MATH 131: Linear Algebra I
University of California, Riverside
Homework 3 Solutions
July 15, 2019

Solutions to assigned homework problems from Linear Algebra Done Right (third edition) by Sheldon Axler

3A:1,2,3,4,7,8,9,11, 13
3.B:9, 13,14, 15,17, 18, 19, 20, 21, 29

3.A.1. Suppose b, ¢ € R. Define T : R? — R? by
T(x,y,2) = (2x -4y + 32+ b, 6x + cxyz).
Show that T is linear if and only if » = ¢ = 0.
Proof. Forward direction: If T is linear, then » = 0 and ¢ = 0. Since T is linear, additivity holds for all (x, y, z), (%, ¥, %) € R3.

It would be a good idea for us to choose simple points in R® in order to make our computations as simple as possible. If we
let (x,y,2) = (1,0,0), (%, ¥,%) = (0, 1,1) € R3, then we have

T((1,0,0)+(0,1,1)) =T(1,1, 1)
= (2(1) = 4(1) + 3(1) + b, 6(1) + c(1)(1)(1))
=(1+b6+c)
and
T(1,0,0) +T(0,1,1) = (2(1) — 4(0) + 3(0) + b, 6(1) + c(1)(0)(0)) + (2(0) — 4(1) + 3(1) + b, 6(0) + c(0)(1)(1))
=Q2+b,6)+(-1+b0)
=(1+2b,06).
Since T is linear, additivity of T holds and implies that we have
(1+b,6+c¢)=T((1,0,0)+ (0,1, 1))
=T7(1,0,0)+T(0,1,1)
=(1+2b,06),

from which we can equate the coordinates to obtain the equations 1 + b = 1 +2b and 6 + ¢ = 6, which imply b =0 and ¢ = 0,
respectively.

Backward direction: If » = 0 and ¢ = 0, then T is linear. Suppose » = 0 and ¢ = 0. Then the map T : R? — R? becomes
T(x,y,z) = (2x — 4y + 3z,6x).
We will prove that T is linear.
e Additivity: For all (x, y, z), (%, 7, Z) € R?, we have

T((x,y,2)+(%5,2)=T(x+%y+¥,z+72)
=2(x+ %) -4y +7) +3(z+2),6(x + X))
=(2x -4y +37+2% — 45 + 3Z,6x + 6X)
= (2x — 4y + 32,6x) + (2% — 4§ + 3%,6%)
=T(x,y,2) +T(%, 3, %).

e Homogeneity: For all 1 € F and for all (x, y, z) € R?, we have

T(A(x,y,2)) = T(Ax, Ay, A7)
= (2(Ax) — 4(Ay) + 3(1z), 6(1x)
= (A(2x — 4y + 37), A(6x))
=A2x —4y + 3z,6x)
= AT(x,y,2).

Since additivity and homogeneity of T are satisfied, T is linear. O
3.A.2. Suppose b, ¢ € R. Define T : P(R) — R? by
2
Tp = |3p(4) + 5p’(6) + bp(1)p(2), / x*p(x)dx + csinp(0)| .
-1

Show that T is linear if and only if » = ¢ = 0.



Proof. Forward direction: If T is linear, then » = 0 and ¢ = 0. Since 7 is linear, additivity holds for all p, g € P(R). It would
be a good idea for us to choose simple polynomials in $(R) in order to make our computations as simple as possible. Define
p.q € P(R) by p(x) = 7 and g(x) = 5 for all x € R. Then their first-order derivatives are p’(x) = 0 and ¢’(x) = 0 for all
x € R, and so we have

2
T(p+q) = (3(p +q)(4) +5(p +q)'(6) + b(p + (P + 9)(2), / X(p+q)(x) dx +esin((p + q)(O)))
= |3(p(4) + q(4)) + 5(p"(6) + ¢"(6)) + b(p(1) + q(1)(P(2) + 4(2)), / 2 (p(x) + q(x)) dx + ¢ sin(p(0) + q(O)))

( asos0p(Z+2) (342 [0 (5+7) ax+esin(3+3))

3+ 7T2b 15”)

and

Tp+Tq = (3p(4)+5p'(6) + bp(1)p(2), / X p(x) dx +c¢ smp(O)) (3q(4) +54’(6) + bg(1)q(2), / X q(x) dx + c¢sin q(O))

2

(3 +5(0)+b(2)(§),[jx3(%) dx+csin(%))+(3(g)+5(0)+b(g)(g),/_l x3(g) dx+csin(g))
3+

b 2 3 b 2
ﬂ z x3dx+c)+(—ﬂ+ﬂ—,£/ x3dx+c)
-1

2 . 2 42

nb 157
= — +2c].
(37r+ 22 + c)

Since T is linear, additivity of T holds and implies that we have

15
(371 + 7T2b, Tn) =T(p+q)

=Tp+Tq
b 157
(371 T +20),

d 3z 157r _ 157r

from which we can equate the coordinates to obtain the equations 37 + 72b = 37 + %2 2 an = +2¢, which imply b = 0

and ¢ = 0, respectively.

Backward direction: If » = 0 and ¢ = 0, then 7 is linear. Suppose b = 0 and ¢ = 0. Then the map T : R} — R? becomes

2
= (3p(4) +5p/(6), /_ 1 x*p(x) dx) .

We will prove that T is linear.

e Additivity: For all p, g € P(R), we have
2
T(p+q)= (3(p +q)(4) +5(p + )’ (6), /_ 1 (p+q)(x) dX)

2

- (3<p(4> +g)+5E'6) + 6. [ 600+ g dx)
2 2

= (3p(4) +5p’(6) + 3g(4) + 3¢(6), *p(x)dx + / x3q(x) dx)

-1 -1

2 2
= (3p(4) +5p’(6), [1 >p(x) dx) + (3(,](4) + 34 (6), [1 xq(x) dx)
=Tp+Tq.



3.A3.

3.A4.

3.A7.

e Homogeneity: For all A € F and for all (x, y, z) € R3, we have

2
T(Ap) = (3(/11?)(4) +5(p)'(6), [ 1 X (Ap)(x) dX)

2
= (3/lp(4) + S/Ip’(6),/ x> Ap(x) dx)
-1
2
- (z<3p<4> +5p/(6)). / () dx)

2
=1 (3p(4) +5p'(6), [1 x*p(x) dx)

= ATp.

Since additivity and homogeneity of T are satisfied, 7 is linear.

Suppose T' € L(F",F™). Show that there exist scalars Aj; € Ffor j = 1,...,mand for k = 1, ..., n such that

T()Cl, .. .,Xn) = (A1,1x1 + -+ Al,,,xn, ..

for all (xy,...,x,) € F".

.,Am,lxl + -+ Am,nxn)

Proof. Suppose Aj € Fforj=1,...,mandfork =1,...,n satisfy

Then, for all (xy, ..., x,) € F", we have

T(x1,...,x,) =T((x1,0,..
=T(x(1,0,..
=T(x(1,0,..
=x7(1,0,..
= x1(Ap1, - .
= (A 1x1, ..
= (Ap1x1 +-

as desired.

Suppose T € L(V,W) and vy, ..., v, is a list of vectors in V such that T'vy, . .

that vy, . .., v, is linearly independent.

Proof. Suppose ay, ...,a, € F satisty

Then, since T is linear, we have

. Am,l) + x2(A1,2, ..
o Am1x1) + (A1px2, ..
<+ Alsnx”, ..

T(I,O, .. "O) = (Al,l’ . -,Am,l)»

T(Os 13 0, MR O) = (Al,zs ceey Am,2),

TO,....,001)=(ALns---sAmn)-

0)+(0,x2,0,...,0) + - +(0,...,0,x,))

. 0)+x(0,1,0,...,0)+ -+ x,(0,...,0,1))

.,0) +T(x2(0,1,0,...,0)) + -+ + T(x,(0,...,0,1))
., 0)+ x7(0,1,0,...,0)+ -+ x,7(0,...,0,1)
.,Am,2)+ cee +x,,(A1,n,. . .,Am,n)
e Amax2) + -+ (ALnXns - ooy AmnXn)

"Am,lxl +oe +Am,nxn)’

avy + - +apv, =0.

aiTvi + -+ a,Tv, =T(ayvy + -+ + apvy)

=T(0)
=0.

Since Tvy, . .., Tv, is linearly independent in W, we have

So vy, ..., v, is linearly independent in V.

a=0,...,a,=0.

O

., Tvy,, is a linearly independent list in W. Prove

O

Show that every linear map from a 1-dimensional vector space V to itself is a multiplication by some scalar. More precisely,
prove that if dimV = 1 and T € £L(V, V), then there exists A € F such that Tv = Av forallv € V.



3.A8.

3.A0.

Proof. Let u € V be a nonzero vector. Since we assume dimV = 1, it follows that every vector in V is a scalar multiple of
you; in other words, for all v € V, there exists a € F that satisfies v = au. In fact, since we have Tv € V, there exists 1 € F
that satisfies Tv = Au. As we assume T € L(V, V), we can use its homogeneity to obtain

Tv = T(au)
=aTu
= a(Au)
= (adu
= (la)u
= A(au)
= Av,

as desired. O

Give an example of a function ¢ : R — R such that

plav) = ap(v)
for all @ € R and for all v € R? but ¢ is not linear.
Proof. Since we have v = R2, it is a list with length 2, and so we can write v = (x1, xp) € R2. Define, for example, ¢ : RZ SR
by
1
@(x1,%2) = (x] +x3)3.
Then, for all « € R and for all (x, x») € R, we have
pla(x1, x2)) = plax, axz)
= ((ax1)* + (axp)?’)3
=(@x} + a3x;’)%
= (@(x} + 1))
= a(xf + xg)%
= agp(x, x2),
which shows the homogeneity of ¢. However, if we consider the points (x, x2) = (1, 0), (y1, y2) = (0, 1) € R?, then we have
@((x1, x2) + (y1, ¥2)) = ¢((1,0) + (0, 1))
=¢(1,1)
1
= (1) +(1))3
— 03
and

o(x1, x2) + e(y1, y2) = ¢(1,0) + ¢(0, 1)
= (1 + (01)3 + ((0)° + (1)%)*
=1+1
=2.

Since we have 25 # 2, we conclude o((x1, x2) + (y1, ¥2)) # @(x1, X2) + @(y1, y2), which means that the additivity of ¢ is not
satisfied. Therefore, ¢ is not linear. 0O

Give an example of a function ¢ : C — C such that
e(w +2) = o(w) + ¢(2)

for all w, z € C but ¢ is not linear.

Proof. Define, for example, ¢ : C — C by
pz) =7,



where the bar over z € C denotes the complex conjugate of z. Since we have w, z € C, there exist wy, wy, 21, 22 € R that satisfy
w = wy + woi and z = z1 + 22i. So, for all w, z € C, we have

ew+z)=w+z

= (w1 + wai) + (21 + 22i)

= (w1 +z21) + (w2 + 22)i
= (w1 +21) = (w2 + 22)i
= (w1 — wai) + (21 — 22i)
= (W) + ¢(2),

which shows the homogeneity of ¢. However, if we consider 4 =i € Fand z =i € C, then we have

@(Az) = (i)
= (i®)
=¢(-1)
=-1

and

A¢p(2) = ig(i)
=i
= i(-i)
2

= -1

= (1)
=1.

Since we have —1 # 1, we conclude ¢(1z) # A¢(z), which means that the homogeneity of ¢ is not satisfied. Therefore, ¢ is
not linear. O

3.A.11. Suppose V is finite-dimensional. Prove that every linear map on a subspace of V can be extended to a linear map on V. In
other words, show that if U is a subspace of V and S € L(U, W), then there exists T € L(V, W) such that Tu = Su for all

uel.
Proof. Suppose U is a subspace of V, and let uy, . . ., u,, be a basis of U. Then uj, . . ., u,, is linearly independent, and so, by
2.33 of Axler, we can extend this list to a basis uy, . .., U, V1, . . ., v, of V. This means the list uy, ..., u;, vi,..., v, spans 'V,

and so we can write every v, w € V as unique representations

v=aiu+- -+ aplty, + bivi+ -+ by,
and

W=ciu) + -+ ity +d1vi + -+ dpvy

forsome ay,...,am, b1, ..., bn,C15...,Cmydy, . ..,d, € E. Now, define T : V — W by
T(aju; + - + amlyy + byvy + -+ + byvy) = S(ajuy + - - - + apmityy).
First, given that § : V — W is linear, we will prove that 7 : V — W is linear.
o Additivity: Let v, w € V be arbitrary. Since S is linear, we can use its additivity and homogeneity to obtain

Twv+w)=T{(ajuy + -+ amity, + b1vi + -+ byvy,) + (cruy + <+ - + Cultyy + divy + - -+ + dvy))
=T((ay +cr)uy + -+ (@m + et + (by + dy)vy + -+ + (by + dy)vy)
=S((ay +cuy + -+ + (am + cm)ttin)
=S(ay + cuy) + -+ + S((am + cm)itm)
= (a1 +c1)Suy + -+ (am + cp)Suy,
= (a;Suj + c1Suy) + -+ - + (@St + 1 Sityy)
= (a1Suy + -+ + @ Suy) + (c1Sup + -+ + ¢Sty
= (S(ajuy) + -+ - + Slamuy)) + (S(crur) + - - - + S(cmitm))
= S(ajuy + -+ + amiy) + S(crug + - -+ + cpity)
=T(ajuy + -+ QGuity, + byvy + -+ byvy) + T(cruy + -+ + Cultyy, + d1vy + -+ - + dyvy)
=Tv+Tw.



3.A.13.

3.B.9.

e Homogeneity: Let A € F and v € V be arbitrary. Since S is linear, we can use its additivity and homogeneity to obtain

T(Av) =T(A(aju; + - + @y, + byvy + -+ - + byvy))
=T((Aa)uy + - + (Aa))uy, + (Aby)vy + + - - + (Aby)vy)
= S((Aapuy + - - - + (Aam)um))
= S((Aa)ur) + - - - + S((Aam)um))
= (dap)Suy + -+ + (Aay)Suy,
= Aa;Suy + - + amSuy,)
= AS(ajuy) + - - - + S(amun))
= AS(aju; + - + amy,)
= AT(ajuy + -+ + aGuity, + byvy + -+ -+ byvy)
=ATv.

Since additivity and homogeneity of T are satisfied, T is linear. Next, we need to show that 7" satisfies Tu = Su forallu € U.
Since uy, . .., un is a basis of U, it spans U, and so we can write every u € U as a unique representation

u=auy+---+auuy

for some ay, ..., a, € F. Werecall S € L(V, W) by assumption, and we established already T € L(V, W) and Tu; = Su; for
eachi=1,...,m. So, forall u € U, we have

Tu=T(au; + -+ amity,)
=T(ayuy) + -+ + T(amum,)
=aiTuy + -+ +ay,Tu,,
=a1Suy + -+ a,Suy,
= S(ajuy) + - - - + S(amtm)
= S(ajuy + -+ + amit)
= Su,

as desired. O

Suppose vy, . . ., vy, is a linearly dependent list of vectors in V. Suppose also that W # {0}. Prove that there exist wy, ..., w, €
W such that no T € L(V, W) satisfies Tvy = wy foreachk =1,...,m.

Proof. Since we assume W # {0}, we can consider a list of nonzero vectors wy, ..., w, € W, which means we have w; # 0
foralli = 1,...,n. Suppose by contradiction that 7 € L(V, W) must satisfy Tv; = w; for some i = 1,...,m. Since vi,..., v,
is a linearly dependent list of vectors in V, there exist ay, . . ., a, € F, not all zero, that satisfy

apvi + -+ auvy =0.

For example, for all j = 1,...,n, we can choose some i € {1,...,n} such that ¢; # 0 and a; = 0if j # i. The reason for
choosing i is because we have Tv; = w; from earlier. Also, since T : V — W is linear, we have T'(0) = 0, according to 3.11 of
Axler. Therefore, we have

wi =T(v;)
=TOvy+---+0vi_; + 1v; + Oviyy + -+ - + Ovyy)
=T(@vi + -+ ai_1Vic1 + aiVi + Qig1Vig1 + -+ + AmVin)

=T(avi + -+ amvm)

=T7(0)

=0,
which contradicts our assumption w; # 0 for alli = 1,.. ., n at the beginning of this proof. Therefore, if wy,...,w, € Wisa
list of nonzero vectors, thenno T € L(V, W) satisfies Tvy = wy foreachk =1,...,m. a
Suppose T € L(V, W) is injective and vy, . . ., v, is linearly independent in V. Prove that Tvy, ..., Tv, is linearly independent
inW.
Proof. Suppose ay, . ..,a, € Fsatisfy a;Tvy + - -+ + a,Tv, = 0. Then, since T is linear, we have

T(ayvi+--+apvp) =aiTvi+ -+ a,Tvy,
=0.



3.B.13.

3.B.14.

3.B.15.

Since T is injective, by 3.16 of Axler we have null 7 = {0}, and so we get
avy +---+a,v, =0.
Finally, since vy, .. ., v, is linearly independent in V by assumption, all the scalars are zero; that is, we have
a1 =0,...,a, =0.

Therefore, Tvy, . .., Tvy is linearly independent in W. O

Suppose T : F* — F? is a linear map such that
null T = {(xy, xp, x3, x4) € . x1 =5xp and x3 = Tx4}.

Prove that T is surjective.

Proof. First, we need to find a basis of null T = {(xy, X2, x3, x4) € F* : x| = 5x and x3 = 7x4}. Let (x|, x2, x3, x4) € null T be
arbitrary. Then we have x; = 5x, and x3 = 7x4, and so we can write

(x1, X2, X3, X4) = (5x2, X2, X4, X4)
= (5)(2, X2, 0, 0) + (0, 0, 7)64, X4)
= %2(5,1,0,0) + x4(0,0,7, 1).

Since we have x;, x4 € F, we have established that the list (5, 1,0, 0), (0,0, 7, 1) spans null 7. If we can also show that the list
is also linearly independent in null 7', then it would in fact be a basis of null 7. Suppose ay, az, a3 € F satisfy

a1(5,1,0,0) + a»(0,0,7,1) = (0,0,0,0).
Applying addition and scalar multiplication in F* to the left-hand side of the above equation, we get
(5ay, a1, 7az, az) = (0,0,0,0),
from which we can equate the second and fourth coordinates of both sides to obtain
a; =0,a, =0

and so the list (5, 1,0,0),(0,0,7, 1) is linearly independent in null 7. So this list is a basis of null 7, which means we have
dimnull 7 = 2. By the Fundamental Theorem of Linear Maps (3.22 of Axler), we have

dimrange T = dimF* — dimnull 7
=4-2
=2
= dimF*.

By Exercise 2.C.1 of Axler, we conclude range 7 = F?, which means T : F* — F? is surjective. O

Suppose U is a 3-dimensional subspace of R® and that 7 : R® — R is a liner map such that nullT = U. Prove that T is
surjective.

Proof. Since U is a 3-dimensional subspace of R8, we have dim U = 3. Furthermore, since we assumed null 7 = U, we have
in fact dimnull 7 = dim U = 3. By the Fundamental Theorem of Linear Maps (3.22 of Axler), we have

dimrange T = dimR® — dimnull 7
=8-3
=5
= dimR°.

By Exercise 2.C.1 of Axler, we conclude range T = R’, which means T : R® — R is surjective. O

Prove that there does not exist a linear map from > to F? whose null space equals

{1, 22, x3, x4, %5) € F 2 31 = 3xp and x3 = x4 = x5}



3.B.17.

Proof. Suppose by contradiction there exists 7 € £(F, F?) that satisfies
null 7 = {(xy, x2, X3, x4, X5) € F:x;=3xand x3 = x4 = Xs}.

First, we need to find a basis of null 7 = {(x, x2, x3, X4, x5) € F> : x; = 3x5 and x3 = x4 = x5}. Let (x1, x2, X3, X4, x5) € null 7
be arbitrary. Then we have x; = 3x; and x3 = x4 = x5, and so we can write

(x1, X2, X3, X4, X5) = (3x2, X2, X3, X3, X3)
= (3x2, x2,0,0,0) + (0,0, x3, x3, x3)
=x(3,1,0,0,0) + x3(0,0,1, 1, 1).

Since we have xp, x3 € F, we have established that the list (3, 1,0,0,0), (0,0, 1, 1, 1) spans null 7. If we can also show that the
list is also linearly independent in null 7', then it would in fact be a basis of null 7. Suppose ay, ay, a3 € F satisty

a1(3,1,0,0,0) + a2(0,0,1,1,1) = (0,0,0,0, 0).
Applying addition and scalar multiplication in F to the left-hand side of the above equation, we get
(3ay, a1, ap, az, az) = (0,0,0,0,0),
from which we can equate the second and third coordinates of both sides to obtain
a;=0,a, =0

and so the list (3, 1,0, 0,0), (0,0, 1, 1, 1) is linearly independent in null 7. So this list is a basis of null 7', which means we have
dimnull T = 2. Since we have T € L(FS, Fz), it follows, by 3.14 of Axler, that range T is a subspace of F2, and so, by 2.38 of
Axler, we must have dimrange 7 < 2. By the Fundamental Theorem of Linear Maps (3.22 of Axler), we have

dimnull 7 = dimF° — dimrange T

>5-2

=3

>2
=dimnull 7,

which is a contradiction. So we conclude that there does not exist a linear map T € £(F°, F?) that satisfies our claim at the
very beginning of this proof. O

Suppose V and W are both finite-dimensional. Prove that there exists an injective linear map from V to W if and only if
dimV < dimW.

Proof. Forward direction: If there exists a injective linear map T € L(V, W), then dimV < dim W. Suppose there exists a
injective linear map T € L(V, W), which means by 3.16 of Axler we have null 7 = {0}. Since 3.19 of Axler says that range T
is a subspace of W, by 2.38 of Axler, we have dimrange 7T < dim W. By the Fundamental Theorem of Linear Maps (3.22 of
Axler), we have
dimV = dimnull 7 + dimrange T

= dim{0} + dimrange T

=0+ dimrange T

= dimrange T

< dimW,
ordimW < dimV, as desired.

Backward direction: If dimV < dim W, then there exists an injective linear map T € L(V, W). Suppose we have dimV <
dim W. Since V and W are finite-dimensional, according to 2.32 of Axler, there exist a basis of V and a basis of W. For brevity
in notation, let m = dim W and n = dim V, which means n < m. Define T : V — W by

T(ayvi +---+ayvy) = aywi + -+ + aywy,

for some ay,...,ay,...,a, € F. Then T is linear and indeed defines a function, according to the proof for 3.5 in Axler. Now
suppose we have a|v| + - -+ + a,v, € nullT. Then we have T(a|v| + - -+ + av,) =0, or

aywy + -+ amwy, = 0.

Since wy, ..., wy, is a basis of W, it is linearly independent, which means all the scalars are zero; that is, we have a; =
0,...,a, =0. Since n < m, we have in particular the first n of the m scalars are zero; that is, we have a; =0, ...,a, = 0. So
we have

avi +---+ayv, =0,

which means we have null 7 c {0}. But 3.14 of Axler says that null 7' is a subspace in V, which means in particular that null 7
contains the additive identity, or {0} C null 7. Therefore, we have the set equality null 7 = {0}. Finally, by 3.16 of Axler, T
is injective. O



3.B.18.

3.B.19.

Suppose V and W are both finite-dimensional. Prove that there exists a surjective linear map from V to W if and only if
dimV > dimW.

Proof. Forward direction: If there exists a surjective linear map T € L(V, W), then dimV > dim W. Suppose there exists a
surjective map T € L(V, W), which means we have range 7 = W, and so dimrange 7 = dim W. Since T is a linear map, by
3.11 of Axler we have T(0) = 0. So we have {0} C null7, and so, by 2.38 of Axler, we have 0 = dim{0} < dimnull7. By
the Fundamental Theorem of Linear Maps (3.22 of Axler), we have

dimV = dimnull T + dimrange T
=dimnull7T + dim W
> dim{0} + dim W
=0+dimW
=dimW,

as desired.

Backward direction: If dimV > dim W, then there exists a surjective map 7 € L(V, W). Suppose we have dimV < dim W.
Since V and W are finite-dimensional, according to 2.32 of Axler, there exist a basis of V and a basis of W. For brevity in
notation, let m = dim W and n = dim V, which means n > m. Define T : V — W by

T(avi +---+ayvy) = aywi + -+ + aywpy,

for some ay,...,an,...,a, € F. Then T is linear and indeed defines a function, according to the proof for 3.5 in Axler.
Since wy,...,wy is a basis of W, every vector in W is a linear combination of wy,...,w, and can therefore be written
aiwy + - -+ + amwy,. This implies that we have range T = W, and so T is surjective. O

Suppose V and W are finite-dimensional and that U is a subspace of V. Prove that there exists T € L(V, W) such that
null7 = U if and only if dim U > dimV —dim W.

Proof. Forward direction: If there exists T € L(V, W) such that null7 = U, then dimU > dimV — dim W. Since 3.19 of
Axler says that range T is a subspace of W, by 2.38 of Axler, we have dimrange 7 < dim W. By the Fundamental Theorem of
Linear Maps (3.22 of Axler), we have

dimV = dimnull T + dimrange T
=dimU + dimrange T
<dimU +dim W,

from which we get dimU > dimV — dim W.

Backward direction: If dim U > dim V — dim W, then there exists T € L(V, W) such that nullT = U. Let uy, . . ., u,, be a basis
of U. Then it is a linearly independent list in U, and so, by 2.33 of Axler, we can extend the list to a basis uy, ..., U, Vi,..., vy
of V. This means we have dim U = m and dimV = m + n. So every vector v, 7 € V can be written as unique representations

v=aiu+- -+ aplty, + bivi + -+ by,

and

V=ciuy +-+cuim +divy +- -+ d,vy
for some ay,...,am, by,...,by,C1,. ..., Cm,d1,...,d, € F. (The only purpose of introducing ¥ here is to help show that the
map T satisfies the additivity property of a linear map.) Let wy,...,w, be a basis of W; this means we have dimW = p.

DefineT : V — W by
T(ayuy + -+ amm + b1vi + -+ - + byvy) = biwy + -+ + bywy,.

Since we assumed dim U > dim V — dim W, we have

n=(m+n)—m
=dimV - dimU
= (dimV —dim W) + dim W — dim U
<dimU +dimW —dim U
=dim W
=p,

which means that we have the scalars wy, ..., wp,...,w, for all integers n = 1,..., p, and so the map 7 that we just defined
above makes sense. Now, we will prove that T is linear.



o Additivity: For all v, 7 € V, we have
T +7V)=T(aju; + -+ amityy + byvy + -+ + byvy) + (cruy + -+ - + Cullyy + dyvy + - -+ + dyvy))
=T((ay + cpuy + -+ + (@m + cp)tm + (b1 + dy)vy + - - + (by + dy)vy)
=(by +d)wi + -+ (by + dp)wy,
= (bywy +diywy) + -+ + (bpwy + dnwy)
= (bywy + -+ bywy) + (dywy + -+ + dywy)
=Tv+T9.
o Homogeneity: For all 1 € F and for all v € V, we have
T(Av) =TA(aju; + - + @iy, + byvy + -+ + byvy))
=T((Aa))uy + - + (Aap)um + (Ab)vy + - - - + (Aby)vy)
= (/lbl)w1 + 0+ (/lb,,)wn
= Abywi) + -+ + Abpwn)
= Abywi + -+ + bywy)
= AT(ayuy + -+ + @ity + byvy + -+ + byvy)
=ATv.
Since additivity and homogeneity of T are satisfied, T is linear. Next, we need to prove null7 = U. Let u € null7. Since
Uy, ..., Uy isabasisof Uand uy, ..., upm, vy, ..., v, is a basis of V, we can write u as its unique representation
Uu=auy+- -+ aupity, + byvi +--- + byv,
for some ay, ..., am, b1,...,b, € F. Suppose we have v € null T. Then Tv = 0, and so we have
0="Tu
=T(ajuy + -+ Guityy, + bvy + -+ byvy)
=bywi + -+ bywy.
Since wy, ..., wp is a basis of W, we can write the zero vector 0 € W in the unique representation
O=bwi+---+bpwp
=biwi+ -+ Dbywy + by 1 Wpyt + -+ bpwp.
According to the criterion for basis (2.29 of Axler), the representation of the zero vector is unique. So all the scalars must be

zero; that is, we have
b1 =0,...,b, =0.

In particular, the first n of the p scalars is zero:
b1 =0,...,b,=0.

Therefore, we have
u=ajuy+---+auym +b1vi +--- +byvy

=ajuy+-+apity, + 0y + -+ 0y,

=ajuy + -+ auly.
Finally, since again uy, . . ., uy,, is a basis of U, it spans U. So we have span(uy, . .., u,,) = U, that is, U consists of all linear
combinations of the list uy, ..., u,. We just wrote u as one such linear combination of uy, ..., u,. So we must have u € U,
and so we conclude null7 c U. Now, we will prove the other set containment. Conversely, suppose we have u € U. Since
Ui, ..., Uy isabasisof U and uy, ..., um, vi,..., v, is a basis of V, we can write u as its unique representation

u=auy+---+auun

=aiuy + -+ amity +0vy + -+ 0v,

for some ay, ..., a, € F. Exactly like in the proof of the other set containment, we can also write the zero vector 0 € V in its

unique representation
0=0u; +---+0uy +0vi +---+0v,.

So we have
Tu=Tu+0)
=T((ajuy + - + aypltyy + OV + -+« +0v,) + Oy + -+ - + Oy + Ovy + -+ 0vy))
=T{a; +O)uy + -+ + (am + Oty + (0 +0)vy +--- +(0+0)vy,)
=T(ajuy + -+ @ity + 0vy + -+ - + 0vy)
=0w; +---+ 0w,
=0.

Therefore, we have u € null 7', and so we obtain U C null 7. Therefore, we obtain the set equality null7 = U. O
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Suppose W is finite-dimensional and 7' € L(V, W). Prove that T is injective if and only if there exists S € L(W, V) such that
ST is the identity map on V.

Proof. Forward direction: If T is injective, then there exists S € L(W,V) such that ST is the identity map on V. Define
S :rangeT — V by
S(Tv) =v.

Since T is injective, we have the implication: if u,v € V satisfy Tu = Tv, then we have u = v. In other words, two distinct
representatives of the same input element in range 7 implies two distinct representatives of the same output element in V, and
so we conclude that T is well-defined on range 7. This also implies that S : range T — V is indeed a map. Now, assuming in
the premises that T : V — W is linear, we will show that S is linear on range 7.

o Additivity: For all v, ¥ € V, the additivity of T implies that we have

S(Tu+Tv) = §(T(u +v))
=u+v
= S(Tu) + 5(Tv).

e Homogeneity: For all A € F and for all v € V, the homogeneity of T implies that we have

SA(Tv)) = S(T(Av))
=Av
= A5(Tv).

Since additivity and homogeneity of S are satisfied, S is linear on range T. Now, we also recall from 3.19 of Axler that range T
is a subspace of W. So now we can invoke Exercise 3.A.11 of Axler to extend the linear map S on range T to a linear map S
on W such that Sv = Sy forall v € range 7. Finally, for all v € V, we have

(ST)yv = S(Tv)
= S(Tv)

:V’

which means we conclude ST = Iy, where Iy is an identity map on V, as desired.

Backward direction: If there exists S € L(W, V) such that ST is the identity map on V, then T is injective. Suppose there
exists S € L(W, V) such that ST is the identity map on V. Then we have (ST) = Iy, where Iy is an identity map on V. In
other words, we have (ST)v = v for all v € V. Now, suppose u, v € V satisfy Tu = Tv. Then we have

u=1Iyu
= (ST)u
= S(Tu)
=S(Tv)
= (ST)v
=1Iyv

=V.

Therefore, T is injective. o

Suppose V is finite-dimensional and 7 € L(V, W). Prove that T is surjective if and only if there exists § € L(W, V) such that
TS is the identity map on W.

Proof. Forward direction: If T is surjective, then there exists S € L(W, V) such that 7S is the identity map on V. Since
T : V — W is surjective, we have range T = W. Furthermore, by the Fundamental Theorem of Linear Maps (3.22 of Axler),
we have that range T is finite-dimensional, or equivalently W is finite-dimensional. So we have that both V and W are finite-
dimensional. By 2.32 of Axler, there exists a basis wy, ..., w, of W. So every vector w € W can be written as its unique
representation

w=awy+- -+ auWm

for some ay,...,a, € F. Since T : V — W is surjective, given w; for eachi = 1,...,m, there exists v; € V that satisfies
Tv; = w;. Now define the map S : W — V by

Slaywy + -+ + aywy) =aivy + -+ + dyVin.
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Then we have
(TS)(aywy + -+ + amwp) = T(S(aywy + -+ - + amwn,))
=T(avy + - + @mVim)
=awi + -+ AW,
and so we have T'S = Iy, where [ is the identity map on W.
Backward direction: If there exists S € L(W, V) such that T'S is the identity map on V, then T is surjective. Suppose that there
exists S € L(W, V) such that TS is the identity map on V. Then, for all w € W, we have
w=Iwyw
=(TSw
=T(Sw).
Now, S € L(W, V) implies that we have Sw € V. So the above equation gives us w € range T, and so we get W C range 7. At

the same time, 3.19 of Axler tells us that range T is a subspace of W. Therefore, we obtain the set equality range 7 = W. This
means 7 is surjective. O

Suppose ¢ € L(V,F). Suppose u € V is not in null ¢. Prove that
V=nullp & {au : a € F}.
Proof. First, we need to prove
V =nullp + {au : a € F}.

Now, the map ¢ € L(V,F) implies that every output is a scalar; in particular, we have ¢(u), ¢(v) € F. Furthermore, division

of two elements in F is again an element in F; in this case, ¢(u), o(v) € F 1mply ‘p(v) € F, from which we can conclude

E;;u € {au : a € F}. Also, observe that we can write every v € V as

_ ( e(v) ) o)
V=1V — + —
PONARTON
Since we assumed ¢ € L(V,F), we can use its additivity and homogeneity to obtain

) o
¢(V ol >”) “’(V)“"( (u))

_e(v) )
= ¢(v) so(u)
= ¢(v) = ¢(v)
= O,

from which we conclude v — :ﬁ—:u € null ¢. Therefore, for all v € V, we conclude

B ( e(v) ) o)
v=|v- + —=
EONAROR
enully + {au : a € F},
and so we can write V = null ¢ + {au : a € F}, as we initially claimed. Next, we need to prove
null o N {au : a € F} = {0}.

Suppose we have v € null ¢ N {au : a € F}. Then we have v € null ¢ and v € {au : a € E}. In other words, we have ¢(v) = 0
and v = au for some a € F. Therefore, we have

0=¢()
= p(au)
= ap(u).

Since we assumed u ¢ null ¢, it follows that we have ¢(u) # 0. So the above equation implies that we must have a = 0. In
turn, we get

and so we have v € {0}. So we conclude null ¢ N {au : a € F} c {0}. At the same time, 3.14 of Axler states that null ¢
is a subspace of V, which implies in particular that we have 0 € null ¢. And, of course, 0 € F satisfies 0 = Ou, which
means we have 0 € {au : a € F}. So we have 0 € nullp N {au : a € F}, and so we get {0} C nullp N {au : a € F}.
Therefore, we conclude the set equality {au : a € F} = {0}, as we initially claimed. Finally, by 1.45 of Axler, we conclude
V =null ¢ & {au : a € F}, as desired. O



