MATH 131: Linear Algebra I
University of California, Riverside
Homework 4 Solutions
July 22,2019

Solutions to assigned homework problems from Linear Algebra Done Right (third edition) by Sheldon Axler

3.C: 10, 11, 13, 14, 15
3.D:1,9,10, 11, 13, 14, 16, 20

3.C.10. Suppose A is an m X n matrix and C is an n X p matrix. Prove that

(AC);,. =A;.C
forall j = 1,...,m. In other words, show that row j of AC equals (row j of A) times C.
Proof. Let m,n, p be positive integers, and suppose we have A; ;,Cjx € Fforanyi = 1,...,m,forany j = 1,...,n, and for
any k = 1,...,p. Since A is an m X n matrix and C is an n X p matrix, we can write
Al 0 Aug
A= .
Am,l e Am,n
and
Cii -+ Cip
c=| : :
Cn 1 Cn,p
So we have
A] 1 Al n Cl,l Cl p
(AC)./’ - . . . . . .
Am,l tot Am,n Cn,l T Cn,p Iz
n n
ZAlka 1 . ZAl,ka,p
k=1 k=1
o o
Z Am’kaJ Z Am,ka,p
k=1 k=1 X
n n
= ZAj,ka,l - ZAj,ka,p
k=1 k=1
Ci Cip
= (AJ 1 AI”)
Cnl Cn,p
=A;.C,
as desired. a
3.C.11. Suppose a = (a; -+ ap)isalXxnmatrix and C is an n X p matrix. Prove that

aC=a1Cy,. +---+a,C,

L.

In other words, show that aC is a linear combination of the rows of C, with the scalars that multiply the rows coming from a.

Proof. Letn, p be positive integers, and suppose we have Cj € Fforany j = 1,...,nand forany k = 1,..., p. Since C is an

n X p matrix, we can write
Cii - Cip

C = : .. :
Cn,l e Cn,p



3.C.13.

So we have

Cii - Cip
C=la @) o
Cui -+ Cup
n n
= Zakck,l Zaka,p
k=1 k=1
=(a1C1,1+---+anCn,1 a1C1,p+-~-+anCn,p)
:(alcl,l alcl,p)+"'+(ancn,l anCn,p)
= 1(C1,1 Cl,p)+"'+an(Cn,1 Cn,p)

lcl,‘ +0 anCn,w

as desired. O

Prove that the distributive property holds for matrix addition and matrix multiplication. In other words, suppose A, B,C, D, E, F
are matrices whose sizes are such that A(B + C) and (D + E)F make sense. Prove that AB + AC and DF + EF both make
sense and that A(B+ C) = AB+ AC and (D + E)F = DF + EF.

Proof. Since we assumed that A(B + C) makes sense, the number of rows of A equals the number of columns of B + C, and

B and C must both have the same size. Let A;; € F, foreachi = 1,...,m and for each j = 1, ..., n, be entries of the m X n
matrix
A 0 An
A=t o1
Ami - Amn
and let Bj, Cjx € F,foreach j = 1,...,nand foreach k = 1, ..., p, be entries of the n X p matrices
Bii - Bip
B=| : :
Bn,1 Bnp
and
Cii -+ Cip
C=|: .
Cui -+ Cup

So AB and AC are both m X p matrices, which means AB + AC makes sense. Since we assumed that (D + E)F makes sense,
the number of rows of D + E equals the number of columns of F', and D and E must both have the same size. Let D;j, E;; € F,

foreachi =1,...,m and for each j = 1,.. ., n, be entries of the m X n matrices
Dyy -+ Dy
D= : :
Dml Dm,n
and
En Ein
E=| : o
Em,l o Em,n
and let Fj; € F, foreach j = 1,...,nand foreach k = 1, ..., n, be entries of the n X p matrix
Fi1 Fip
F =



So DF and EF are both m X p matrices, which means DF + EF makes sense. And we have

Aip 0 A\ ((Bin - Bip Ci1 - Cip
AB+C)=| L : N R o
Am,l o Am,n Bn,l Tt Bn,p Cn,l o Cn,p
Ayt o Aa\(Bii+Ciyi o0 Bip+Cip
Am,] tc Am,n Bn,l + Cn,l e B",P + C"’P
A o A\ (B+CO) - (B+O)iyp
Am,l e Am,n (B + C)n,l e (B + C)n,p
D AL(B+C)r D AL(B+C)rp
r=1 r=1
n . n
Z An,r(B + C)r,l Z An,r(B + C)r,p
r=1 r=1
n n
Z Al,r(Br,l + Cr,l) e Z Al,r(Br,p + Cr,p)
r=1 r=1
n ' n
Z An,r(Br,l + Cr,l) e Z An,r(Br,p + Cr,p)
r=1 r=1
n n n n
Z Al,rBr,l + Z Al,rCr,l t Z Al,rBr,p + Z Al,rCr,p
r=1 r=1 r=1 r=1
n ' n ) n ' n
Z An,rBr,l + Z An,rCr,l t Z An,rBr,p + Z An,rCr,p
r=1 r=1 r=1 r=1
n n n n
ZAl,rBr,] ZAl,rBr,p ZA],rCr,l ZA],rCr,p
r=1 r=1 r=1 r=1
=l S o B :
n n n n
> AwrBr D AwrBep| D AnCor o Y Ay
r=1 r=1

=AB+ AC

r=1 r=1



and

Dy - Dy, Ein - Ea\\(Fi1 - Fip
(D+E)F = P el I .o : S

Dm,] Dm,n Em,l En,m Fm,l Fn,p
Diy+E, -+ Dip+Ep\(Fi1 - Fip
Dm,1+Em,1 Dm,p+Em,p Fn,l Fn,p

(D+E)ny - D+Ehwn\(Fi1 - Fip
(D+E)m,l (D+E)m,n Fn,l Fn,p

n n

Z(D+E)l,rFr,l Z(D+E)l,rFr,p

r=1 r=1

n ' n '
Z(D+E)m,rFr,l Z(D+E)m,rFr,p
r=1 r=1

n n

Z(Dl,r + El,r)Fr,l e Z(Dl,r + El,r)Fr,p

r=1 r=1

n n
Z(Dm,r + Em,r)Fr,l e Z(Dm,r + Em,r)Fr,p
r=1 r=1

n n n n
ZDl,rFr,l +ZEl,rFr,l ZDl,rFr,p +z]El,rFr,p
r=1 r=1 r=1 r=1

n . n . n . n
ZDm,rFr,l +2Em,rFr,1 ZDm,rFr,p +2Em,rFr,p
r=1 r=1 r=1 r=1

n n n n
ZDl,rFr,l ZDl,rFr,p ZEl,rFr,l ZEl,rFr,p
r=1 r=1 r=1 r=1
=l
n n n n
ZDm,rFr,l ZDm,rFr,p ZEm,rFr,l ZEm,rFr,p
r=1 r=1 r=1 r=1
= DF + EF,
as desired. O

3.C.14. Prove that matrix multiplication is associative. In other words, suppose A, B, C are matrices whose sizes are such that (AB)C
makes sense. Prove that A(BC) makes sense and that (AB)C = A(BC).

Proof. Since we assumed that (AB)C makes sense, the number of rows of AB equals the number of columns of C, and A must
have the same number of rows as the number of columns of B. Let A;; € F, foreachi = 1,...,mand foreach j = 1,...,n,

be entries of the m X n matrix
Ay oo Agy

A= : .. :
Am,l Am,n

let Bj; € F,foreach j =1,...,n and for each k = 1,..., p, be entries of the n X p matrix

By -+ Bip
B=|: S

B,i - Bu,
and let Cy; € F,foreach k = 1,...,pand foreach/ = 1,..., g, be entries of the p X ¢ matrix

Cii - Cig
C=|t
Cp,l ce Cp,q



Then BC is an n X g matrix, and in turn A(BC) is an m X g matrix, which means A(BC) makes sense. And we have

Ay oo Apa\[(Bir o Bip\\[Ci1 - Cig
(AB)C =] : U : o : S
Am1 o Amn)\Bu1 - Bup)J\Coi o Cpy
n n
ZAl,rBr,l o ZAl,rBr,p
r=1 r=1 Cii Ciq
n n Con -+ Cp,
Z Am,rBr,l o Z Am,rBr,p P P4
r=1 r=1
p n p n
Al,rBr,s) Cs,l te Z Z Al,rBr,s) CS q
s=1 \r=1 s=1 \r=1
P n . . P n .
Z Am,rBr,s Cs,l e Z (Z Am,rBr,s Cs,q
s=1 \r=1 s=1 \r=1
n p n p
Al,r (Z Br,sCs 1 Al,r (Z Br,sCs q
r=1 s=1 r=1 s=1
n 14 n p
Am,r (ZBrscsl Am,r (ZBrsCs q)
r=1 s=1 r=1 s=1
p p
ZBl,sCs,l ZBl,bcéq
Ayl Ain\| 3 s=1
Am 1 Amn P P
ZBn scs,l . ZBn,ACAq
s=1 s=1
Ay A\ (B Bip\ (Ci1 Clqg
Am,l A Am,n Bn,l e Bn,p Cp,l - Cp,q
= A(BC),
as desired. O

3.C.15. Suppose A is an n X n matrix and j, k = 1, ..., n. Show that the entry in row j, colum k, of A3 (which is defined to mean AAA)

1S
n n
(AS)j,k = Z Z Aj,pAp,rAr,k'

p=1r=1

Proof. Let n be a positive integer, and suppose we have A;; € Fforany j,k = 1,...,n. Since A is an n X n matrix, we can

write
Ay e Ay,

A= : .. :
An,l An,n

Now, for our ease of notation, define the n X n matrix B = A2 and define

n
Bk = Z AjpAp.k
p=1



forany j,k =1,...,n. Then we have B;; € Fforany j,k =1,...,n, and so we have

B = A?

= AA
Ay oo A\ (Al 0 Ay,
An,l An,n Anl An,n

n n
Z ALpAp1 ZAl,pAp,n
p=1 p=1

n n
Z An,pAp,l e Z An,pAp,n
p=1 p=1
By -+ Bia
Bn,l e Bn,n
In other words, for all j, k = 1,...,n, the element B; ; € F denotes the entry in row j, column k of B. So we have
Ad = A%A
= BA
B,y -+ Bia\[Ai1 0 Aug
Bn,l te Bn,n An,l te An,n

n n
Z Bl,rAr,l e Z Bl,rAr,n
r=1 r=1

n . n '
Z Bn,rAr,l e Z Bn,rAr,n
r=1 r=1

Therefore, the entry in row j, column k of A3 is

(AS)j,k = Z Bj,rAr,k
r=1

n

n
=D A | A
r=1

p=1
n n
=2 2 AipAprAri
p=1lr=1

as desired. |

3.D.1. Suppose T € L(U,V) and S € L(V,W) are both invertible linear maps. Prove that ST € L(U,W) is invertible and that
ST ' =115,

Proof. Since S and T are both invertible, their respective inverses S~! and 7! exist. Let Iy and Iy be identity maps on V and
W, respectively. We have
(T 's™Y6ST) =T 1(s7'8)T
=7'IyT
=T7'T
=1y
and
(STYT™'s™") =saT™Hs™!
=SIyS™!
=85!
=ly.

Therefore, ST is invertible with inverse (ST)~' = 771571 O



3.D.9. Suppose V is finite-dimensional and S, T € L(V). Prove that ST is invertible if and only if both S and T are invertible.

Proof. Forward direction: If ST is invertible, then both S and T are invertible. Since ST is invertible, there exists R € L(V)
that satisfies R(ST) = I and (ST)R = I, where [ is the identity map on V. First, we will prove that T is injective. Suppose we
have v € null 7, meaning that v € V satisfies Tv = 0. Then we have

v=1Iv

= (R(ST))v

= RS(Tv)

= RS(0)

= R(0)

=0.
Therefore, we have v € {0}, and so nullT c {0}. By 3.14 of Axler, nullT is a subspace of V, so in particular we have
0 € nullT, or {0} C nullT. So we conclude the set equality null7 = {0}. We conclude by 3.16 of Axler that T is injective.

Since V is finite-dimensional and 7' € L(V), saying T is injective is equivalent to saying that 7 is invertible, according to 3.69
of Axler.

Backward direction: If S and T are both invertible, then ST is invertible. We already proved this in Exercise 3.D.1. O
3.D.10. Suppose V is finite-dimensional and S, T € L(V). Prove that ST = I if and only if TS = I.

Proof. Forward direction: If ST = I, then T'S = I. Suppose we have ST = I. As an identity map, / is automatically invertible,
which means ST is invertible. By Exercise 3.D.9 of Axler, S and T are both invertible, which means their respective inverses
S~! and T-! exist. So we obtain

TS =TS(TT™)
=T(ST)T™!
=TIT™!
=77"!
=1,

as desired.

Backward direction: If 7S = I, then ST = I. We can interchange the roles of S and T from the last proof. Suppose we have
TS = 1. As an identity map, / is automatically invertible, which means TS is invertible. By Exercise 3.D.9 of Axler, S and T
are both invertible, which means their respective inverses S~! and 77! exist. So we obtain

ST = ST(SS71)
= S(TS)s™!
=sI157!
=551
=1,
as desired. O

3.D.11. Suppose V is finite-dimensional, S, 7, U € L(V), and STU = I. Show that T is invertible and that T-' = US.

Proof. Since we have STU = [ and, as an identity map, [ is invertible, it follows by Exercise 3.D.9 of Axler that S and TU
are invertible. Since T'U is invertible, it follows by Exercise 3.D.9 of Axler again that 7 and U are invertible. In particular, T
is invertible. There exist maps S -1 7-1 U~!, which are respective inverses of S, 7, U. So we have

US =1US
= (T 'T)yUS
=77'TUS
=7'TUS
=717 'sTUS
=T7's71(STU)S
=77'571§
=T7'57!s
=771
=T

as desired. O



3.D.13.

3.D.14.

Suppose V is a finite-dimensional vector space and R, S, T € L(V) are such that RST is surjective. Prove that S is injective.

Proof. Since V is finite-dimensional and RST is surjective, 3.69 of Axler states that RST is also invertible. By Exercise 3.D.9
of Axler, RS is invertible and T is invertible. Since RS is invertible, by Exercise 3.E.9 of Axler again, R and S is invertible. In
particular, S is invertible. By 3.69 of Axler, S is injective. O

Suppose Vi, . . ., v, is a basis of V. Prove that the map 7 : V — F»! defined by
Tv = M(v)
is an isomorphism of V onto F>!; here M(v) is the matrix of v € V with respect to the basis vy, .. ., V.
Proof. To show thatT : V — F™!is an isomorphism, we need to show that T is linear and invertible. First, we will show that
T is linear. Since vy, ..., v, is a basis of V, there exist ay, ..., an, b1, . .., b, € F such that
U=ayvy+--+apvy

and
v=>bvi+---+byv,.
So, for all u,v € V and for all 1 € F, we have
Twu+v)=Mu+v)
= M((ajvy + -+ ayvy) + (b1vy + -+ - + byvy))
= M((ar +b1)vi + -+ + (an + bp)vn)

aj +b]

a, + b,

a b

a, b,
= M(ayvi + -+ + apvp) + M(bivy + -+ + byvy)
= M(u) + M(v)
=Tu+Tv,
satisfying additivity, and
T(Au) = M(Au)
= M(A(a1vy + -+ + ayvy))
= M((Aay)vi + - - - + (Aap)vy)
/la1

dn
= AM(avy + -+ apvy)
= AIM(u)
= ATu,
satisfying homogeneity. So 7 is linear. Next, we will show that T is invertible. According to 3.56 of Axler, this is equivalent
to showing that T is injective and surjective. First, we will show that T is injective. Suppose Tu = 0. Since we have from
earlier u = ajvy + - - - + a,v,, we get
M(ayvy + -+ ayvy) = M(u)
=Tu
=0.
We can write both sides of the above equation as matrices:

aq 0



3.D.16.

So our scalars are a; = 0,. .., a, = 0, which means

u=avy+---+ayvu
=0vi+---+0v,
=0.

So null T = {0}, which means, by 3.16 of Axler, T is injective. Next, we will show that T is surjective. We have

Tu = M(u)
= M(ayvi + -+ +apvy)
ap
an
Since ay, .. .,a, € F are arbitrary values, we conclude that 7T is also surjective. Therefore, T is both injective and surjective,
which means T is invertible. Moreover, T is both linear and invertible, which means 7 is an isomorphism. O

Suppose V is finite-dimensional and 7 € L(V). Prove that T is a scalar multiple of the identity if and only if ST = T'S for all
Se L(V).

Proof. Forward direction: If T is a sclar multiple of the identity, then ST = T'S for all S € L(V). Suppose T is the scalar
multiple of the identity map on V. Then there exists A € F such that we have T = Aly, where Iy is the identity map on V.
Therefore, for all § € L(V), we get

ST = S(ALy)
= ASky
=AS
= (Alv)S
=TS,

as desired.

Backward direction: If ST = TS for all S € L(V), then T is a sclar multiple of the identity. Suppose that we have ST = TS
for all S € L(V). First, we will show that, for all v € V, the list v, T'v is linearly dependent. Suppose instead by contradiction
that v, Tv is linearly independent. Then, according to 2.33 of Axler, we can extend v, Tv to a basis v, Tv, uy, . . ., u, of V. (This
means the dimension of V is dim V = n + 2, but that is not really important in this proof.) So every vector in V can be written
in the form av + bTv + cjuy + - - - + cyu, for some a, b, ¢y, . . ., ¢, € F. This means that we can define S € L(V) by

S(av + bTv + cruy + -+ - + cplty) = by,
which satisfies in particular S(Tv) = v and Sv = 0. Therefore, since ST = T'S, we obtain

v=_S8(Tv)
= (ST)v
= (TS)v
=T(Sv)
=T(0)
=0,

using 3.11 of Axler to justify the last equality above. So we can choose nonzero scalars such as a; = 1,a, = 1 € F to satisfy

apv +aTv = 1(0) + 17(0)
=1(0) + 1(0)
=0+0
=0,

meaning that the list v, 7v is linearly dependent. But this contradicts our assumption at the beginning that v, T'v is linearly
independent. Therefore, the list v, 7v must be linearly dependent. By the Linear Dependence Lemma (2.21 of Axler), we
have Tv € span(v). In other words, for all nonzero v € V, there exists A, € F (the subscript notation signifies that the scalar
A, depends on our choice of some vector v) such that Tv = A, v, which means T' = A, Iy, where once again Iy is the identity
map on V. At this stage, we have almost completed our proof. To show that T is a scalar multiple of the identity, we need to
establish T = Aly, where A € F does not depend on v. In other words, it is not enough to stop at Tv = A, v; we need to show
that A, is actually constant in v, at which point would allow us to write 4, = 4. Let w € V be another arbitrary vector. Then



v, w form a list that is either linearly independent or linearly dependent. Consider A,,, Ay, 4,4+, € F, the scalars that depend on
v, w, v + w, respectively. In the first case, assume that v, w is linearly independent. Applying Tv = A,v, we obtain

(Ayiw — W)W + Ay — )W = AV — LV + Apppw — AW
= LoV + W) = A,y — A,w
=T +w)—A,v—2A,w
=Tv+Tw—-A4,v—A,w
=4V +A,w—A,v—A,w
=0.

Since v, w is linearly independent, all scalars are zero; that is, we have
/lv+w - /lv = 0’ /lv+w - /lw = 03

or A, = Ady+yw = Ay. Any function that outputs the same value such as A,, = 4,, for all input values such as v, w € V must be a
constant function; in other words, we conclude that A,, is constant, or A,, = A. Therefore, we conclude T = A, Iy = Aly, which
means that 7 is a scalar multiple of the identity. O

3.D.20. Suppose n is a positive integer and a;; € F foralli,j = 1,...,n. You may assume without proof that, since F" is a finite-
dimensional vector space, T € L(F") is injective if and only if T is surjective (from 3.69 of Axler). Prove that the following
are equivalent (note that in both parts below, the number of equations equals the number of variables):

(a) The trivial solution x; = --- = x,, = 0 is the only solution to the homogeneous system of equations
n
Z axe =0
k=1
n
an k Xk = 0.
k=1
(b) Forall cy, ..., c, €F, there exists a solution to the system of equations
n
k=1

n

Z a,,,kxk =Cp.

k=1
Proof. Define T € L(E") by
n n
T(xl, ey xn) = Z al,kxk, ey Z an,kxk .
k=1 k=1

Statement (a) says that we have
T(x1,...,x,)=1(0,...,0)

if and only if (xy,...,x,) = (0,...,0),if and only if null 7 = {(0, . .., 0)}, if and only if T is injective. Statement (b) says that,
forall cy,...,c, € F, we have
T(x1,...,x0)=(c1,...,Cn)

if and only if T is surjective. Since F" is finite-dimensional, T is injective if and only if T is surjective, according to 3.69 of
Axler. Therefore, statement (a) holds if and only if statement (b) holds. O



