MATH 131: Linear Algebra I

University of California, Riverside

Homework 3 Solutions July 15, 2019

Solutions to assigned homework problems from Linear Algebra Done Right (third edition) by Sheldon Axler

3.A: 1, 2, 3, 4, 7, 8, 9, 11, 13 3.B: 9, 13, 14, 15, 17, 18, 19, 20, 21, 29

3.A.1. Suppose $b, c \in \mathbb{R}$. Define $T : \mathbb{R}^3 \to \mathbb{R}^2$ by

T(x, y, z) = (2x - 4y + 3z + b, 6x + cxyz).

Show that *T* is linear if and only if b = c = 0.

Proof. Forward direction: If *T* is linear, then b = 0 and c = 0. Since *T* is linear, additivity holds for all $(x, y, z), (\tilde{x}, \tilde{y}, \tilde{z}) \in \mathbb{R}^3$. It would be a good idea for us to choose simple points in \mathbb{R}^3 in order to make our computations as simple as possible. If we let $(x, y, z) = (1, 0, 0), (\tilde{x}, \tilde{y}, \tilde{z}) = (0, 1, 1) \in \mathbb{R}^3$, then we have

$$T((1, 0, 0) + (0, 1, 1)) = T(1, 1, 1)$$

= (2(1) - 4(1) + 3(1) + b, 6(1) + c(1)(1)(1))
= (1 + b, 6 + c)

and

$$T(1,0,0) + T(0,1,1) = (2(1) - 4(0) + 3(0) + b, 6(1) + c(1)(0)(0)) + (2(0) - 4(1) + 3(1) + b, 6(0) + c(0)(1)(1))$$

= (2 + b, 6) + (-1 + b, 0)
= (1 + 2b, 6).

Since T is linear, additivity of T holds and implies that we have

$$(1 + b, 6 + c) = T((1, 0, 0) + (0, 1, 1))$$

= T(1, 0, 0) + T(0, 1, 1)
= (1 + 2b, 6),

from which we can equate the coordinates to obtain the equations 1 + b = 1 + 2b and 6 + c = 6, which imply b = 0 and c = 0, respectively.

Backward direction: If b = 0 and c = 0, then T is linear. Suppose b = 0 and c = 0. Then the map $T : \mathbb{R}^3 \to \mathbb{R}^2$ becomes

$$T(x, y, z) = (2x - 4y + 3z, 6x).$$

We will prove that *T* is linear.

• Additivity: For all $(x, y, z), (\tilde{x}, \tilde{y}, \tilde{z}) \in \mathbb{R}^3$, we have

$$T((x, y, z) + (\tilde{x}, \tilde{y}, \tilde{z})) = T(x + \tilde{x}, y + \tilde{y}, z + \tilde{z})$$

= $(2(x + \tilde{x}) - 4(y + \tilde{y}) + 3(z + \tilde{z}), 6(x + \tilde{x}))$
= $(2x - 4y + 3z + 2\tilde{x} - 4\tilde{y} + 3\tilde{z}, 6x + 6\tilde{x})$
= $(2x - 4y + 3z, 6x) + (2\tilde{x} - 4\tilde{y} + 3\tilde{z}, 6\tilde{x})$
= $T(x, y, z) + T(\tilde{x}, \tilde{y}, \tilde{z}).$

• Homogeneity: For all $\lambda \in \mathbb{F}$ and for all $(x, y, z) \in \mathbb{R}^3$, we have

$$T(\lambda(x, y, z)) = T(\lambda x, \lambda y, \lambda z)$$

= $(2(\lambda x) - 4(\lambda y) + 3(\lambda z), 6(\lambda x))$
= $(\lambda(2x - 4y + 3z), \lambda(6x))$
= $\lambda(2x - 4y + 3z, 6x)$
= $\lambda T(x, y, z).$

Since additivity and homogeneity of T are satisfied, T is linear.

3.A.2. Suppose $b, c \in \mathbb{R}$. Define $T : \mathcal{P}(\mathbb{R}) \to \mathbb{R}^2$ by

$$Tp = \left(3p(4) + 5p'(6) + bp(1)p(2), \int_{-1}^{2} x^{3}p(x) \, dx + c \sin p(0)\right).$$

Show that *T* is linear if and only if b = c = 0.

Proof. Forward direction: If *T* is linear, then b = 0 and c = 0. Since *T* is linear, additivity holds for all $p, q \in \mathcal{P}(\mathbb{R})$. It would be a good idea for us to choose simple polynomials in $\mathcal{P}(\mathbb{R})$ in order to make our computations as simple as possible. Define $p, q \in \mathcal{P}(\mathbb{R})$ by $p(x) = \frac{\pi}{2}$ and $q(x) = \frac{\pi}{2}$ for all $x \in \mathbb{R}$. Then their first-order derivatives are p'(x) = 0 and q'(x) = 0 for all $x \in \mathbb{R}$, and so we have

$$\begin{split} T(p+q) &= \left(3(p+q)(4) + 5(p+q)'(6) + b(p+q)(1)(p+q)(2), \int_{-1}^{2} x^{3}(p+q)(x) \, dx + c \sin((p+q)(0))\right) \\ &= \left(3(p(4)+q(4)) + 5(p'(6)+q'(6)) + b(p(1)+q(1))(p(2)+q(2)), \int_{-1}^{2} x^{3}(p(x)+q(x)) \, dx + c \sin(p(0)+q(0))\right) \\ &= \left(3\left(\frac{\pi}{2} + \frac{\pi}{2}\right) + 5(0+0) + b\left(\frac{\pi}{2} + \frac{\pi}{2}\right) \left(\frac{\pi}{2} + \frac{\pi}{2}\right), \int_{-1}^{2} x^{3}\left(\frac{\pi}{2} + \frac{\pi}{2}\right) \, dx + c \sin\left(\frac{\pi}{2} + \frac{\pi}{2}\right)\right) \\ &= \left(3\pi + \pi^{2}b, \frac{15\pi}{4}\right) \end{split}$$

and

$$Tp + Tq = \left(3p(4) + 5p'(6) + bp(1)p(2), \int_{-1}^{2} x^{3}p(x) \, dx + c \sin p(0)\right) + \left(3q(4) + 5q'(6) + bq(1)q(2), \int_{-1}^{2} x^{3}q(x) \, dx + c \sin q(0)\right)$$
$$= \left(3\left(\frac{\pi}{2}\right) + 5(0) + b\left(\frac{\pi}{2}\right)\left(\frac{\pi}{2}\right), \int_{-1}^{2} x^{3}\left(\frac{\pi}{2}\right) \, dx + c \sin\left(\frac{\pi}{2}\right)\right) + \left(3\left(\frac{\pi}{2}\right) + 5(0) + b\left(\frac{\pi}{2}\right)\left(\frac{\pi}{2}\right), \int_{-1}^{2} x^{3}\left(\frac{\pi}{2}\right) \, dx + c \sin\left(\frac{\pi}{2}\right)\right)$$
$$= \left(\frac{3\pi}{2} + \frac{\pi b}{4}, \frac{\pi}{2}\int_{-1}^{2} x^{3} \, dx + c\right) + \left(\frac{3\pi}{2} + \frac{\pi b}{4}, \frac{\pi}{2}\int_{-1}^{2} x^{3} \, dx + c\right)$$
$$= \left(3\pi + \frac{\pi b}{2}, \frac{15\pi}{4} + 2c\right).$$

Since T is linear, additivity of T holds and implies that we have

$$\begin{aligned} 3\pi + \pi^2 b, \frac{15\pi}{4} &= T(p+q) \\ &= Tp + Tq \\ &= \left(3\pi + \frac{\pi b}{2}, \frac{15\pi}{4} + 2c\right), \end{aligned}$$

from which we can equate the coordinates to obtain the equations $3\pi + \pi^2 b = 3\pi + \frac{\pi b}{2}$ and $\frac{15\pi}{4} = \frac{15\pi}{4} + 2c$, which imply b = 0 and c = 0, respectively.

Backward direction: If b = 0 and c = 0, then T is linear. Suppose b = 0 and c = 0. Then the map $T : \mathbb{R}^3 \to \mathbb{R}^2$ becomes

$$Tp = \left(3p(4) + 5p'(6), \int_{-1}^{2} x^{3}p(x) \, dx\right).$$

We will prove that T is linear.

• Additivity: For all $p, q \in \mathcal{P}(\mathbb{R})$, we have

$$T(p+q) = \left(3(p+q)(4) + 5(p+q)'(6), \int_{-1}^{2} x^{3}(p+q)(x) \, dx\right)$$

= $\left(3(p(4) + q(4)) + 5(p'(6) + q'(6)), \int_{-1}^{2} x^{3}(p(x) + q(x)) \, dx\right)$
= $\left(3p(4) + 5p'(6) + 3q(4) + 3q'(6), \int_{-1}^{2} x^{3}p(x) \, dx + \int_{-1}^{2} x^{3}q(x) \, dx\right)$
= $\left(3p(4) + 5p'(6), \int_{-1}^{2} x^{3}p(x) \, dx\right) + \left(3q(4) + 3q'(6), \int_{-1}^{2} x^{3}q(x) \, dx\right)$
= $Tp + Tq$.

• Homogeneity: For all $\lambda \in \mathbb{F}$ and for all $(x, y, z) \in \mathbb{R}^3$, we have

$$T(\lambda p) = \left(3(\lambda p)(4) + 5(\lambda p)'(6), \int_{-1}^{2} x^{3}(\lambda p)(x) \, dx\right)$$
$$= \left(3\lambda p(4) + 5\lambda p'(6), \int_{-1}^{2} x^{3}\lambda p(x) \, dx\right)$$
$$= \left(\lambda(3p(4) + 5p'(6)), \lambda \int_{-1}^{2} x^{3}p(x) \, dx\right)$$
$$= \lambda \left(3p(4) + 5p'(6), \int_{-1}^{2} x^{3}p(x) \, dx\right)$$
$$= \lambda T p.$$

Since additivity and homogeneity of T are satisfied, T is linear.

3.A.3. Suppose $T \in \mathcal{L}(\mathbb{F}^n, \mathbb{F}^m)$. Show that there exist scalars $A_{j,k} \in \mathbb{F}$ for j = 1, ..., m and for k = 1, ..., n such that

$$T(x_1, \dots, x_n) = (A_{1,1}x_1 + \dots + A_{1,n}x_n, \dots, A_{m,1}x_1 + \dots + A_{m,n}x_n)$$

for all $(x_1, \ldots, x_n) \in \mathbb{F}^n$.

Proof. Suppose $A_{j,k} \in \mathbb{F}$ for j = 1, ..., m and for k = 1, ..., n satisfy

$$T(1, 0, \dots, 0) = (A_{1,1}, \dots, A_{m,1}),$$

$$T(0, 1, 0, \dots, 0) = (A_{1,2}, \dots, A_{m,2}),$$

$$\vdots$$

$$T(0, \dots, 0, 1) = (A_{1,n}, \dots, A_{m,n}).$$

Then, for all $(x_1, \ldots, x_n) \in \mathbb{F}^n$, we have

$$T(x_1, \dots, x_n) = T((x_1, 0, \dots, 0) + (0, x_2, 0, \dots, 0) + \dots + (0, \dots, 0, x_n))$$

= $T(x_1(1, 0, \dots, 0) + x_2(0, 1, 0, \dots, 0) + \dots + x_n(0, \dots, 0, 1))$
= $T(x_1(1, 0, \dots, 0)) + T(x_2(0, 1, 0, \dots, 0)) + \dots + T(x_n(0, \dots, 0, 1)))$
= $x_1T(1, 0, \dots, 0) + x_2T(0, 1, 0, \dots, 0) + \dots + x_nT(0, \dots, 0, 1)$
= $x_1(A_{1,1}, \dots, A_{m,1}) + x_2(A_{1,2}, \dots, A_{m,2}) + \dots + x_n(A_{1,n}, \dots, A_{m,n})$
= $(A_{1,1}x_1, \dots, A_{m,1}x_1) + (A_{1,2}x_2, \dots, A_{m,2}x_2) + \dots + (A_{1,n}x_n, \dots, A_{m,n}x_n)$
= $(A_{1,1}x_1 + \dots + A_{1,n}x_n, \dots, A_{m,1}x_1 + \dots + A_{m,n}x_n),$

as desired.

3.A.4. Suppose $T \in \mathcal{L}(V, W)$ and v_1, \ldots, v_m is a list of vectors in V such that Tv_1, \ldots, Tv_m is a linearly independent list in W. Prove that v_1, \ldots, v_m is linearly independent.

Proof. Suppose $a_1, \ldots, a_n \in \mathbb{F}$ satisfy

$$a_1v_1 + \cdots + a_nv_n = 0.$$

Then, since *T* is linear, we have

$$a_1Tv_1 + \dots + a_nTv_n = T(a_1v_1 + \dots + a_nv_n)$$
$$= T(0)$$
$$= 0.$$

Since Tv_1, \ldots, Tv_n is linearly independent in W, we have

$$a_1=0,\ldots,a_n=0.$$

So v_1, \ldots, v_n is linearly independent in V.

3.A.7. Show that every linear map from a 1-dimensional vector space V to itself is a multiplication by some scalar. More precisely, prove that if dim V = 1 and $T \in \mathcal{L}(V, V)$, then there exists $\lambda \in \mathbb{F}$ such that $Tv = \lambda v$ for all $v \in V$.

Proof. Let $u \in V$ be a nonzero vector. Since we assume dim V = 1, it follows that every vector in V is a scalar multiple of you; in other words, for all $v \in V$, there exists $a \in \mathbb{F}$ that satisfies v = au. In fact, since we have $Tv \in V$, there exists $\lambda \in \mathbb{F}$ that satisfies $Tv = \lambda u$. As we assume $T \in \mathcal{L}(V, V)$, we can use its homogeneity to obtain

Tv = T(au)= aTu= $a(\lambda u)$ = $(a\lambda)u$ = $(\lambda a)u$ = $\lambda(au)$ = λv ,

as desired.

3.A.8. Give an example of a function $\varphi : \mathbb{R}^2 \to \mathbb{R}$ such that

$$\varphi(av) = a\varphi(v)$$

for all $a \in \mathbb{R}$ and for all $v \in \mathbb{R}^2$ but φ is not linear.

Proof. Since we have $v = \mathbb{R}^2$, it is a list with length 2, and so we can write $v = (x_1, x_2) \in \mathbb{R}^2$. Define, for example, $\varphi : \mathbb{R}^2 \to \mathbb{R}$ by

$$\varphi(x_1, x_2) = (x_1^3 + x_2^3)^{\frac{1}{3}}.$$

Then, for all $a \in \mathbb{R}$ and for all $(x_1, x_2) \in \mathbb{R}^2$, we have

$$\begin{split} \varphi(a(x_1, x_2)) &= \varphi(ax_1, ax_2) \\ &= ((ax_1)^3 + (ax_2)^3)^{\frac{1}{3}} \\ &= (a^3 x_1^3 + a^3 x_2^3)^{\frac{1}{3}} \\ &= (a^3 (x_1^3 + x_2^3))^{\frac{1}{3}} \\ &= a(x_1^3 + x_2^3)^{\frac{1}{3}} \\ &= a\varphi(x_1, x_2), \end{split}$$

which shows the homogeneity of φ . However, if we consider the points $(x_1, x_2) = (1, 0), (y_1, y_2) = (0, 1) \in \mathbb{R}^2$, then we have

$$\varphi((x_1, x_2) + (y_1, y_2)) = \varphi((1, 0) + (0, 1))$$

= $\varphi(1, 1)$
= $((1)^3 + (1)^3)^{\frac{1}{3}}$
= $2^{\frac{1}{3}}$

and

$$\varphi(x_1, x_2) + \varphi(y_1, y_2) = \varphi(1, 0) + \varphi(0, 1)$$

= $((1)^3 + (0)^3)^{\frac{1}{3}} + ((0)^3 + (1)^3)^{\frac{1}{3}}$
= $1 + 1$
= 2.

Since we have $2^{\frac{1}{3}} \neq 2$, we conclude $\varphi((x_1, x_2) + (y_1, y_2)) \neq \varphi(x_1, x_2) + \varphi(y_1, y_2)$, which means that the additivity of φ is not satisfied. Therefore, φ is not linear.

3.A.9. Give an example of a function $\varphi : \mathbb{C} \to \mathbb{C}$ such that

$$\varphi(w + z) = \varphi(w) + \varphi(z)$$

for all $w, z \in \mathbb{C}$ but φ is not linear.

Proof. Define, for example, $\varphi : \mathbb{C} \to \mathbb{C}$ by

 $\varphi(z) = \overline{z},$

where the bar over $z \in \mathbb{C}$ denotes the complex conjugate of z. Since we have $w, z \in \mathbb{C}$, there exist $w_1, w_2, z_1, z_2 \in \mathbb{R}$ that satisfy $w = w_1 + w_2 i$ and $z = z_1 + z_2 i$. So, for all $w, z \in \mathbb{C}$, we have

$$\varphi(w + z) = \overline{w + z}$$

$$= \overline{(w_1 + w_2 i) + (z_1 + z_2 i)}$$

$$= \overline{(w_1 + z_1) + (w_2 + z_2)i}$$

$$= (w_1 + z_1) - (w_2 + z_2)i$$

$$= (w_1 - w_2 i) + (z_1 - z_2 i)$$

$$= \overline{w} + \overline{z}$$

$$= \varphi(w) + \varphi(z),$$

which shows the homogeneity of φ . However, if we consider $\lambda = i \in \mathbb{F}$ and $z = i \in \mathbb{C}$, then we have

 $\varphi(\lambda z) = \varphi(ii)$ $= \varphi(i^2)$ $= \varphi(-1)$ = -1 $\lambda \varphi(z) = i\varphi(i)$

 $\varphi(z) = i\varphi(i)$ $= i\overline{i}$ = i(-i) $= -i^{2}$ = -(-1) = 1.

and

Since we have $-1 \neq 1$, we conclude $\varphi(\lambda z) \neq \lambda \varphi(z)$, which means that the homogeneity of φ is not satisfied. Therefore, φ is not linear.

3.A.11. Suppose V is finite-dimensional. Prove that every linear map on a subspace of V can be extended to a linear map on V. In other words, show that if U is a subspace of V and $S \in \mathcal{L}(U, W)$, then there exists $T \in \mathcal{L}(V, W)$ such that Tu = Su for all $u \in U$.

Proof. Suppose U is a subspace of V, and let u_1, \ldots, u_m be a basis of U. Then u_1, \ldots, u_m is linearly independent, and so, by 2.33 of Axler, we can extend this list to a basis $u_1, \ldots, u_m, v_1, \ldots, v_n$ of V. This means the list $u_1, \ldots, u_m, v_1, \ldots, v_n$ spans V, and so we can write every $v, w \in V$ as unique representations

$$v = a_1u_1 + \dots + a_mu_m + b_1v_1 + \dots + b_nv_n$$

and

$$w = c_1u_1 + \dots + c_mu_m + d_1v_1 + \dots + d_nv$$

for some $a_1, \ldots, a_m, b_1, \ldots, b_n, c_1, \ldots, c_m, d_1, \ldots, d_n \in \mathbb{F}$. Now, define $T: V \to W$ by

$$T(a_1u_1 + \dots + a_mu_m + b_1v_1 + \dots + b_nv_n) = S(a_1u_1 + \dots + a_mu_m)$$

First, given that $S: V \to W$ is linear, we will prove that $T: V \to W$ is linear.

• Additivity: Let $v, w \in V$ be arbitrary. Since S is linear, we can use its additivity and homogeneity to obtain

$$\begin{split} T(v+w) &= T((a_1u_1 + \dots + a_mu_m + b_1v_1 + \dots + b_nv_n) + (c_1u_1 + \dots + c_mu_m + d_1v_1 + \dots + d_nv_n)) \\ &= T((a_1 + c_1)u_1 + \dots + (a_m + c_m)u_m + (b_1 + d_1)v_1 + \dots + (b_n + d_n)v_n) \\ &= S((a_1 + c_1)u_1 + \dots + (a_m + c_m)u_m) \\ &= (a_1 + c_1)Su_1 + \dots + S((a_m + c_m)u_m) \\ &= (a_1Su_1 + c_1Su_1) + \dots + (a_mSu_m + c_mSu_m) \\ &= (a_1Su_1 + \dots + a_mSu_m) + (c_1Su_1 + \dots + c_mSu_m) \\ &= (S(a_1u_1) + \dots + S(a_mu_m)) + (S(c_1u_1) + \dots + S(c_mu_m)) \\ &= S(a_1u_1 + \dots + a_mu_m) + S(c_1u_1 + \dots + c_mu_m) \\ &= T(a_1u_1 + \dots + a_mu_m + b_1v_1 + \dots + b_nv_n) + T(c_1u_1 + \dots + c_mu_m + d_1v_1 + \dots + d_nv_n) \\ &= Tv + Tw. \end{split}$$

• Homogeneity: Let $\lambda \in \mathbb{F}$ and $v \in V$ be arbitrary. Since S is linear, we can use its additivity and homogeneity to obtain

$$T(\lambda v) = T(\lambda(a_1u_1 + \dots + a_mu_m + b_1v_1 + \dots + b_nv_n))$$

= $T((\lambda a_1)u_1 + \dots + (\lambda a_1)u_m + (\lambda b_1)v_1 + \dots + (\lambda b_n)v_n)$
= $S((\lambda a_1)u_1 + \dots + (\lambda a_m)u_m))$
= $S((\lambda a_1)u_1) + \dots + S((\lambda a_m)u_m))$
= $(\lambda a_1)Su_1 + \dots + (\lambda a_m)Su_m$
= $\lambda(a_1Su_1 + \dots + a_mSu_m)$
= $\lambda(S(a_1u_1) + \dots + S(a_mu_m))$
= $\lambda S(a_1u_1 + \dots + a_mu_m)$
= $\lambda T(a_1u_1 + \dots + a_mu_m + b_1v_1 + \dots + b_nv_n)$
= $\lambda Tv.$

Since additivity and homogeneity of *T* are satisfied, *T* is linear. Next, we need to show that *T* satisfies Tu = Su for all $u \in U$. Since u_1, \ldots, u_m is a basis of *U*, it spans *U*, and so we can write every $u \in U$ as a unique representation

$$u = a_1u_1 + \cdots + a_mu_m$$

for some $a_1, \ldots, a_m \in \mathbb{F}$. We recall $S \in \mathcal{L}(V, W)$ by assumption, and we established already $T \in \mathcal{L}(V, W)$ and $Tu_i = Su_i$ for each $i = 1, \ldots, m$. So, for all $u \in U$, we have

 $Tu = T(a_1u_1 + \dots + a_mu_m)$ = $T(a_1u_1) + \dots + T(a_mu_m)$ = $a_1Tu_1 + \dots + a_mTu_m$ = $a_1Su_1 + \dots + a_mSu_m$ = $S(a_1u_1) + \dots + S(a_mu_m)$ = $S(a_1u_1 + \dots + a_mu_m)$ = Su,

as desired.

3.A.13. Suppose v_1, \ldots, v_m is a linearly dependent list of vectors in V. Suppose also that $W \neq \{0\}$. Prove that there exist $w_1, \ldots, w_n \in W$ such that no $T \in \mathcal{L}(V, W)$ satisfies $Tv_k = w_k$ for each $k = 1, \ldots, m$.

Proof. Since we assume $W \neq \{0\}$, we can consider a list of nonzero vectors $w_1, \ldots, w_n \in W$, which means we have $w_i \neq 0$ for all $i = 1, \ldots, n$. Suppose by contradiction that $T \in \mathcal{L}(V, W)$ must satisfy $Tv_i = w_i$ for some $i = 1, \ldots, m$. Since v_1, \ldots, v_m is a linearly dependent list of vectors in V, there exist $a_1, \ldots, a_m \in \mathbb{F}$, not all zero, that satisfy

$$a_1v_1 + \dots + a_mv_m = 0$$

For example, for all j = 1, ..., n, we can choose some $i \in \{1, ..., n\}$ such that $a_i \neq 0$ and $a_j = 0$ if $j \neq i$. The reason for choosing *i* is because we have $Tv_i = w_i$ from earlier. Also, since $T : V \to W$ is linear, we have T(0) = 0, according to 3.11 of Axler. Therefore, we have

 $w_{i} = T(v_{i})$ $= T(0v_{1} + \dots + 0v_{i-1} + 1v_{i} + 0v_{i+1} + \dots + 0v_{m})$ $= T(a_{1}v_{1} + \dots + a_{i-1}v_{i-1} + a_{i}v_{i} + a_{i+1}v_{i+1} + \dots + a_{m}v_{m})$ $= T(a_{1}v_{1} + \dots + a_{m}v_{m})$ = T(0) = 0,

which contradicts our assumption $w_i \neq 0$ for all i = 1, ..., n at the beginning of this proof. Therefore, if $w_1, ..., w_n \in W$ is a list of nonzero vectors, then no $T \in \mathcal{L}(V, W)$ satisfies $Tv_k = w_k$ for each k = 1, ..., m.

3.B.9. Suppose $T \in \mathcal{L}(V, W)$ is injective and v_1, \ldots, v_n is linearly independent in V. Prove that Tv_1, \ldots, Tv_n is linearly independent in W.

Proof. Suppose $a_1, \ldots, a_n \in \mathbb{F}$ satisfy $a_1 T v_1 + \cdots + a_n T v_n = 0$. Then, since T is linear, we have

$$T(a_1v_1 + \dots + a_nv_n) = a_1Tv_1 + \dots + a_nTv_n$$

Since T is injective, by 3.16 of Axler we have null $T = \{0\}$, and so we get

 $a_1v_1+\cdots+a_nv_n=0.$

Finally, since v_1, \ldots, v_n is linearly independent in V by assumption, all the scalars are zero; that is, we have

$$a_1 = 0, \ldots, a_m = 0.$$

Therefore, Tv_1, \ldots, Tv_n is linearly independent in W.

3.B.13. Suppose $T : \mathbb{F}^4 \to \mathbb{F}^2$ is a linear map such that

null
$$T = \{(x_1, x_2, x_3, x_4) \in \mathbb{F}^4 : x_1 = 5x_2 \text{ and } x_3 = 7x_4\}$$

Prove that *T* is surjective.

Proof. First, we need to find a basis of null $T = \{(x_1, x_2, x_3, x_4) \in \mathbb{F}^4 : x_1 = 5x_2 \text{ and } x_3 = 7x_4\}$. Let $(x_1, x_2, x_3, x_4) \in \text{null } T$ be arbitrary. Then we have $x_1 = 5x_2$ and $x_3 = 7x_4$, and so we can write

$$(x_1, x_2, x_3, x_4) = (5x_2, x_2, 7x_4, x_4)$$

= (5x₂, x₂, 0, 0) + (0, 0, 7x₄, x₄)
= x₂(5, 1, 0, 0) + x₄(0, 0, 7, 1).

Since we have $x_2, x_4 \in \mathbb{F}$, we have established that the list (5, 1, 0, 0), (0, 0, 7, 1) spans null *T*. If we can also show that the list is also linearly independent in null *T*, then it would in fact be a basis of null *T*. Suppose $a_1, a_2, a_3 \in \mathbb{F}$ satisfy

$$a_1(5, 1, 0, 0) + a_2(0, 0, 7, 1) = (0, 0, 0, 0)$$

Applying addition and scalar multiplication in \mathbb{F}^4 to the left-hand side of the above equation, we get

$$(5a_1, a_1, 7a_2, a_2) = (0, 0, 0, 0)$$

from which we can equate the second and fourth coordinates of both sides to obtain

$$a_1 = 0, a_2 = 0$$

and so the list (5, 1, 0, 0), (0, 0, 7, 1) is linearly independent in null *T*. So this list is a basis of null *T*, which means we have dim null *T* = 2. By the Fundamental Theorem of Linear Maps (3.22 of Axler), we have

dim range
$$T = \dim \mathbb{F}^4 - \dim \operatorname{null} T$$

= 4 - 2
= 2
= dim \mathbb{F}^2 .

By Exercise 2.C.1 of Axler, we conclude range $T = \mathbb{F}^2$, which means $T : \mathbb{F}^4 \to \mathbb{F}^2$ is surjective.

3.B.14. Suppose U is a 3-dimensional subspace of \mathbb{R}^8 and that $T : \mathbb{R}^8 \to \mathbb{R}^5$ is a liner map such that null T = U. Prove that T is surjective.

Proof. Since U is a 3-dimensional subspace of \mathbb{R}^8 , we have dim U = 3. Furthermore, since we assumed null T = U, we have in fact dim null $T = \dim U = 3$. By the Fundamental Theorem of Linear Maps (3.22 of Axler), we have

dim range
$$T = \dim \mathbb{R}^{\circ} - \dim \operatorname{null} T$$

= 8 - 3
= 5
= dim \mathbb{R}^{5} .

By Exercise 2.C.1 of Axler, we conclude range $T = \mathbb{R}^5$, which means $T : \mathbb{R}^8 \to \mathbb{R}^5$ is surjective.

3.B.15. Prove that there does not exist a linear map from \mathbb{F}^5 to \mathbb{F}^2 whose null space equals

$$\{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{F}^5 : x_1 = 3x_2 \text{ and } x_3 = x_4 = x_5\}.$$

Proof. Suppose by contradiction there exists $T \in \mathcal{L}(\mathbb{F}^5, \mathbb{F}^2)$ that satisfies

null
$$T = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{F}^5 : x_1 = 3x_2 \text{ and } x_3 = x_4 = x_5\}.$$

First, we need to find a basis of null $T = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{P}^5 : x_1 = 3x_2 \text{ and } x_3 = x_4 = x_5\}$. Let $(x_1, x_2, x_3, x_4, x_5) \in \text{null } T$ be arbitrary. Then we have $x_1 = 3x_2$ and $x_3 = x_4 = x_5$, and so we can write

$$(x_1, x_2, x_3, x_4, x_5) = (3x_2, x_2, x_3, x_3, x_3)$$

= (3x₂, x₂, 0, 0, 0) + (0, 0, x₃, x₃, x₃)
= x₂(3, 1, 0, 0, 0) + x₃(0, 0, 1, 1, 1).

Since we have $x_2, x_3 \in \mathbb{F}$, we have established that the list (3, 1, 0, 0, 0), (0, 0, 1, 1, 1) spans null *T*. If we can also show that the list is also linearly independent in null *T*, then it would in fact be a basis of null *T*. Suppose $a_1, a_2, a_3 \in \mathbb{F}$ satisfy

$$a_1(3, 1, 0, 0, 0) + a_2(0, 0, 1, 1, 1) = (0, 0, 0, 0, 0)$$

Applying addition and scalar multiplication in \mathbb{F}^5 to the left-hand side of the above equation, we get

$$(3a_1, a_1, a_2, a_2, a_2) = (0, 0, 0, 0, 0),$$

from which we can equate the second and third coordinates of both sides to obtain

$$a_1 = 0, a_2 = 0$$

and so the list (3, 1, 0, 0, 0), (0, 0, 1, 1, 1) is linearly independent in null *T*. So this list is a basis of null *T*, which means we have dim null T = 2. Since we have $T \in \mathcal{L}(\mathbb{F}^5, \mathbb{F}^2)$, it follows, by 3.14 of Axler, that range *T* is a subspace of \mathbb{F}^2 , and so, by 2.38 of Axler, we must have dim range $T \le 2$. By the Fundamental Theorem of Linear Maps (3.22 of Axler), we have

dim null
$$T = \dim \mathbb{R}^5 - \dim \operatorname{range} T$$

 $\geq 5 - 2$
 $= 3$
 > 2
 $= \dim \operatorname{null} T$,

which is a contradiction. So we conclude that there does not exist a linear map $T \in \mathcal{L}(\mathbb{F}^5, \mathbb{F}^2)$ that satisfies our claim at the very beginning of this proof.

3.B.17. Suppose V and W are both finite-dimensional. Prove that there exists an injective linear map from V to W if and only if $\dim V \leq \dim W$.

Proof. Forward direction: If there exists a injective linear map $T \in \mathcal{L}(V, W)$, then dim $V \leq \dim W$. Suppose there exists a injective linear map $T \in \mathcal{L}(V, W)$, which means by 3.16 of Axler we have null $T = \{0\}$. Since 3.19 of Axler says that range T is a subspace of W, by 2.38 of Axler, we have dim range $T \leq \dim W$. By the Fundamental Theorem of Linear Maps (3.22 of Axler), we have

 $\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$ $= \dim\{0\} + \dim \operatorname{range} T$ $= 0 + \dim \operatorname{range} T$ $= \dim \operatorname{range} T$ $\leq \dim W,$

or dim $W \leq \dim V$, as desired.

Backward direction: If dim $V \le \dim W$, then there exists an injective linear map $T \in \mathcal{L}(V, W)$. Suppose we have dim $V \le \dim W$. Since V and W are finite-dimensional, according to 2.32 of Axler, there exist a basis of V and a basis of W. For brevity in notation, let $m = \dim W$ and $n = \dim V$, which means $n \le m$. Define $T : V \to W$ by

$$T(a_1v_1 + \dots + a_nv_n) = a_1w_1 + \dots + a_mw_m$$

for some $a_1, \ldots, a_n, \ldots, a_m \in \mathbb{F}$. Then *T* is linear and indeed defines a function, according to the proof for 3.5 in Axler. Now suppose we have $a_1v_1 + \cdots + a_nv_n \in \text{null } T$. Then we have $T(a_1v_1 + \cdots + a_nv_n) = 0$, or

$$a_1w_1 + \cdots + a_mw_m = 0.$$

Since w_1, \ldots, w_m is a basis of W, it is linearly independent, which means all the scalars are zero; that is, we have $a_1 = 0, \ldots, a_m = 0$. Since $n \le m$, we have in particular the first n of the m scalars are zero; that is, we have $a_1 = 0, \ldots, a_m = 0$. So we have

$$a_1v_1+\cdots+a_nv_n=0,$$

which means we have null $T \subset \{0\}$. But 3.14 of Axler says that null T is a subspace in V, which means in particular that null T contains the additive identity, or $\{0\} \subset$ null T. Therefore, we have the set equality null $T = \{0\}$. Finally, by 3.16 of Axler, T is injective.

3.B.18. Suppose V and W are both finite-dimensional. Prove that there exists a surjective linear map from V to W if and only if $\dim V \ge \dim W$.

Proof. Forward direction: If there exists a surjective linear map $T \in \mathcal{L}(V, W)$, then dim $V \ge \dim W$. Suppose there exists a surjective map $T \in \mathcal{L}(V, W)$, which means we have range T = W, and so dim range $T = \dim W$. Since T is a linear map, by 3.11 of Axler we have T(0) = 0. So we have $\{0\} \subset \operatorname{null} T$, and so, by 2.38 of Axler, we have $0 = \dim\{0\} \le \dim \operatorname{null} T$. By the Fundamental Theorem of Linear Maps (3.22 of Axler), we have

 $\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$ $= \dim \operatorname{null} T + \dim W$ $\geq \dim \{0\} + \dim W$ $= 0 + \dim W$ $= \dim W,$

as desired.

Backward direction: If dim $V \ge \dim W$, then there exists a surjective map $T \in \mathcal{L}(V, W)$. Suppose we have dim $V \le \dim W$. Since V and W are finite-dimensional, according to 2.32 of Axler, there exist a basis of V and a basis of W. For brevity in notation, let $m = \dim W$ and $n = \dim V$, which means $n \ge m$. Define $T : V \to W$ by

$$T(a_1v_1 + \dots + a_nv_n) = a_1w_1 + \dots + a_mw_m$$

for some $a_1, \ldots, a_n, \ldots, a_m \in \mathbb{F}$. Then *T* is linear and indeed defines a function, according to the proof for 3.5 in Axler. Since w_1, \ldots, w_n is a basis of *W*, every vector in *W* is a linear combination of w_1, \ldots, w_n and can therefore be written $a_1w_1 + \cdots + a_mw_m$. This implies that we have range T = W, and so *T* is surjective.

3.B.19. Suppose V and W are finite-dimensional and that U is a subspace of V. Prove that there exists $T \in \mathcal{L}(V, W)$ such that null T = U if and only if dim $U \ge \dim V - \dim W$.

Proof. Forward direction: If there exists $T \in \mathcal{L}(V, W)$ such that null T = U, then dim $U \ge \dim V - \dim W$. Since 3.19 of Axler says that range *T* is a subspace of *W*, by 2.38 of Axler, we have dim range $T \le \dim W$. By the Fundamental Theorem of Linear Maps (3.22 of Axler), we have

$$\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$$
$$= \dim U + \dim \operatorname{range} T$$
$$\leq \dim U + \dim W,$$

from which we get dim $U \ge \dim V - \dim W$.

Backward direction: If dim $U \ge \dim V - \dim W$, then there exists $T \in \mathcal{L}(V, W)$ such that null T = U. Let u_1, \ldots, u_m be a basis of U. Then it is a linearly independent list in U, and so, by 2.33 of Axler, we can extend the list to a basis $u_1, \ldots, u_m, v_1, \ldots, v_n$ of V. This means we have dim U = m and dim V = m + n. So every vector $v, \tilde{v} \in V$ can be written as unique representations

$$v = a_1u_1 + \dots + a_mu_m + b_1v_1 + \dots + b_nv_n$$

and

$$\tilde{v} = c_1 u_1 + \dots + c_m u_m + d_1 v_1 + \dots + d_n v_n$$

for some $a_1, \ldots, a_m, b_1, \ldots, b_n, c_1, \ldots, c_m, d_1, \ldots, d_n \in \mathbb{F}$. (The only purpose of introducing \tilde{v} here is to help show that the map *T* satisfies the additivity property of a linear map.) Let w_1, \ldots, w_p be a basis of *W*; this means we have dim W = p. Define $T : V \to W$ by

$$T(a_1u_1 + \dots + a_mu_m + b_1v_1 + \dots + b_nv_n) = b_1w_1 + \dots + b_nw_n.$$

 $(\cdot \cdot)$

Since we assumed dim $U \ge \dim V - \dim W$, we have

$$n = (m + n) - m$$

= dim V - dim U
= (dim V - dim W) + dim W - dim U
 \leq dim U + dim W - dim U
= dim W
= p,

which means that we have the scalars $w_1, \ldots, w_n, \ldots, w_p$ for all integers $n = 1, \ldots, p$, and so the map T that we just defined above makes sense. Now, we will prove that T is linear.

• Additivity: For all $v, \tilde{v} \in V$, we have

$$\begin{split} T(v+\tilde{v}) &= T((a_1u_1+\dots+a_mu_m+b_1v_1+\dots+b_nv_n)+(c_1u_1+\dots+c_mu_m+d_1v_1+\dots+d_nv_n))\\ &= T((a_1+c_1)u_1+\dots+(a_m+c_m)u_m+(b_1+d_1)v_1+\dots+(b_n+d_n)v_n)\\ &= (b_1+d_1)w_1+\dots+(b_n+d_n)w_n\\ &= (b_1w_1+d_1w_1)+\dots+(b_nw_n+d_nw_n)\\ &= (b_1w_1+\dots+b_nw_n)+(d_1w_1+\dots+d_nw_n)\\ &= Tv+T\tilde{v}. \end{split}$$
• Homogeneity: For all $\lambda \in \mathbb{F}$ and for all $v \in V$, we have

$$T(\lambda v) = T(\lambda(a_1u_1 + \dots + a_mu_m + b_1v_1 + \dots + b_nv_n))$$

= $T((\lambda a_1)u_1 + \dots + (\lambda a_m)u_m + (\lambda b_1)v_1 + \dots + (\lambda b_n)v_n)$
= $(\lambda b_1)w_1 + \dots + (\lambda b_n)w_n$
= $\lambda(b_1w_1) + \dots + \lambda(b_nw_n)$
= $\lambda(b_1w_1 + \dots + b_nw_n)$
= $\lambda T(a_1u_1 + \dots + a_mu_m + b_1v_1 + \dots + b_nv_n)$
= λTv .

Since additivity and homogeneity of T are satisfied, T is linear. Next, we need to prove null T = U. Let $u \in \text{null } T$. Since u_1, \ldots, u_m is a basis of U and $u_1, \ldots, u_m, v_1, \ldots, v_n$ is a basis of V, we can write u as its unique representation

$$u = a_1u_1 + \dots + a_mu_m + b_1v_1 + \dots + b_nv_n$$

for some $a_1, \ldots, a_m, b_1, \ldots, b_n \in \mathbb{F}$. Suppose we have $v \in \text{null } T$. Then Tv = 0, and so we have

$$0 = Tu$$

= $T(a_1u_1 + \dots + a_mu_m + b_1v_1 + \dots + b_nv_n)$
= $b_1w_1 + \dots + b_nw_n$.

Since w_1, \ldots, w_p is a basis of W, we can write the zero vector $0 \in W$ in the unique representation

$$0 = b_1 w_1 + \dots + b_p w_p$$

= $b_1 w_1 + \dots + b_n w_n + b_{n+1} w_{n+1} + \dots + b_p w_p.$

According to the criterion for basis (2.29 of Axler), the representation of the zero vector is unique. So all the scalars must be zero; that is, we have

$$b_1=0,\ldots,b_p=0.$$

In particular, the first *n* of the *p* scalars is zero:

 $b_1=0,\ldots,b_n=0.$

Therefore, we have

$$u = a_1u_1 + \dots + a_mu_m + b_1v_1 + \dots + b_nv_n$$

= $a_1u_1 + \dots + a_mu_m + 0v_1 + \dots + 0v_n$
= $a_1u_1 + \dots + a_mu_m$.

Finally, since again u_1, \ldots, u_m is a basis of U, it spans U. So we have $span(u_1, \ldots, u_m) = U$; that is, U consists of all linear combinations of the list u_1, \ldots, u_m . We just wrote u as one such linear combination of u_1, \ldots, u_m . So we must have $u \in U$, and so we conclude null $T \subset U$. Now, we will prove the other set containment. Conversely, suppose we have $u \in U$. Since u_1, \ldots, u_m is a basis of U and u_1, \ldots, u_m , v_1, \ldots, v_n is a basis of V, we can write u as its unique representation

$$u = a_1u_1 + \dots + a_mu_m$$

= $a_1u_1 + \dots + a_mu_m + 0v_1 + \dots + 0v_n$

for some $a_1, \ldots, a_m \in \mathbb{F}$. Exactly like in the proof of the other set containment, we can also write the zero vector $0 \in V$ in its unique representation

$$0 = 0u_1 + \dots + 0u_m + 0v_1 + \dots + 0v_n$$

So we have

$$Tu = T(u + 0)$$

= $T((a_1u_1 + \dots + a_mu_m + 0v_1 + \dots + 0v_n) + (0u_1 + \dots + 0u_m + 0v_1 + \dots + 0v_n))$
= $T((a_1 + 0)u_1 + \dots + (a_m + 0)u_m + (0 + 0)v_1 + \dots + (0 + 0)v_n)$
= $T(a_1u_1 + \dots + a_mu_m + 0v_1 + \dots + 0v_n)$
= $0w_1 + \dots + 0w_n$
= 0.

Therefore, we have $u \in \text{null } T$, and so we obtain $U \subset \text{null } T$. Therefore, we obtain the set equality null T = U.

3.B.20. Suppose W is finite-dimensional and $T \in \mathcal{L}(V, W)$. Prove that T is injective if and only if there exists $S \in \mathcal{L}(W, V)$ such that ST is the identity map on V.

Proof. Forward direction: If T is injective, then there exists $S \in \mathcal{L}(W, V)$ such that ST is the identity map on V. Define \tilde{S} : range $T \to V$ by

 $\tilde{S}(Tv) = v.$

Since T is injective, we have the implication: if $u, v \in V$ satisfy Tu = Tv, then we have u = v. In other words, two distinct representatives of the same input element in range T implies two distinct representatives of the same output element in V, and so we conclude that T is well-defined on range T. This also implies that \tilde{S} : range $T \to V$ is indeed a map. Now, assuming in the premises that $T: V \to W$ is linear, we will show that \tilde{S} is linear on range T.

• Additivity: For all $v, \tilde{v} \in V$, the additivity of T implies that we have

$$\begin{split} \tilde{S}(Tu+Tv) &= \tilde{S}(T(u+v)) \\ &= u+v \\ &= \tilde{S}(Tu) + \tilde{S}(Tv). \end{split}$$

• Homogeneity: For all $\lambda \in \mathbb{F}$ and for all $v \in V$, the homogeneity of T implies that we have

$$\tilde{S}(\lambda(Tv)) = \tilde{S}(T(\lambda v))$$
$$= \lambda v$$
$$= \lambda \tilde{S}(Tv).$$

Since additivity and homogeneity of \tilde{S} are satisfied, \tilde{S} is linear on range T. Now, we also recall from 3.19 of Axler that range T is a subspace of W. So now we can invoke Exercise 3.A.11 of Axler to extend the linear map \tilde{S} on range T to a linear map S on W such that $Sv = \tilde{S}v$ for all $v \in \text{range } T$. Finally, for all $v \in V$, we have

$$(ST)v = S(Tv)$$
$$= \tilde{S}(Tv)$$
$$= v,$$

which means we conclude $ST = I_V$, where I_V is an identity map on V, as desired.

Backward direction: If there exists $S \in \mathcal{L}(W, V)$ such that ST is the identity map on V, then T is injective. Suppose there exists $S \in \mathcal{L}(W, V)$ such that ST is the identity map on V. Then we have $(ST) = I_V$, where I_V is an identity map on V. In other words, we have (ST)v = v for all $v \in V$. Now, suppose $u, v \in V$ satisfy Tu = Tv. Then we have

> $u = I_V u$ = (ST)u= v.

Therefore, T is injective.

3.B.21. Suppose V is finite-dimensional and $T \in \mathcal{L}(V, W)$. Prove that T is surjective if and only if there exists $S \in \mathcal{L}(W, V)$ such that TS is the identity map on W.

Proof. Forward direction: If T is surjective, then there exists $S \in \mathcal{L}(W, V)$ such that TS is the identity map on V. Since $T: V \to W$ is surjective, we have range T = W. Furthermore, by the Fundamental Theorem of Linear Maps (3.22 of Axler), we have that range T is finite-dimensional, or equivalently W is finite-dimensional. So we have that both V and W are finitedimensional. By 2.32 of Axler, there exists a basis w_1, \ldots, w_m of W. So every vector $w \in W$ can be written as its unique representation

$$w = a_1 w_1 + \dots + a_m w_m$$

for some $a_1, \ldots, a_m \in \mathbb{F}$. Since $T: V \to W$ is surjective, given w_i for each $i = 1, \ldots, m$, there exists $v_i \in V$ that satisfies $Tv_i = w_i$. Now define the map $S: W \to V$ by

$$S(a_1w_1 + \dots + a_mw_m) = a_1v_1 + \dots + a_mv_m.$$

$$= S(Tu)$$
$$= S(Tv)$$
$$= (ST)v$$
$$= I_V v$$

Then we have

$$(TS)(a_1w_1 + \dots + a_mw_m) = T(S(a_1w_1 + \dots + a_mw_m))$$
$$= T(a_1v_1 + \dots + a_mv_m)$$
$$= a_1w_1 + \dots + a_mw_m,$$

and so we have $TS = I_W$, where I is the identity map on W.

Backward direction: If there exists $S \in \mathcal{L}(W, V)$ such that *TS* is the identity map on *V*, then *T* is surjective. Suppose that there exists $S \in \mathcal{L}(W, V)$ such that *TS* is the identity map on *V*. Then, for all $w \in W$, we have

$$w = I_W w$$

= $(TS)w$
= $T(Sw)$.

Now, $S \in \mathcal{L}(W, V)$ implies that we have $Sw \in V$. So the above equation gives us $w \in \text{range } T$, and so we get $W \subset \text{range } T$. At the same time, 3.19 of Axler tells us that range T is a subspace of W. Therefore, we obtain the set equality range T = W. This means T is surjective.

3.B.29. Suppose $\varphi \in \mathcal{L}(V, \mathbb{F})$. Suppose $u \in V$ is not in null φ . Prove that

$$V = \operatorname{null} \varphi \oplus \{au : a \in \mathbb{F}\}.$$

Proof. First, we need to prove

$$V = \operatorname{null} \varphi + \{au : a \in \mathbb{F}\}.$$

Now, the map $\varphi \in \mathcal{L}(V, \mathbb{F})$ implies that every output is a scalar; in particular, we have $\varphi(u), \varphi(v) \in \mathbb{F}$. Furthermore, division of two elements in \mathbb{F} is again an element in \mathbb{F} ; in this case, $\varphi(u), \varphi(v) \in \mathbb{F}$ imply $\frac{\varphi(v)}{\varphi(u)} \in \mathbb{F}$, from which we can conclude $\frac{\varphi(v)}{\varphi(u)}u \in \{au : a \in \mathbb{F}\}$. Also, observe that we can write every $v \in V$ as

$$v = \left(v - \frac{\varphi(v)}{\varphi(u)}u\right) + \frac{\varphi(v)}{\varphi(u)}u$$

Since we assumed $\varphi \in \mathcal{L}(V, \mathbb{F})$, we can use its additivity and homogeneity to obtain

$$\varphi\left(v - \frac{\varphi(v)}{\varphi(u)}u\right) = \varphi(v) + \varphi\left(-\frac{\varphi(v)}{\varphi(u)}u\right)$$
$$= \varphi(v) - \frac{\varphi(v)}{\varphi(u)}\varphi u$$
$$= \varphi(v) - \varphi(v)$$
$$= 0.$$

from which we conclude $v - \frac{\varphi v}{\varphi u} u \in \text{null } \varphi$. Therefore, for all $v \in V$, we conclude

$$v = \left(v - \frac{\varphi(v)}{\varphi(u)}u\right) + \frac{\varphi(v)}{\varphi(u)}u$$

$$\in \text{null } \varphi + \{au : a \in \mathbb{F}\},$$

and so we can write $V = \text{null } \varphi + \{au : a \in \mathbb{F}\}\)$, as we initially claimed. Next, we need to prove

$$\operatorname{null} \varphi \cap \{au : a \in \mathbb{F}\} = \{0\}.$$

Suppose we have $v \in \text{null } \varphi \cap \{au : a \in \mathbb{F}\}$. Then we have $v \in \text{null } \varphi$ and $v \in \{au : a \in \mathbb{F}\}$. In other words, we have $\varphi(v) = 0$ and v = au for some $a \in \mathbb{F}$. Therefore, we have

$$0 = \varphi(v)$$
$$= \varphi(au)$$
$$= a\varphi(u)$$

Since we assumed $u \notin \text{null } \varphi$, it follows that we have $\varphi(u) \neq 0$. So the above equation implies that we must have a = 0. In turn, we get

$$v = au$$
$$= 0 \cdot u$$
$$= 0,$$

and so we have $v \in \{0\}$. So we conclude null $\varphi \cap \{au : a \in \mathbb{F}\} \subset \{0\}$. At the same time, 3.14 of Axler states that null φ is a subspace of V, which implies in particular that we have $0 \in$ null φ . And, of course, $0 \in \mathbb{F}$ satisfies 0 = 0u, which means we have $0 \in \{au : a \in \mathbb{F}\}$. So we have $0 \in$ null $\varphi \cap \{au : a \in \mathbb{F}\}$, and so we get $\{0\} \subset$ null $\varphi \cap \{au : a \in \mathbb{F}\}$. Therefore, we conclude the set equality $\{au : a \in \mathbb{F}\} = \{0\}$, as we initially claimed. Finally, by 1.45 of Axler, we conclude V = null $\varphi \oplus \{au : a \in \mathbb{F}\}$, as desired.