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Solutions to assigned homework problems from Linear Algebra Done Right (third edition) by Sheldon Axler

3.A: 1, 2, 3, 4, 7, 8, 9, 11, 13
3.B: 9, 13, 14, 15, 17, 18, 19, 20, 21, 29

3.A.1. Suppose b, c ∈ R. Define T : R3 → R2 by

T(x, y, z) = (2x − 4y + 3z + b, 6x + cxyz).

Show that T is linear if and only if b = c = 0.

Proof. Forward direction: If T is linear, then b = 0 and c = 0. Since T is linear, additivity holds for all (x, y, z), (x̃, ỹ, z̃) ∈ R3.
It would be a good idea for us to choose simple points in R3 in order to make our computations as simple as possible. If we
let (x, y, z) = (1, 0, 0), (x̃, ỹ, z̃) = (0, 1, 1) ∈ R3, then we have

T((1, 0, 0) + (0, 1, 1)) = T(1, 1, 1)
= (2(1) − 4(1) + 3(1) + b, 6(1) + c(1)(1)(1))
= (1 + b, 6 + c)

and

T(1, 0, 0) + T(0, 1, 1) = (2(1) − 4(0) + 3(0) + b, 6(1) + c(1)(0)(0)) + (2(0) − 4(1) + 3(1) + b, 6(0) + c(0)(1)(1))
= (2 + b, 6) + (−1 + b, 0)
= (1 + 2b, 6).

Since T is linear, additivity of T holds and implies that we have

(1 + b, 6 + c) = T((1, 0, 0) + (0, 1, 1))
= T(1, 0, 0) + T(0, 1, 1)
= (1 + 2b, 6),

from which we can equate the coordinates to obtain the equations 1 + b = 1 + 2b and 6 + c = 6, which imply b = 0 and c = 0,
respectively.

Backward direction: If b = 0 and c = 0, then T is linear. Suppose b = 0 and c = 0. Then the map T : R3 → R2 becomes

T(x, y, z) = (2x − 4y + 3z, 6x).

We will prove that T is linear.

• Additivity: For all (x, y, z), (x̃, ỹ, z̃) ∈ R3, we have

T((x, y, z) + (x̃, ỹ, z̃)) = T(x + x̃, y + ỹ, z + z̃)

= (2(x + x̃) − 4(y + ỹ) + 3(z + z̃), 6(x + x̃))

= (2x − 4y + 3z + 2x̃ − 4ỹ + 3z̃, 6x + 6x̃)

= (2x − 4y + 3z, 6x) + (2x̃ − 4ỹ + 3z̃, 6x̃)

= T(x, y, z) + T(x̃, ỹ, z̃).

• Homogeneity: For all λ ∈ F and for all (x, y, z) ∈ R3, we have

T(λ(x, y, z)) = T(λx, λy, λz)

= (2(λx) − 4(λy) + 3(λz), 6(λx)

= (λ(2x − 4y + 3z), λ(6x))

= λ(2x − 4y + 3z, 6x)

= λT(x, y, z).

Since additivity and homogeneity of T are satisfied, T is linear. �

3.A.2. Suppose b, c ∈ R. Define T : P(R) → R2 by

T p =

(
3p(4) + 5p′(6) + bp(1)p(2),

∫ 2

−1
x3p(x) dx + c sin p(0)

)
.

Show that T is linear if and only if b = c = 0.



Proof. Forward direction: If T is linear, then b = 0 and c = 0. Since T is linear, additivity holds for all p, q ∈ P(R). It would
be a good idea for us to choose simple polynomials in P(R) in order to make our computations as simple as possible. Define
p, q ∈ P(R) by p(x) = π

2 and q(x) = π
2 for all x ∈ R. Then their first-order derivatives are p′(x) = 0 and q′(x) = 0 for all

x ∈ R, and so we have

T(p + q) =

(
3(p + q)(4) + 5(p + q)′(6) + b(p + q)(1)(p + q)(2),

∫ 2

−1
x3(p + q)(x) dx + c sin((p + q)(0))

)
=

(
3(p(4) + q(4)) + 5(p′(6) + q′(6)) + b(p(1) + q(1))(p(2) + q(2)),

∫ 2

−1
x3(p(x) + q(x)) dx + c sin(p(0) + q(0))

)
=
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=

(
3π + π2b,

15π
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)

and

T p + Tq =

(
3p(4) + 5p′(6) + bp(1)p(2),

∫ 2

−1
x3p(x) dx + c sin p(0)

)
+

(
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∫ 2

−1
x3 dx + c

)
+

(
3π
2

+
πb
4
,
π

2
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−1
x3 dx + c
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=
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.

Since T is linear, additivity of T holds and implies that we have(
3π + π2b,

15π
4

)
= T(p + q)

= T p + Tq

=

(
3π +

πb
2
,

15π
4

+ 2c
)
,

from which we can equate the coordinates to obtain the equations 3π+ π2b = 3π+ πb
2 and 15π

4 = 15π
4 + 2c, which imply b = 0

and c = 0, respectively.

Backward direction: If b = 0 and c = 0, then T is linear. Suppose b = 0 and c = 0. Then the map T : R3 → R2 becomes

T p =

(
3p(4) + 5p′(6),

∫ 2

−1
x3p(x) dx

)
.

We will prove that T is linear.

• Additivity: For all p, q ∈ P(R), we have

T(p + q) =

(
3(p + q)(4) + 5(p + q)′(6),

∫ 2

−1
x3(p + q)(x) dx

)
=

(
3(p(4) + q(4)) + 5(p′(6) + q′(6)),

∫ 2

−1
x3(p(x) + q(x)) dx

)
=

(
3p(4) + 5p′(6) + 3q(4) + 3q′(6),

∫ 2

−1
x3p(x) dx +

∫ 2

−1
x3q(x) dx

)
=

(
3p(4) + 5p′(6),

∫ 2

−1
x3p(x) dx

)
+

(
3q(4) + 3q′(6),

∫ 2

−1
x3q(x) dx

)
= T p + Tq.



• Homogeneity: For all λ ∈ F and for all (x, y, z) ∈ R3, we have

T(λp) =

(
3(λp)(4) + 5(λp)′(6),

∫ 2

−1
x3(λp)(x) dx

)
=

(
3λp(4) + 5λp′(6),

∫ 2

−1
x3λp(x) dx

)
=

(
λ(3p(4) + 5p′(6)), λ

∫ 2

−1
x3p(x) dx

)
= λ

(
3p(4) + 5p′(6),

∫ 2

−1
x3p(x) dx

)
= λT p.

Since additivity and homogeneity of T are satisfied, T is linear. �

3.A.3. Suppose T ∈ L(Fn, Fm). Show that there exist scalars Aj,k ∈ F for j = 1, . . . ,m and for k = 1, . . . , n such that

T(x1, . . . , xn) = (A1,1x1 + · · · + A1,nxn, . . . , Am,1x1 + · · · + Am,nxn)

for all (x1, . . . , xn) ∈ Fn.

Proof. Suppose Aj,k ∈ F for j = 1, . . . ,m and for k = 1, . . . , n satisfy

T(1, 0, . . . , 0) = (A1,1, . . . , Am,1),

T(0, 1, 0, . . . , 0) = (A1,2, . . . , Am,2),

...

T(0, . . . , 0, 1) = (A1,n, . . . , Am,n).

Then, for all (x1, . . . , xn) ∈ Fn, we have

T(x1, . . . , xn) = T((x1, 0, . . . , 0) + (0, x2, 0, . . . , 0) + · · · + (0, . . . , 0, xn))

= T(x1(1, 0, . . . , 0) + x2(0, 1, 0, . . . , 0) + · · · + xn(0, . . . , 0, 1))
= T(x1(1, 0, . . . , 0)) + T(x2(0, 1, 0, . . . , 0)) + · · · + T(xn(0, . . . , 0, 1))
= x1T(1, 0, . . . , 0) + x2T(0, 1, 0, . . . , 0) + · · · + xnT(0, . . . , 0, 1)
= x1(A1,1, . . . , Am,1) + x2(A1,2, . . . , Am,2) + · · · + xn(A1,n, . . . , Am,n)

= (A1,1x1, . . . , Am,1x1) + (A1,2x2, . . . , Am,2x2) + · · · + (A1,nxn, . . . , Am,nxn)

= (A1,1x1 + · · · + A1,nxn, . . . , Am,1x1 + · · · + Am,nxn),

as desired. �

3.A.4. Suppose T ∈ L(V,W) and v1, . . . , vm is a list of vectors in V such that Tv1, . . . ,Tvm is a linearly independent list in W . Prove
that v1, . . . , vm is linearly independent.

Proof. Suppose a1, . . . , an ∈ F satisfy
a1v1 + · · · + anvn = 0.

Then, since T is linear, we have

a1Tv1 + · · · + anTvn = T(a1v1 + · · · + anvn)

= T(0)
= 0.

Since Tv1, . . . ,Tvn is linearly independent in W , we have

a1 = 0, . . . , an = 0.

So v1, . . . , vn is linearly independent in V . �

3.A.7. Show that every linear map from a 1-dimensional vector space V to itself is a multiplication by some scalar. More precisely,
prove that if dim V = 1 and T ∈ L(V,V), then there exists λ ∈ F such that Tv = λv for all v ∈ V .



Proof. Let u ∈ V be a nonzero vector. Since we assume dim V = 1, it follows that every vector in V is a scalar multiple of
you; in other words, for all v ∈ V , there exists a ∈ F that satisfies v = au. In fact, since we have Tv ∈ V , there exists λ ∈ F
that satisfies Tv = λu. As we assume T ∈ L(V,V), we can use its homogeneity to obtain

Tv = T(au)

= aTu

= a(λu)

= (aλ)u

= (λa)u

= λ(au)

= λv,

as desired. �

3.A.8. Give an example of a function ϕ : R2 → R such that

ϕ(av) = aϕ(v)

for all a ∈ R and for all v ∈ R2 but ϕ is not linear.

Proof. Since we have v = R2, it is a list with length 2, and so we can write v = (x1, x2) ∈ R
2. Define, for example, ϕ : R2 → R

by
ϕ(x1, x2) = (x3

1 + x3
2)

1
3 .

Then, for all a ∈ R and for all (x1, x2) ∈ R
2, we have

ϕ(a(x1, x2)) = ϕ(ax1, ax2)

= ((ax1)
3 + (ax2)

3)
1
3

= (a3x3
1 + a3x3

2)
1
3

= (a3(x3
1 + x3

2))
1
3

= a(x3
1 + x3

2)
1
3

= aϕ(x1, x2),

which shows the homogeneity of ϕ. However, if we consider the points (x1, x2) = (1, 0), (y1, y2) = (0, 1) ∈ R2, then we have

ϕ((x1, x2) + (y1, y2)) = ϕ((1, 0) + (0, 1))
= ϕ(1, 1)

= ((1)3 + (1)3)
1
3

= 2
1
3

and

ϕ(x1, x2) + ϕ(y1, y2) = ϕ(1, 0) + ϕ(0, 1)

= ((1)3 + (0)3)
1
3 + ((0)3 + (1)3)

1
3

= 1 + 1
= 2.

Since we have 2
1
3 , 2, we conclude ϕ((x1, x2) + (y1, y2)) , ϕ(x1, x2) + ϕ(y1, y2), which means that the additivity of ϕ is not

satisfied. Therefore, ϕ is not linear. �

3.A.9. Give an example of a function ϕ : C→ C such that

ϕ(w + z) = ϕ(w) + ϕ(z)

for all w, z ∈ C but ϕ is not linear.

Proof. Define, for example, ϕ : C→ C by
ϕ(z) = z,



where the bar over z ∈ C denotes the complex conjugate of z. Since we have w, z ∈ C, there exist w1,w2, z1, z2 ∈ R that satisfy
w = w1 + w2i and z = z1 + z2i. So, for all w, z ∈ C, we have

ϕ(w + z) = w + z

= (w1 + w2i) + (z1 + z2i)

= (w1 + z1) + (w2 + z2)i

= (w1 + z1) − (w2 + z2)i

= (w1 − w2i) + (z1 − z2i)

= w + z

= ϕ(w) + ϕ(z),

which shows the homogeneity of ϕ. However, if we consider λ = i ∈ F and z = i ∈ C, then we have

ϕ(λz) = ϕ(ii)

= ϕ(i2)

= ϕ(−1)

= −1
= −1

and

λϕ(z) = iϕ(i)

= ii

= i(−i)

= −i2

= −(−1)
= 1.

Since we have −1 , 1, we conclude ϕ(λz) , λϕ(z), which means that the homogeneity of ϕ is not satisfied. Therefore, ϕ is
not linear. �

3.A.11. Suppose V is finite-dimensional. Prove that every linear map on a subspace of V can be extended to a linear map on V . In
other words, show that if U is a subspace of V and S ∈ L(U,W), then there exists T ∈ L(V,W) such that Tu = Su for all
u ∈ U.

Proof. Suppose U is a subspace of V , and let u1, . . . , um be a basis of U. Then u1, . . . , um is linearly independent, and so, by
2.33 of Axler, we can extend this list to a basis u1, . . . , um, v1, . . . , vn of V . This means the list u1, . . . , um, v1, . . . , vn spans V ,
and so we can write every v,w ∈ V as unique representations

v = a1u1 + · · · + amum + b1v1 + · · · + bnvn

and
w = c1u1 + · · · + cmum + d1v1 + · · · + dnvn

for some a1, . . . , am, b1, . . . , bn, c1, . . . , cm, d1, . . . , dn ∈ F. Now, define T : V → W by

T(a1u1 + · · · + amum + b1v1 + · · · + bnvn) = S(a1u1 + · · · + amum).

First, given that S : V → W is linear, we will prove that T : V → W is linear.

• Additivity: Let v,w ∈ V be arbitrary. Since S is linear, we can use its additivity and homogeneity to obtain

T(v + w) = T((a1u1 + · · · + amum + b1v1 + · · · + bnvn) + (c1u1 + · · · + cmum + d1v1 + · · · + dnvn))

= T((a1 + c1)u1 + · · · + (am + cm)um + (b1 + d1)v1 + · · · + (bn + dn)vn)

= S((a1 + c1)u1 + · · · + (am + cm)um)

= S((a1 + c1)u1) + · · · + S((am + cm)um)

= (a1 + c1)Su1 + · · · + (am + cm)Sum
= (a1Su1 + c1Su1) + · · · + (amSum + cmSum)

= (a1Su1 + · · · + amSum) + (c1Su1 + · · · + cmSum)

= (S(a1u1) + · · · + S(amum)) + (S(c1u1) + · · · + S(cmum))

= S(a1u1 + · · · + amum) + S(c1u1 + · · · + cmum)

= T(a1u1 + · · · + amum + b1v1 + · · · + bnvn) + T(c1u1 + · · · + cmum + d1v1 + · · · + dnvn)

= Tv + Tw.



• Homogeneity: Let λ ∈ F and v ∈ V be arbitrary. Since S is linear, we can use its additivity and homogeneity to obtain

T(λv) = T(λ(a1u1 + · · · + amum + b1v1 + · · · + bnvn))

= T((λa1)u1 + · · · + (λa1)um + (λb1)v1 + · · · + (λbn)vn)

= S((λa1)u1 + · · · + (λam)um))

= S((λa1)u1) + · · · + S((λam)um))

= (λa1)Su1 + · · · + (λam)Sum
= λ(a1Su1 + · · · + amSum)

= λ(S(a1u1) + · · · + S(amum))

= λS(a1u1 + · · · + amum)

= λT(a1u1 + · · · + amum + b1v1 + · · · + bnvn)

= λTv.

Since additivity and homogeneity of T are satisfied, T is linear. Next, we need to show that T satisfies Tu = Su for all u ∈ U.
Since u1, . . . , um is a basis of U, it spans U, and so we can write every u ∈ U as a unique representation

u = a1u1 + · · · + amum

for some a1, . . . , am ∈ F. We recall S ∈ L(V,W) by assumption, and we established already T ∈ L(V,W) and Tui = Sui for
each i = 1, . . . ,m. So, for all u ∈ U, we have

Tu = T(a1u1 + · · · + amum)

= T(a1u1) + · · · + T(amum)

= a1Tu1 + · · · + amTum
= a1Su1 + · · · + amSum
= S(a1u1) + · · · + S(amum)

= S(a1u1 + · · · + amum)

= Su,

as desired. �

3.A.13. Suppose v1, . . . , vm is a linearly dependent list of vectors in V . Suppose also that W , {0}. Prove that there exist w1, . . . ,wn ∈

W such that no T ∈ L(V,W) satisfies Tvk = wk for each k = 1, . . . ,m.

Proof. Since we assume W , {0}, we can consider a list of nonzero vectors w1, . . . ,wn ∈ W , which means we have wi , 0
for all i = 1, . . . , n. Suppose by contradiction that T ∈ L(V,W) must satisfy Tvi = wi for some i = 1, . . . ,m. Since v1, . . . , vm
is a linearly dependent list of vectors in V , there exist a1, . . . , am ∈ F, not all zero, that satisfy

a1v1 + · · · + amvm = 0.

For example, for all j = 1, . . . , n, we can choose some i ∈ {1, . . . , n} such that ai , 0 and aj = 0 if j , i. The reason for
choosing i is because we have Tvi = wi from earlier. Also, since T : V → W is linear, we have T(0) = 0, according to 3.11 of
Axler. Therefore, we have

wi = T(vi)

= T(0v1 + · · · + 0vi−1 + 1vi + 0vi+1 + · · · + 0vm)
= T(a1v1 + · · · + ai−1vi−1 + aivi + ai+1vi+1 + · · · + amvm)

= T(a1v1 + · · · + amvm)

= T(0)
= 0,

which contradicts our assumption wi , 0 for all i = 1, . . . , n at the beginning of this proof. Therefore, if w1, . . . ,wn ∈ W is a
list of nonzero vectors, then no T ∈ L(V,W) satisfies Tvk = wk for each k = 1, . . . ,m. �

3.B.9. Suppose T ∈ L(V,W) is injective and v1, . . . , vn is linearly independent in V . Prove that Tv1, . . . ,Tvn is linearly independent
in W .

Proof. Suppose a1, . . . , an ∈ F satisfy a1Tv1 + · · · + anTvn = 0. Then, since T is linear, we have

T(a1v1 + · · · + anvn) = a1Tv1 + · · · + anTvn
= 0.



Since T is injective, by 3.16 of Axler we have null T = {0}, and so we get

a1v1 + · · · + anvn = 0.

Finally, since v1, . . . , vn is linearly independent in V by assumption, all the scalars are zero; that is, we have

a1 = 0, . . . , am = 0.

Therefore, Tv1, . . . ,Tvn is linearly independent in W . �

3.B.13. Suppose T : F4 → F2 is a linear map such that

null T = {(x1, x2, x3, x4) ∈ F
4 : x1 = 5x2 and x3 = 7x4}.

Prove that T is surjective.

Proof. First, we need to find a basis of null T = {(x1, x2, x3, x4) ∈ F
4 : x1 = 5x2 and x3 = 7x4}. Let (x1, x2, x3, x4) ∈ null T be

arbitrary. Then we have x1 = 5x2 and x3 = 7x4, and so we can write

(x1, x2, x3, x4) = (5x2, x2, 7x4, x4)

= (5x2, x2, 0, 0) + (0, 0, 7x4, x4)

= x2(5, 1, 0, 0) + x4(0, 0, 7, 1).

Since we have x2, x4 ∈ F, we have established that the list (5, 1, 0, 0), (0, 0, 7, 1) spans null T . If we can also show that the list
is also linearly independent in null T , then it would in fact be a basis of null T . Suppose a1, a2, a3 ∈ F satisfy

a1(5, 1, 0, 0) + a2(0, 0, 7, 1) = (0, 0, 0, 0).

Applying addition and scalar multiplication in F4 to the left-hand side of the above equation, we get

(5a1, a1, 7a2, a2) = (0, 0, 0, 0),

from which we can equate the second and fourth coordinates of both sides to obtain

a1 = 0, a2 = 0

and so the list (5, 1, 0, 0), (0, 0, 7, 1) is linearly independent in null T . So this list is a basis of null T , which means we have
dim null T = 2. By the Fundamental Theorem of Linear Maps (3.22 of Axler), we have

dim range T = dimF4 − dim null T

= 4 − 2
= 2

= dimF2.

By Exercise 2.C.1 of Axler, we conclude range T = F2, which means T : F4 → F2 is surjective. �

3.B.14. Suppose U is a 3-dimensional subspace of R8 and that T : R8 → R5 is a liner map such that null T = U. Prove that T is
surjective.

Proof. Since U is a 3-dimensional subspace of R8, we have dim U = 3. Furthermore, since we assumed null T = U, we have
in fact dim null T = dim U = 3. By the Fundamental Theorem of Linear Maps (3.22 of Axler), we have

dim range T = dimR8 − dim null T

= 8 − 3
= 5

= dimR5.

By Exercise 2.C.1 of Axler, we conclude range T = R5, which means T : R8 → R5 is surjective. �

3.B.15. Prove that there does not exist a linear map from F5 to F2 whose null space equals

{(x1, x2, x3, x4, x5) ∈ F
5 : x1 = 3x2 and x3 = x4 = x5}.



Proof. Suppose by contradiction there exists T ∈ L(F5, F2) that satisfies

null T = {(x1, x2, x3, x4, x5) ∈ F
5 : x1 = 3x2 and x3 = x4 = x5}.

First, we need to find a basis of null T = {(x1, x2, x3, x4, x5) ∈ F
5 : x1 = 3x2 and x3 = x4 = x5}. Let (x1, x2, x3, x4, x5) ∈ null T

be arbitrary. Then we have x1 = 3x2 and x3 = x4 = x5, and so we can write

(x1, x2, x3, x4, x5) = (3x2, x2, x3, x3, x3)

= (3x2, x2, 0, 0, 0) + (0, 0, x3, x3, x3)

= x2(3, 1, 0, 0, 0) + x3(0, 0, 1, 1, 1).

Since we have x2, x3 ∈ F, we have established that the list (3, 1, 0, 0, 0), (0, 0, 1, 1, 1) spans null T . If we can also show that the
list is also linearly independent in null T , then it would in fact be a basis of null T . Suppose a1, a2, a3 ∈ F satisfy

a1(3, 1, 0, 0, 0) + a2(0, 0, 1, 1, 1) = (0, 0, 0, 0, 0).

Applying addition and scalar multiplication in F5 to the left-hand side of the above equation, we get

(3a1, a1, a2, a2, a2) = (0, 0, 0, 0, 0),

from which we can equate the second and third coordinates of both sides to obtain

a1 = 0, a2 = 0

and so the list (3, 1, 0, 0, 0), (0, 0, 1, 1, 1) is linearly independent in null T . So this list is a basis of null T , which means we have
dim null T = 2. Since we have T ∈ L(F5, F2), it follows, by 3.14 of Axler, that range T is a subspace of F2, and so, by 2.38 of
Axler, we must have dim range T ≤ 2. By the Fundamental Theorem of Linear Maps (3.22 of Axler), we have

dim null T = dimF5 − dim range T

≥ 5 − 2
= 3
> 2
= dim null T,

which is a contradiction. So we conclude that there does not exist a linear map T ∈ L(F5, F2) that satisfies our claim at the
very beginning of this proof. �

3.B.17. Suppose V and W are both finite-dimensional. Prove that there exists an injective linear map from V to W if and only if
dim V ≤ dim W .

Proof. Forward direction: If there exists a injective linear map T ∈ L(V,W), then dim V ≤ dim W . Suppose there exists a
injective linear map T ∈ L(V,W), which means by 3.16 of Axler we have null T = {0}. Since 3.19 of Axler says that range T
is a subspace of W , by 2.38 of Axler, we have dim range T ≤ dim W . By the Fundamental Theorem of Linear Maps (3.22 of
Axler), we have

dim V = dim null T + dim range T

= dim{0} + dim range T

= 0 + dim range T

= dim range T

≤ dim W,

or dim W ≤ dim V , as desired.

Backward direction: If dim V ≤ dim W , then there exists an injective linear map T ∈ L(V,W). Suppose we have dim V ≤
dim W . Since V and W are finite-dimensional, according to 2.32 of Axler, there exist a basis of V and a basis of W . For brevity
in notation, let m = dim W and n = dim V , which means n ≤ m. Define T : V → W by

T(a1v1 + · · · + anvn) = a1w1 + · · · + amwm

for some a1, . . . , an, . . . , am ∈ F. Then T is linear and indeed defines a function, according to the proof for 3.5 in Axler. Now
suppose we have a1v1 + · · · + anvn ∈ null T . Then we have T(a1v1 + · · · + anvn) = 0, or

a1w1 + · · · + amwm = 0.

Since w1, . . . ,wm is a basis of W , it is linearly independent, which means all the scalars are zero; that is, we have a1 =

0, . . . , am = 0. Since n ≤ m, we have in particular the first n of the m scalars are zero; that is, we have a1 = 0, . . . , am = 0. So
we have

a1v1 + · · · + anvn = 0,

which means we have null T ⊂ {0}. But 3.14 of Axler says that null T is a subspace in V , which means in particular that null T
contains the additive identity, or {0} ⊂ null T . Therefore, we have the set equality null T = {0}. Finally, by 3.16 of Axler, T
is injective. �



3.B.18. Suppose V and W are both finite-dimensional. Prove that there exists a surjective linear map from V to W if and only if
dim V ≥ dim W .

Proof. Forward direction: If there exists a surjective linear map T ∈ L(V,W), then dim V ≥ dim W . Suppose there exists a
surjective map T ∈ L(V,W), which means we have range T = W , and so dim range T = dim W . Since T is a linear map, by
3.11 of Axler we have T(0) = 0. So we have {0} ⊂ null T , and so, by 2.38 of Axler, we have 0 = dim{0} ≤ dim null T . By
the Fundamental Theorem of Linear Maps (3.22 of Axler), we have

dim V = dim null T + dim range T

= dim null T + dim W

≥ dim{0} + dim W

= 0 + dim W

= dim W,

as desired.

Backward direction: If dim V ≥ dim W , then there exists a surjective map T ∈ L(V,W). Suppose we have dim V ≤ dim W .
Since V and W are finite-dimensional, according to 2.32 of Axler, there exist a basis of V and a basis of W . For brevity in
notation, let m = dim W and n = dim V , which means n ≥ m. Define T : V → W by

T(a1v1 + · · · + anvn) = a1w1 + · · · + amwm

for some a1, . . . , an, . . . , am ∈ F. Then T is linear and indeed defines a function, according to the proof for 3.5 in Axler.
Since w1, . . . ,wn is a basis of W , every vector in W is a linear combination of w1, . . . ,wn and can therefore be written
a1w1 + · · · + amwm. This implies that we have range T = W , and so T is surjective. �

3.B.19. Suppose V and W are finite-dimensional and that U is a subspace of V . Prove that there exists T ∈ L(V,W) such that
null T = U if and only if dim U ≥ dim V − dim W .

Proof. Forward direction: If there exists T ∈ L(V,W) such that null T = U, then dim U ≥ dim V − dim W . Since 3.19 of
Axler says that range T is a subspace of W , by 2.38 of Axler, we have dim range T ≤ dim W . By the Fundamental Theorem of
Linear Maps (3.22 of Axler), we have

dim V = dim null T + dim range T

= dim U + dim range T

≤ dim U + dim W,

from which we get dim U ≥ dim V − dim W .

Backward direction: If dim U ≥ dim V − dim W , then there exists T ∈ L(V,W) such that null T = U. Let u1, . . . , um be a basis
of U. Then it is a linearly independent list in U, and so, by 2.33 of Axler, we can extend the list to a basis u1, . . . , um, v1, . . . , vn
of V . This means we have dim U = m and dim V = m + n. So every vector v, ṽ ∈ V can be written as unique representations

v = a1u1 + · · · + amum + b1v1 + · · · + bnvn

and
ṽ = c1u1 + · · · + cmum + d1v1 + · · · + dnvn

for some a1, . . . , am, b1, . . . , bn, c1, . . . , cm, d1, . . . , dn ∈ F. (The only purpose of introducing ṽ here is to help show that the
map T satisfies the additivity property of a linear map.) Let w1, . . . ,wp be a basis of W ; this means we have dim W = p.
Define T : V → W by

T(a1u1 + · · · + amum + b1v1 + · · · + bnvn) = b1w1 + · · · + bnwn.

Since we assumed dim U ≥ dim V − dim W , we have

n = (m + n) − m

= dim V − dim U

= (dim V − dim W) + dim W − dim U

≤ dim U + dim W − dim U

= dim W

= p,

which means that we have the scalars w1, . . . ,wn, . . . ,wp for all integers n = 1, . . . , p, and so the map T that we just defined
above makes sense. Now, we will prove that T is linear.



• Additivity: For all v, ṽ ∈ V , we have

T(v + ṽ) = T((a1u1 + · · · + amum + b1v1 + · · · + bnvn) + (c1u1 + · · · + cmum + d1v1 + · · · + dnvn))

= T((a1 + c1)u1 + · · · + (am + cm)um + (b1 + d1)v1 + · · · + (bn + dn)vn)

= (b1 + d1)w1 + · · · + (bn + dn)wn

= (b1w1 + d1w1) + · · · + (bnwn + dnwn)

= (b1w1 + · · · + bnwn) + (d1w1 + · · · + dnwn)

= Tv + T ṽ.

• Homogeneity: For all λ ∈ F and for all v ∈ V , we have

T(λv) = T(λ(a1u1 + · · · + amum + b1v1 + · · · + bnvn))

= T((λa1)u1 + · · · + (λam)um + (λb1)v1 + · · · + (λbn)vn)

= (λb1)w1 + · · · + (λbn)wn

= λ(b1w1) + · · · + λ(bnwn)

= λ(b1w1 + · · · + bnwn)

= λT(a1u1 + · · · + amum + b1v1 + · · · + bnvn)

= λTv.

Since additivity and homogeneity of T are satisfied, T is linear. Next, we need to prove null T = U. Let u ∈ null T . Since
u1, . . . , um is a basis of U and u1, . . . , um, v1, . . . , vn is a basis of V , we can write u as its unique representation

u = a1u1 + · · · + amum + b1v1 + · · · + bnvn

for some a1, . . . , am, b1, . . . , bn ∈ F. Suppose we have v ∈ null T . Then Tv = 0, and so we have

0 = Tu

= T(a1u1 + · · · + amum + b1v1 + · · · + bnvn)

= b1w1 + · · · + bnwn.

Since w1, . . . ,wp is a basis of W , we can write the zero vector 0 ∈ W in the unique representation

0 = b1w1 + · · · + bpwp

= b1w1 + · · · + bnwn + bn+1wn+1 + · · · + bpwp .

According to the criterion for basis (2.29 of Axler), the representation of the zero vector is unique. So all the scalars must be
zero; that is, we have

b1 = 0, . . . , bp = 0.

In particular, the first n of the p scalars is zero:
b1 = 0, . . . , bn = 0.

Therefore, we have

u = a1u1 + · · · + amum + b1v1 + · · · + bnvn
= a1u1 + · · · + amum + 0v1 + · · · + 0vn
= a1u1 + · · · + amum.

Finally, since again u1, . . . , um is a basis of U, it spans U. So we have span(u1, . . . , um) = U; that is, U consists of all linear
combinations of the list u1, . . . , um. We just wrote u as one such linear combination of u1, . . . , um. So we must have u ∈ U,
and so we conclude null T ⊂ U. Now, we will prove the other set containment. Conversely, suppose we have u ∈ U. Since
u1, . . . , um is a basis of U and u1, . . . , um, v1, . . . , vn is a basis of V , we can write u as its unique representation

u = a1u1 + · · · + amum
= a1u1 + · · · + amum + 0v1 + · · · + 0vn

for some a1, . . . , am ∈ F. Exactly like in the proof of the other set containment, we can also write the zero vector 0 ∈ V in its
unique representation

0 = 0u1 + · · · + 0um + 0v1 + · · · + 0vn.

So we have

Tu = T(u + 0)
= T((a1u1 + · · · + amum + 0v1 + · · · + 0vn) + (0u1 + · · · + 0um + 0v1 + · · · + 0vn))
= T((a1 + 0)u1 + · · · + (am + 0)um + (0 + 0)v1 + · · · + (0 + 0)vn)
= T(a1u1 + · · · + amum + 0v1 + · · · + 0vn)
= 0w1 + · · · + 0wn

= 0.

Therefore, we have u ∈ null T , and so we obtain U ⊂ null T . Therefore, we obtain the set equality null T = U. �



3.B.20. Suppose W is finite-dimensional and T ∈ L(V,W). Prove that T is injective if and only if there exists S ∈ L(W,V) such that
ST is the identity map on V .

Proof. Forward direction: If T is injective, then there exists S ∈ L(W,V) such that ST is the identity map on V . Define
S̃ : range T → V by

S̃(Tv) = v.

Since T is injective, we have the implication: if u, v ∈ V satisfy Tu = Tv, then we have u = v. In other words, two distinct
representatives of the same input element in range T implies two distinct representatives of the same output element in V , and
so we conclude that T is well-defined on range T . This also implies that S̃ : range T → V is indeed a map. Now, assuming in
the premises that T : V → W is linear, we will show that S̃ is linear on range T .

• Additivity: For all v, ṽ ∈ V , the additivity of T implies that we have

S̃(Tu + Tv) = S̃(T(u + v))

= u + v

= S̃(Tu) + S̃(Tv).

• Homogeneity: For all λ ∈ F and for all v ∈ V , the homogeneity of T implies that we have

S̃(λ(Tv)) = S̃(T(λv))

= λv

= λS̃(Tv).

Since additivity and homogeneity of S̃ are satisfied, S̃ is linear on range T . Now, we also recall from 3.19 of Axler that range T
is a subspace of W . So now we can invoke Exercise 3.A.11 of Axler to extend the linear map S̃ on range T to a linear map S
on W such that Sv = S̃v for all v ∈ range T . Finally, for all v ∈ V , we have

(ST)v = S(Tv)

= S̃(Tv)

= v,

which means we conclude ST = IV , where IV is an identity map on V , as desired.

Backward direction: If there exists S ∈ L(W,V) such that ST is the identity map on V , then T is injective. Suppose there
exists S ∈ L(W,V) such that ST is the identity map on V . Then we have (ST) = IV , where IV is an identity map on V . In
other words, we have (ST)v = v for all v ∈ V . Now, suppose u, v ∈ V satisfy Tu = Tv. Then we have

u = IVu

= (ST)u

= S(Tu)

= S(Tv)

= (ST)v

= IV v

= v.

Therefore, T is injective. �

3.B.21. Suppose V is finite-dimensional and T ∈ L(V,W). Prove that T is surjective if and only if there exists S ∈ L(W,V) such that
TS is the identity map on W .

Proof. Forward direction: If T is surjective, then there exists S ∈ L(W,V) such that TS is the identity map on V . Since
T : V → W is surjective, we have range T = W . Furthermore, by the Fundamental Theorem of Linear Maps (3.22 of Axler),
we have that range T is finite-dimensional, or equivalently W is finite-dimensional. So we have that both V and W are finite-
dimensional. By 2.32 of Axler, there exists a basis w1, . . . ,wm of W . So every vector w ∈ W can be written as its unique
representation

w = a1w1 + · · · + amwm

for some a1, . . . , am ∈ F. Since T : V → W is surjective, given wi for each i = 1, . . . ,m, there exists vi ∈ V that satisfies
Tvi = wi . Now define the map S : W → V by

S(a1w1 + · · · + amwm) = a1v1 + · · · + amvm.



Then we have

(TS)(a1w1 + · · · + amwm) = T(S(a1w1 + · · · + amwm))

= T(a1v1 + · · · + amvm)

= a1w1 + · · · + amwm,

and so we have TS = IW , where I is the identity map on W .

Backward direction: If there exists S ∈ L(W,V) such that TS is the identity map on V , then T is surjective. Suppose that there
exists S ∈ L(W,V) such that TS is the identity map on V . Then, for all w ∈ W , we have

w = IWw

= (TS)w

= T(Sw).

Now, S ∈ L(W,V) implies that we have Sw ∈ V . So the above equation gives us w ∈ range T , and so we get W ⊂ range T . At
the same time, 3.19 of Axler tells us that range T is a subspace of W . Therefore, we obtain the set equality range T = W . This
means T is surjective. �

3.B.29. Suppose ϕ ∈ L(V, F). Suppose u ∈ V is not in null ϕ. Prove that

V = null ϕ ⊕ {au : a ∈ F}.

Proof. First, we need to prove
V = null ϕ + {au : a ∈ F}.

Now, the map ϕ ∈ L(V, F) implies that every output is a scalar; in particular, we have ϕ(u), ϕ(v) ∈ F. Furthermore, division
of two elements in F is again an element in F; in this case, ϕ(u), ϕ(v) ∈ F imply ϕ(v)

ϕ(u) ∈ F, from which we can conclude
ϕ(v)
ϕ(u)u ∈ {au : a ∈ F}. Also, observe that we can write every v ∈ V as

v =

(
v −

ϕ(v)

ϕ(u)
u
)

+
ϕ(v)

ϕ(u)
u.

Since we assumed ϕ ∈ L(V, F), we can use its additivity and homogeneity to obtain

ϕ

(
v −

ϕ(v)

ϕ(u)
u
)

= ϕ(v) + ϕ

(
−
ϕ(v)

ϕ(u)
u
)

= ϕ(v) −
ϕ(v)

ϕ(u)
ϕu

= ϕ(v) − ϕ(v)

= 0,

from which we conclude v −
ϕv
ϕuu ∈ null ϕ. Therefore, for all v ∈ V , we conclude

v =

(
v −

ϕ(v)

ϕ(u)
u
)

+
ϕ(v)

ϕ(u)
u

∈ null ϕ + {au : a ∈ F},

and so we can write V = null ϕ + {au : a ∈ F}, as we initially claimed. Next, we need to prove

null ϕ ∩ {au : a ∈ F} = {0}.

Suppose we have v ∈ null ϕ ∩ {au : a ∈ F}. Then we have v ∈ null ϕ and v ∈ {au : a ∈ F}. In other words, we have ϕ(v) = 0
and v = au for some a ∈ F. Therefore, we have

0 = ϕ(v)

= ϕ(au)

= aϕ(u).

Since we assumed u < null ϕ, it follows that we have ϕ(u) , 0. So the above equation implies that we must have a = 0. In
turn, we get

v = au

= 0 · u
= 0,

and so we have v ∈ {0}. So we conclude null ϕ ∩ {au : a ∈ F} ⊂ {0}. At the same time, 3.14 of Axler states that null ϕ
is a subspace of V , which implies in particular that we have 0 ∈ null ϕ. And, of course, 0 ∈ F satisfies 0 = 0u, which
means we have 0 ∈ {au : a ∈ F}. So we have 0 ∈ null ϕ ∩ {au : a ∈ F}, and so we get {0} ⊂ null ϕ ∩ {au : a ∈ F}.
Therefore, we conclude the set equality {au : a ∈ F} = {0}, as we initially claimed. Finally, by 1.45 of Axler, we conclude
V = null ϕ ⊕ {au : a ∈ F}, as desired. �


