ1 + α2β1λ1 − α2β2λ2

= α1(β1λ2 + β2λ1) + α2(β1λ1 − β2λ2).

Therefore, we conclude (α + β) + λ = α + (β + λ) for all α, β ∈ C. �

1.A.9. Show that λ(α + β) = λα + λβ for all λ, α, β ∈ C.

Proof. Let α, β, λ ∈ C be arbitrary. Then there exist α1, α2, β1, β2, λ1, λ2 ∈ R that satisfies α = α1 + α2i, β = β1 + β2i, and
λ = λ1 + λ2i. Using the definitions of addition and multiplication in C, we have

λ(α + β) = (λ1 + λ2i)((α1 + α2i) + (β1 + β2i))

= (λ1 + λ2i)((α1 + β1) + (α2 + β2)i)

= (λ1(α1 + β1) − λ2(α2 + β2)) + (λ1(α2 + β2) + λ2(α1 + β1))i

and

λα + λβ = (λ1 + λ2i)(α1 + α2i) + (λ1 + λ2i)(β1 + β2i)

= ((λ1α1 − λ2α2) + (λ1α2 + λ2α1)i) + ((λ1β1 − λ2β2) + (λ1β2 + λ2β1)i)

= ((λ1α1 − λ2α2) + (λ1β1 − λ2β2)) + ((λ1α2 + λ2α1) + (λ1β2 + λ2β1))i.

Since associativity, commutativity, and distributive properties hold in R, we have

λ1(α1 + β1) − λ2(α2 + β2) = λ1α1 + λ1β1 − λ2α2 − λ2β2

= (λ1α1 − λ2α2) + (λ1β1 + λ2β2)

and

λ1(α2 + β2) + λ2(α1 + β1) = λ1α2 + λ1β2 + λ2α1 + λ2β1

= (λ1α2 + λ2α1) + (λ1β2 + λ2β1).

Therefore, we conclude λ(α + β) = λα + λβ for all λ, α, β ∈ C. �

1.A.10. Find x ∈ R4 such that
(4,−3, 1, 7) + 2x = (5, 9,−6, 8).

Proof. Since we have x ∈ R4, it is a list of length 4, and so we can write x = (x1, x2, x3, x4). So we can rewrite the desired
equation as

(4,−3, 1, 7) + 2(x1, x2, x3, x4) = (5, 9,−6, 8).

Applying addition and scalar multiplication in Fn to the left-hand side of the above equation, we get

(4 + 2x1,−3 + 2x2, 1 + 2x3, 7 + 2x4) = (5, 9,−6, 8).

Equating the coordinates of the vectors on both sides of the above equation, we obtain four separate equations

4 + 2x1 = 5,−3 + 2x2 = 9, 1 + 2x3 = −6, 7 + 2x4 = 8,

from which we can solve individually to obtain

x1 =
1
2
, x2 = 6, x3 = −

7
2
, x4 =

1
2
.

Therefore, we have x = (x1, x2, x3, x4) = ( 12, 6,−
7
2,

1
2 ). �

1.A.11. Explain why there does not exist λ ∈ C such that

λ(2 − 3i, 5 + 4i,−6 + 7i) = (12 − 5i, 7 + 22i,−32 − 9i).

Proof. Suppose by contradiction that there exists λ ∈ C that satisfies

λ(2 − 3i, 5 + 4i,−6 + 7i) = (12 − 5i, 7 + 22i,−32 − 9i).

Applying scalar multiplication in Fn to the left-hand side of the above equation, we get

(λ(2 − 3i), λ(5 + 4i), λ(−6 + 7i)) = (12 − 5i, 7 + 22i,−32 − 9i).



We can choose any two of the three coordinates to find our desired contradiction. Let us, for instance, take the first and second
coordinates:

λ(2 − 3i) = 12 − 5i

and
λ(5 + 4i) = 7 + 22i.

So, from the first coordinates, we get

13λ = ((2 − 3i)(2 + 3i))λ

= (λ(2 − 3i))(2 + 3i)

= (12 − 5i)(2 + 3i)

= 39 + 26i

and, from the second coordinates, we get

41λ = ((5 + 4i)(5 − 4i))λ

= (λ(5 + 4i))(5 − 4i)

= (7 + 22i)(5 + 4i)

= −53 + 138i.

So we get λ = 3 + 2i and λ = − 53
41 + 138

41 i simultaneously, which is a contradiction. �

1.A.12. Show that (x + y) + z = x + (y + z) for all x, y, z ∈ Fn.

Proof. Since we have x, y, z ∈ Fn, they are all lists of length n, which means we can write

x = (x1, . . . , xn), y = (y1, . . . , yn), z = (z1, . . . , zn).

So, for all x, y, z ∈ Fn, we have

(x + y) + z = ((x1, . . . , xn) + (y1, . . . , yn)) + (z1, . . . , zn)

= (x1 + y1, . . . , xn + yn) + (z1, . . . ,+zn)

= ((x1 + y1) + z1, . . . , (xn + yn) + zn)

and

x + (y + z) = (x1, . . . , xn) + ((y1, . . . , yn) + (z1, . . . , zn))

= (x1, . . . , xn) + (y1 + z1, . . . , yn + zn)

= (x1 + (y1 + z1), . . . , xn + (yn + zn)).

Since associativity holds in F, we have (xi + yi)+ zi = xi + (yi + zi) for all i = 1, . . . , n. So we conclude (x + y)+ z = x + (y+ z)
for all x, y, z ∈ Fn. �

1.A.13. Show that (ab)x = a(bx) for all x ∈ Fn and for all a, b ∈ F.

Proof. Since we have x ∈ Fn, it is a list of length n, which means we can write x = (x1, . . . , xn). So, for all a, b ∈ F and for
all x ∈ Fn, we have

(ab)x = (ab)(x1, . . . , xn)

= ((ab)x1, . . . , (ab)xn)

and

a(bx) = a(b(x1, . . . , xn))

= a(bx1, . . . , bxn)

= (a(bx1), . . . , a(bxn)).

Since associativity holds in F, we have (ab)xi = a(bxi) for all i = 1, . . . , n. So we conclude (ab)x = a(bx) for all a, b ∈ F and
for all x ∈ Fn. �

1.A.15. Show that λ(x + y) = λx + λy for all λ ∈ F and for all x, y ∈ Fn.



Proof. Since we have x, y ∈ Fn, they are lists of length n, which means we can write x = (x1, . . . , xn), y = (y1, . . . , yn). So,
for all λ ∈ F and for all x, y ∈ Fn, we have

λ(x + y) = λ((x1, . . . , xn) + (y1, . . . , yn))

= λ(x1 + y1, . . . , xn + yn)

= (λ(x1 + y1), . . . , λ(xn + yn)

and

λx + λy = λ(x1, . . . , xn) + λ(y1, . . . , yn)

= (λx1, . . . , λxn) + (λy1, . . . , λyn)

= (λx1 + λy1, . . . , λxn + λyn).

Since distributive properties hold in F, we have λ(xi + yi) = λxi + λyi for all i = 1, . . . , n. So we conclude λ(x + y) = λx + λy
for all λ ∈ F and for all x, y ∈ Fn. �

1.A.16. Show that (a + b)x = ax + bx for all a, b ∈ F and for all x ∈ Fn.

Proof. Since we have x ∈ Fn, it is a list of length n, which means we can write x = (x1, . . . , xn), y = (y1, . . . , yn). So, for all
a, b ∈ F and for all x ∈ Fn, we have

(a + b)x = (a + b)(x1, . . . , xn)

= ((a + b)x1, . . . , (a + b)xn)

and

ax + bx = a(x1, . . . , xn) + b(x1, . . . , xn)

= (ax1, . . . , axn) + (bx1, . . . , bxn)

= (ax1 + bx1, . . . , axn + bxn).

Since distributive properties hold in F, we have (a + b)xi = axi + bxi for all i = 1, . . . , n. So we conclude (a + b)x = ax + bx
for all a, b ∈ F and for all x ∈ Fn. �

1.B.1. Prove that −(−v) = v for all v ∈ V .

Proof. Since V is a vector space, we can use scalar multiplication on V to get −v ∈ V for all v ∈ V . We also have that elements
in V are commutative: for all v,w ∈ V we have v + w = w + v. So, for all v ∈ V , we have

(−v) + v = v + (−v)

= v − v

= 0,

which means that v is an additive inverse of −v. Also, for all v ∈ V , we have

(−v) + (−(−v)) = (−v) − (−v)

= 0,

which means that −(−v) is an additive inverse of −v. However, 1.26 of Axler asserts that the addivitve inverse is unique. Since
we established already that v and −(−v) are both additive inverses of V , we conclude from 12.6 of Axler that we must have
−(−v) = v for all v ∈ V . �

1.B.2. Suppose a ∈ F and v ∈ V satisfy av = 0. Prove that we have a = 0 or v = 0.

Proof. We will argue this in two separate cases: a = 0 and a , 0.

• If a = 0, then certainly we have a ∈ F. also, according to 1.29 of Axler, for all v ∈ V , we have

av = 0v
= 0.

So a = 0 satisfies the hypotheses. At the same time a = 0 is already one of the statements of the conclusion: a = 0 or
v = 0. So, for this case, we are done; there is nothing to prove.



• If a , 0, then we will prove v = 0. Since we assume a , 0, there exists the multiplicative inverse 1
a which satisfies

a( 1
a ) = 1. Since av = 0, we have

v = 1v

=

(
a

(
1
a

))
v

=

((
1
a

)
a
)
v

=

(
1
a

)
(av)

=

(
1
a

)
(0)

= 0,

as we claimed.

Therefore, in either case, we have either a = 0 or v = 0. �

1.B.3. Suppose we have v,w ∈ V . Explain why there exists a unique x ∈ V such that v + 3x = w.

Proof. Let x = 1
3w −

1
3v. Since V is a vector space and 1

3 ∈ F, for all v,w ∈ V , we can apply scalar multiplication on V to
conclude x ∈ V . Moreover, we have

v + 3x = v + 3
(

1
3
w −

1
3
v

)
= v + 3

(
1
3

)
w − 3

(
1
3

)
v

= v + w − v

= w.

This completes our proof that x ∈ V exists and satisfies v + 3x = w. At this point, we are left to prove that x ∈ V is unique.
Suppose y ∈ V satisfies v + 3y = w. Then we have

0 = w − w

= (v + 3x) − (v + 3y)
= v + 3x − v − 3y
= v − v + 3x − 3y
= 3x − 3y
= 3(x − y).

By Exercise 1.B.2 of Axler, either 3 = 0 or x− y = 0. Since 3 = 0 is a false statement, we must have x− y = 0, or equivalently,
x = y, which means x ∈ V satisfying v + 3x = w is unique. �

1.B.4. The empty set is not a vector space. The empty set fails to satisfy only one of the requirements listed in 1.19 of Axler. Which
one?

Proof. The additive identity is the only property of a vector space that asserts an existence of an element 0 ∈ V without any
conditions. Since the empty set does not contain any elements, it cannot contain for example the zero vector. So the empty
set fails to satisfy the property of additive identity in a vector space. However, all the other properties of a vector space hold
vacuously for an empty set. By “vacuous”, we mean that there are no vectors to work with, so we cannot possibly disprove
the other properties and render the conclusion false. We must therefore assume that the conclusion is true. �

1.C.1. For each of the following subsets of F3, determine whether it is a subspace of F3. If so, prove it. If not, give a counterexample
to show some property of a subspace that is not satisfied.

(a) {(x1, x2, x3) ∈ F
3 : x1 + 2x2 + 3x3 = 0};

Proof. We will prove that U1 = {(x1, x2, x3) ∈ F
3 : x1 + 2x2 + 3x3 = 0} is a subspace of F3.

• Additive identity: Since (0) + 2(0) + 3(0) = 0, we have (0, 0, 0) ∈ U1.



• Closed under addition: Suppose we have (x1, x2, x3), (y1, y2, y3) ∈ U1. Then we have x1 + 2x2 + 3x3 = 0 and
y1 + 2y2 + 3y3 = 0. These imply

(x1 + y1) + 2(x2 + y2) + 3(x3 + y3) = (x1 + 2x2 + 3x3) + (y1 + 2y2 + 3y3)

= 0 + 0
= 0.

So we conclude (x1, x2, x3) + (y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3) ∈ U1.
• Closed under scalar multiplication: Suppose we have λ ∈ F and (x1, x2, x3) ∈ U1. Then we have x1 + 2x2 + 3x3 = 0.

This implies

(λx1) + 2(λx2) + 3(λx3) = λ(x1 + 2x2 + 3x3)

= λ · 0
= 0.

So we conclude λ(x1, x2, x3) = (λx1, λx2, λx3) ∈ U1.

Since we satisfied all the properties of a subspace, we conclude that U1 is a subspace of F3. �

(b) {(x1, x2, x3) ∈ F
3 : x1 + 2x2 + 3x3 = 4};

Proof. We will prove that U2 = {(x1, x2, x3) ∈ F
3 : x1 + 2x2 + 3x3 = 4} is not a subspace of F3.

• Additive identity is not satisfied. Since we have 0 + 2(0) + 3(0) = 0 , 4, we conclude (0, 0, 0) < U2.

Since we showed that one of the properties of a subspace is not satisfied, we conclude that U2 is not a subspace of F3. �

(c) {(x1, x2, x3) ∈ F
3 : x1x2x3 = 0};

Proof. We will prove that U3 = {(x1, x2, x3) ∈ F
3 : x1x2x3 = 0} is not a subspace of F3.

• Closed under addition is not satisfied. Let (x1, x2, x3) = (0, 1, 0), (y1, y2, y3) = (1, 0, 1) ∈ F3. Then we have x1x2x3 =

(0)(1)(0) and y1y2y3 = (1)(0)(1) = 0, which means we have (x1, x2, x3), (y1, y2, y3) ∈ U3. But these imply

(x1 + y1)(x2 + y2)(x3 + y3) = (0 + 1)(1 + 0)(0 + 1)
= (1)(1)(1)
= 1
, 0,

which means we have (x1, x2, x3) + (y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3) < U3.

Since we showed that one of the properties of a subspace is not satisfied, we conclude that U3 is not a subspace of F3. �

(d) {(x1, x2, x3) ∈ F
3 : x1 = 5x3}.

Proof. We will prove that U4 = {(x1, x2, x3) ∈ F
3 : x1 = 5x3} is a subspace of F3.

• Additive identity: Since (0) = 5(0), we have (0, 0, 0) ∈ U4.
• Closed under addition: Suppose we have (x1, x2, x3), (y1, y2, y3) ∈ U4. Then we have x1 = 5x3 and y1 = 5y3. These

imply

x1 + y1 = 5x3 + 5y3

= 5(x3 + y3).

So we conclude (x1, x2, x3) + (y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3) ∈ U1.
• Closed under scalar multiplication: Suppose we have λ ∈ F and (x1, x2, x3) ∈ U1. Then we have x1 = 5x3. This

implies

λx1 = λ(5x3)

= 5(λx3).

So we conclude λ(x1, x2, x3) = (λx1, λx2, λx3) ∈ U1.

Since we satisfied all the properties of a subspace, we conclude that U4 is a subspace of F3. �

1.C.3. Show that the set of differentiable real-valued functions f on the interval (−4, 4) such that f ′(−1) = 3 f (2) is a subspace of
R(−4,4).

Proof. Let U be the set of differentiable real-valued functions f on the interval (−4, 4) such that f ′(−1) = 3 f (2) is a subspace
of R(−4,4). We will prove that U is a subspace of F3.



• Additive identity: Note that, for all x ∈ (−4, 4) the derivative of the zero function 0(x) = 0 is still the zero function. In
other words, we have 0′(x) = 0(x) = 0 for all x ∈ (−4, 4). In particular, we have 0′(−1) = 0 = 3 · 0 = 30(2), and so we
conclude 0 ∈ R(−4,4)

• Closed under addition: Let f , g ∈ U be arbitrary. Then we have f ′(−1) = 3 f (2) and g′(−1) = 3g(2), which imply

( f + g)′(−1) = ( f ′ + g′)(−1)
= f ′(−1) + g′(−1)
= 3 f (2) + 3g(2)
= 3( f (2) + g(2))
= 3( f + g)(2).

So we conclude f + g ∈ U.
• Closed under scalar multiplication: Let λ ∈ F and f ∈ U be arbitrary. Then we have f ′(−1) = 3 f (2), which imply

(λ f )′(−1) = (λ f ′)(−1)
= λ f ′(−1)
= λ(3 f (2))
= 3λ f (2)
= 3(λ f )(2).

So we conclude λ f ∈ U.

Since we satisfied all the properties of a subspace, we conclude that U is a subspace of R(−4,4). �

1.C.4. Suppose b ∈ R. Show that the set of continuous real-valued functions f on the interval [0, 1] such that
∫ 1

0 f (x) dx = b is a
subspace of R[0,1] if and only if b = 0.

Proof. For brevity, let U be the set of continuous real-valued functions f on the interval [0, 1] such that
∫ 1

0 f (x) dx = b is a
subspace of R[0,1].

Forward direction: If U is a subspace of R[0,1], then b = 0. Suppose U is a subspace of R[0,1] and f ∈ U. Then it contains the
additive identity; namely, it contains the zero function 0. So, for all x ∈ [0, 1], we have

b =

∫ 1

0
f (x) dx

=

∫ 1

0
0(x) dx

=

∫ 1

0
0 dx

= 0,

as desired.

Backward direction: If b = 0, then U is a subspace of R[0,1]. We will prove that U is a subspace of R[0,1].

• Additive identity: Note that we have ∫ 1

0
0(x) dx =

∫ 1

0
0 dx

= 0
= b,

and so we have 0 ∈ U.
• Closed under addition: Let f , g ∈ U be arbitrary. Then they satisfy

∫ 1
0 f (x) dx = b = 0 and

∫ 1
0 g(x) dx = b = 0. So we

have ∫ 1

0
( f + g)(x) dx =

∫ 1

0
f (x) + g(x) dx

=

∫ 1

0
f (x) dx +

∫ 1

0
g(x) dx

= b + b

= 0 + 0
= 0,

and so we have f + g ∈ U.



• Closed under scalar multiplication: Let λ ∈ F and f ∈ U be arbitrary. Then it satisfies
∫ 1

0 f (x) dx = b = 0. So we have∫ 1

0
(λ f )(x) dx =

∫ 1

0
λ f (x) dx

= λ

∫ 1

0
f (x) dx

= λb

= λ · 0
= 0,

and so we have λ f ∈ U.

Since we satisfied all the properties of a subspace, we conclude that U is a subspace of R[0,1]. �

1.C.6. (a) Is {(a, b, c) ∈ R3 : a3 = b3} a subspace of R3?

Proof. Let U1 = {(a, b, c) ∈ R3 : a3 = b3}. First, we will prove that, for all a, b ∈ R, we have a3 = b3 if and only if
a = b.
Forward direction: If a3 = b3, then a = b. Suppose a, b ∈ R satisfies a3 = b3. If a , 0 or b , 0, then

a2 + ab + b2 =

(
a2 + ab +

1
4

b2
)
−

1
4

b2 + b2

=

(
a +

1
2

b
)2

+
3
4

b2

> 0.

Therefore, if a , 0 or b , 0, then a3 = b3 implies

0 = a3 − b3

= (a − b)(a2 + ab + b2),

from which, according to Exercise 1.B.2 of Axler, we get a − b = 0, or a = b, since we have a2 + ab + b2 > 0. On the
other hand, if a = 0 and b = 0, then of course we have a = b.
Backward direction: If a = b, then a3 = b3. Suppose a = b. Then a − b = 0, and so we have

0 = 03

= (a − b)3

= a3 − 3a2b + 3ab2 − b3

= a3 − 3a2a + 3bb2 − b3

= a3 − 3a3 + 3b3 − b3

= −2a3 + 2b3

= 2(−a3) + 2b3

= 2(−a3 + b3),

and so by Exercise 1.B.2 of Axler, we get −a3 + b3 = 0, or a3 = b3.
So we proved that, for all a, b ∈ R, we have a3 = b3 if and only if a = b. This means we can rewrite our subset of R3 as

U1 = {(a, b, c) ∈ R3 : a3 = b3}

= {(a, b, c) ∈ R3 : a = b}.

Next, we will prove that U1 = {(a, b, c) ∈ R3 : a = b} is a subspace of R3.

• Additive identity: Note that we have 0 = 0, and so we have (0, 0, 0) ∈ U1.
• Closed under addition: Let (a, b, c), (d, e, f ) ∈ U1 be arbitrary. Then a, b, c, d, e, f ∈ R satisfy a = b and d = e. So

we have a + d = b + e, and so we have (a, b, c) + (d, e, f ) = (a + d, b + e, c + f ) ∈ U.
• Closed under scalar multiplication: Let λ ∈ F and (a, b, c) ∈ U1 be arbitrary. Then a, b, c ∈ R satisfies a = b. So we

have λa = λb, and so we have λ(a, b, c) = (λa, λb, λc) ∈ U.

Therefore, U1 is a subspace of R3. �

(b) Is {(a, b, c) ∈ C3 : a3 = b3} a subspace of C3?



Proof. Let U2 = {(a, b, c) ∈ C3 : a3 = b3}. We will give a counterexample to show that U2 is not a subspace of C3. Let
(a, b, c) = ( 12 +

√
3

2 i, 1, 0), (d, e, f ) = ( 12 −
√

3
2 i, 1, 0) ∈ U2. Then they satisfy

a3 =

(
1
2

+

√
3

2
i

)3

= 1

= b3

and

d3 =

(
1
2
−

√
3

2
i

)3

= 1

= e3.

However, we have

(a + d)3 =

((
1
2

+

√
3

2
i

)
+

(
1
2
−

√
3

2
i

))3

= 13

= 1

and

(b + e)3 = (1 + 1)3

= 23

= 8.

Since we have 1 , 8, we conclude (a + d)3 , (b + e)3. So we get (a, b, c)+ (d, e, f ) = (a + d, b + e, c + f ) < U2, meaning
that U2 is not closed under addition. Therefore, U2 is not a subspace of C3. �

1.C.10. Suppose U1 and U2 are subspaces of V . Prove that the intersection U1 ∩U2 is a subspace of V .

Proof. Let λ ∈ F and u,w ∈ U1 ∩U2 be arbitrary; this means we will argue for all λ ∈ F and for all u,w ∈ U1 ∩U2.

• Additive identity: Since U1 and U2 are subspaces of V , we have 0 ∈ U1 and 0 ∈ U2. Therefore, we have 0 ∈ U1 ∩U2.

• Closed under addition: We have u,w ∈ U1 ∩ U2, which means we have u,w ∈ U1 and u,w ∈ U2. Since U1 and U2
are subspaces of V , they are closed under addition, and so we have u + w ∈ U1 and u + w ∈ U2. Therefore, we have
u + w ∈ U1 ∩U2.

• Closed under scalar multiplication: We have u ∈ U1 ∩U2, which means we have u ∈ U1 and u ∈ U2. Since U1 and U2
are subspaces of V , they are closed under scalar multiplication, and so we have λu ∈ U1 and λu ∈ U2. Therefore, we
have λu ∈ U1 ∩U2.

Since we satisfied all the properties of a subspace, we conclude that U is a subspace of CR. �

1.C.11. Prove that the intersection of every collection of subspaces of V is a subspace of V .

Proof. Let A be a collection of indices and let a ∈ A be an arbitrary index. Let {Ua}a be an arbitrary collection of subspaces
Ua in V . Let λ ∈ F and ua,wa ∈

⋂
a∈A Ua be arbitrary; this means we will argue for all λ ∈ F and for all ua,wa ∈

⋂
a∈A Ua.

• Additive identity: Since every Ua is a subspace of V , we have 0 ∈ Ua for all a ∈ A. Therefore, we have 0 ∈
⋂

a∈A Ua.

• Closed under addition: We have ua,wa ∈
⋂

a∈A Ua, which means we have ua,wa ∈ Ua for all a ∈ A. Since every Ua is
a subspace of V , each one is closed under addition, and so we have and ua + wa ∈ Ua for all a ∈ A. Therefore, we have
ua + wa ∈

⋂
a∈A Ua.

• Closed under scalar multiplication: We have ua ∈ Ua, which means we have ua ∈ Ua for all a ∈ A. Since every Ua is
a subspace of V , each one is closed under scalar multiplication, and so we have λua ∈ Ua for all a ∈ A. Therefore, we
have λua ∈

⋂
a∈A Ua.

Since we satisfied all the properties of a subspace, we conclude that U is a subspace of CR. �

1.C.12. Prove that the union of two subspaces of V is a subspace of V if and only if one of the subspaces is contained in the other.



Proof. Let U1,U2 be subspaces of V . So we will prove that U1 ∪ U2 is a subspace of V if and only if we have U1 ⊂ U2 or
U2 ⊂ U1.

Forward direction: If U1 ∪ U2 is a subspace of V , then we have U1 ⊂ U2 or U2 ⊂ U1. Suppose U1 ∪ U2 is a subspace of V .
Suppose by contradiction we have instead U1 1 U2 and U2 1 U1 (this is the negation of the statement U1 ⊂ U2 or U2 ⊂ U1).
Then U1 \ U2 and U2 \ U1 are nonempty, which means there exist vectors u1 ∈ U1 \ U2 and u2 ∈ U2 \ U1. We observe the
containments U1 \U2,U2 \U1 ⊂ U1 ∪U2, which means we have in fact u1, u2 ∈ U1 ∪U2. Since U1 ∪U2 is a subspace of V , it
is closed under addition, and so we have u1 + u2 ∈ U1 ∪U2, which also means we have u1 + u2 ∈ U1 or u1 + u2 ∈ U2. Also,
as subspaces, U1 and U2 are closed under scalar multiplication, which means we have −u1 ∈ U1 and −u2 ∈ U2. So we obtain
u2 = (u1 + u2) − u1 ∈ U1 and u1 = (u1 + u2) − u2 ∈ U2. Since we also have from earlier u1 ∈ U1 \U2 and u2 ∈ U2 \U1, we
conclude u1 ∈ (U1 \U2)∩U2 and u2 ∈ (U2 \U1)∩U1. In other words, there exist elements in (U1 \U2)∩U2 and (U2 \U1)∩U1,
but this contradicts the fact that these sets are empty.

Backward direction: If we have U1 ⊂ U2 or U2 ⊂ U1, then U1 ∪U2 is a subspace of V . Suppose we have U1 ⊂ U2 or U2 ⊂ U1.
If U1 ⊂ U2, then we will prove U1 ∪U2 = U2. Suppose we have u ∈ U1 ∪U2. Then u ∈ U1 or u ∈ U2. But U1 ⊂ U2 implies
u ∈ U2. So in either case, we have u ∈ U2. Therefore, we get U1 ∪U2 ⊂ U2. Conversely, suppose we have u ∈ U2. Then we
have u ∈ U1 or u ∈ U2. So we get u ∈ U1 ∪U2, and so U2 ⊂ U1 ∪U2. Therefore, we conclude the set equality U1 ∪U2 = U2.
If U2 ⊂ U1, then we can simply interchange the roles of U1 and U2 in the previous statement “If U1 ⊂ U2, then U1 ∪U2 = U2”
in order to establish the desired statement “If U2 ⊂ U1, then U1 ∪U2 = U1”. So we have established: if U1 ⊂ U2 or U2 ⊂ U1,
then we have U1 ∪U2 = U2 or U1 ∪U2 = U1, respectively. In either case, as we assumed in the premises that U1 and U2 are
subspaces of V , we conclude that U1 ∪U2 is a subspace of V . �

1.C.19. Prove or give a counterexample: if U1,U2,W are subspaces of V such that

U1 + W = U2 + W,

then U1 = U2.

Proof. We will give a counterexample to prove that this statement is false. Let V = R2 be the vector space, and consider the
subsets U1 = {(x1, 0) : x1 ∈ R}, U2 = {(x1, x1) : x1 ∈ R}, and W = {(0, x2) : x2 ∈ R}. We must prove that U1,U2,W are
subspaces of R2.

• Additive identity: Note that we have 0 ∈ R, which means (0, 0) ∈ U1, (0, 0) ∈ U2, and (0, 0) ∈ W . Therefore, U1,Uw,W
all contain the additive identity.

• Closed under addition: Suppose that we have (x1, 0), (y1, 0) ∈ U1, (x1, x1), (y1, y1) ∈ U2, and (0, x2), (0, y2) ∈ W for all
x1, x2, y1, y2 ∈ R. Then, since we have x1 + y1, x2 + y2 ∈ R, it follows that we have

(x1, 0) + (y1, 0) = (x1 + y1, 0) ∈ U1,

(x1, x1) + (y1, y1) = (x1 + y1, x1 + y1) ∈ U2,

(0, x2) + (0, y2) = (0, x2 + y2) ∈ W .

Therefore, U1,U2,W are all closed under addition.

• Closed under scalar multiplication: Let λ ∈ F be arbitrary. Suppose that we have (x1, 0) ∈ U1, (x1, x1) ∈ U2, and
(0, x2) ∈ W . Then, since λx1, λx2 ∈ R, it follows that we have

λ(x1, 0) = (λx1, 0) ∈ U1,

λ(x1, x1) = (λx1, λx1) ∈ U2,

λ(0, x2) = (0, λx2) ∈ W .

Therefore, U1,U2,W are all closed under scalar multiplication.

Since we satisfied all the properties of a subspace, we conclude that U1,U2,W are subspaces of CR. Next, we will show that
U1,U2,W satisfy U1 + W = U2 + W . Using the definition of the sum of subsets, we have

U1 + W = {(x1, 0) + (0, x2) : (x1, 0) ∈ U1, (0, x2) ∈ U2, x1, x2 ∈ R}

= {(x1, x2) : x1, x2 ∈ R}

= R2

and

U2 + W = {(x1, x1) + (0, x2) : (x1, x1) ∈ U2, (0, x2) ∈ U2, x1, x2 ∈ R}

= {(x1, x1 + x2) : x1, x2 ∈ R}

= R2,

and so we conclude U1 + W = R2 = U2 + W . Finally, we will show U1 , U2. Consider the vector (1, 0) ∈ R2. Then we have
(1, 0) ∈ U1 and (1, 0) < U2. As we found an element that belongs to U1 but not U2, we conclude U1 , U2. �



1.C.24. Let RR be the set of all real-valued functions f : R→ R. A real-valued function f : R→ R is called even if

f (−x) = f (x)

for all x ∈ R. A real-valued function f : R→ R is called odd if

f (−x) = − f (x)

for all x ∈ R. Let Ue denote the set of real-valued even functions on R, and let Uo denote the set of real-valued odd functions
on R. Show that we have RR = Ue ⊕ Uo.

Proof. First, we need to show that Ue and Uo are subspaces of RR.

• Additive identity: For all x ∈ R, the zero function satisfies 0(x) = 0 = 0(−x) and 0(x) = 0 = −0 = −0(x). So we have
0 ∈ Ue and 0 ∈ Uo.

• Closed under addition: Let g1, g2 ∈ Ue and h1, h2 ∈ Uo be arbitrary. Then, for all x ∈ R, we have g1(x) = g1(−x),
g2(x) = g2(−x), h1(−x) = −h1(x), and h2(−x) = −h2(x). So, for all x ∈ R, we have

(g1 + g2)(−x) = g1(−x) + g2(−x)

= g1(x) + g2(x)

= (g1 + g2)(x)

and

(h1 + h2)(−x) = h1(−x) + h2(−x)

= −h1(x) − h2(x)

= −(h1(x) + h2(x))

= −(h1 + h2)(x).

So we have g1 + g2 ∈ Ue and h1 + h2 ∈ Uo.

• Closed under scalar multiplication: Let λ ∈ F, g ∈ Ue, and h ∈ Uo be arbitrary. Then, for all x ∈ R, we have
g(−x) = g(x) and h(−x) = −h(x). So, for all x ∈ R, we have

(λg)(−x) = λg(−x)

= λg(x)

= (λg)(x)

and

(λh)(−x) = λh(−x)

= λ(−h(x))

= −λh(x)

= (λh)(x).

So we have λg ∈ Ue and λg ∈ Uo.

Since we satisfied all the properties of a subspace, we conclude that Ue and Uo are subspaces of RR. Next, we need to show
RR = Ue + Uo. In other words, we will show that we can write every function f ∈ RR as a sum of an even function and an
odd function. Define for all x ∈ R the functions g, h ∈ RR by

g(x) =
f (x) + f (−x)

2

and
h(x) =

f (x) − f (−x)
2

.

Then

g(−x) =
f (−x) + f (−(−x))

2

=
f (−x) + f (x)

2

=
f (x) + f (−x)

2
= g(x),



which means g is even, or g ∈ Ue. Similarly,

h(−x) =
f (−x) − f (−(−x))

2

= −
f (x) − f (−x)

2
= −h(x),

which means h is odd, or h ∈ Uo. Finally, for all x ∈ R, we have

(g + h)(x) = g(x) + h(x)

=
f (x) + f (−x)

2
+

f (x) − f (−x)
2

=
( f (x) + f (−x)) + ( f (x) − f (−x))

2

=
2 f (x)

2
= f (x),

and so f = g+h, which establishes RR = Ue+Uo. At this point, it remains to show RR = Ue⊕Uo. According to 1.45 of Axler,
we only need to show Ue ∩Uo = {0}. So suppose we have f ∈ Ue ∩Uo. Then f ∈ Ue and f ∈ Uo, which means f is both
even and odd. In other words, f satisfies both f (−x) = f (x) and f (−x) = − f (x) for all x ∈ R. Combining the two equations
gives us − f (x) = f (x), which implies f (x) = 0 for all x ∈ R. Therefore, f = 0 ∈ {0}, and so we have Ue ∩U0 ⊂ {0}. On the
other hand, since Ue ∩Uo is a subspace of RR, we have in fact the set equality Ue ∩U0 = {0}. By 1.45 of Axler, we conclude
RR = Ue ⊕ Uo. �


