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Solutions to assigned homework problems from Linear Algebra Done Right (third edition) by Sheldon Axler

3.C: 10, 11, 13, 14, 15
3.D: 1, 9, 10, 11, 13, 14, 16, 20

3.C.10. Suppose A is an m × n matrix and C is an n × p matrix. Prove that

(AC)j, · = Aj, ·C

for all j = 1, . . . ,m. In other words, show that row j of AC equals (row j of A) times C.

Proof. Let m, n, p be positive integers, and suppose we have Ai, j,Cj,k ∈ F for any i = 1, . . . ,m, for any j = 1, . . . , n, and for
any k = 1, . . . , p. Since A is an m × n matrix and C is an n × p matrix, we can write

A =
©«

A1,1 · · · A1,n
...

. . .
...

Am,1 · · · Am,n

ª®®¬
and

C =
©«
C1,1 · · · C1,p
...

. . .
...

Cn,1 · · · Cn,p

ª®®¬ .
So we have

(AC)j, · =
©«
©«

A1,1 · · · A1,n
...

. . .
...

Am,1 · · · Am,n

ª®®¬
©«
C1,1 · · · C1,p
...

. . .
...

Cn,1 · · · Cn,p

ª®®¬
ª®®¬j, ·

=

©«

n∑
k=1

A1,kCk,1 · · ·

n∑
k=1

A1,kCk,p

...
. . .

...
n∑

k=1

Am,kCk,1 · · ·

n∑
k=1

Am,kCk,p

ª®®®®®®®®¬j, ·
=

(
n∑

k=1

Aj,kCk,1 · · ·

n∑
k=1

Aj,kCk,p

)

=
(
Aj,1 · · · Aj,n

) ©«
C1,1 · · · C1,p
...

. . .
...

Cn,1 · · · Cn,p

ª®®¬
= Aj, ·C,

as desired. �

3.C.11. Suppose a =
(
a1 · · · an

)
is a 1 × n matrix and C is an n × p matrix. Prove that

aC = a1C1, · + · · · + anCn, ·.

In other words, show that aC is a linear combination of the rows of C, with the scalars that multiply the rows coming from a.

Proof. Let n, p be positive integers, and suppose we have Cj,k ∈ F for any j = 1, . . . , n and for any k = 1, . . . , p. Since C is an
n × p matrix, we can write

C =
©«
C1,1 · · · C1,p
...

. . .
...

Cn,1 · · · Cn,p

ª®®¬ .



So we have

aC =
(
a1 · · · an

) ©«
C1,1 · · · C1,p
...

. . .
...

Cn,1 · · · Cn,p

ª®®¬
=

(
n∑

k=1

akCk,1 · · ·

n∑
k=1

akCk,p

)
=

(
a1C1,1 + · · · + anCn,1 · · · a1C1,p + · · · + anCn,p

)
=

(
a1C1,1 · · · a1C1,p

)
+ · · · +

(
anCn,1 · · · anCn,p

)
= a1

(
C1,1 · · · C1,p

)
+ · · · + an

(
Cn,1 · · · Cn,p

)
= a1C1, · + · · · + anCn, ·,

as desired. �

3.C.13. Prove that the distributive property holds for matrix addition and matrix multiplication. In other words, suppose A, B,C,D, E, F
are matrices whose sizes are such that A(B + C) and (D + E)F make sense. Prove that AB + AC and DF + EF both make
sense and that A(B + C) = AB + AC and (D + E)F = DF + EF.

Proof. Since we assumed that A(B + C) makes sense, the number of rows of A equals the number of columns of B + C, and
B and C must both have the same size. Let Ai j ∈ F, for each i = 1, . . . ,m and for each j = 1, . . . , n, be entries of the m × n
matrix

A =
©«

A1,1 · · · A1,n
...

. . .
...

Am,1 · · · Am,n

ª®®¬ ,
and let Bjk,Cjk ∈ F, for each j = 1, . . . , n and for each k = 1, . . . , p, be entries of the n × p matrices

B =
©«

B1,1 · · · B1,p
...

. . .
...

Bn,1 · · · Bn,p

ª®®¬
and

C =
©«
C1,1 · · · C1,p
...

. . .
...

Cn,1 · · · Cn,p

ª®®¬ .
So AB and AC are both m × p matrices, which means AB + AC makes sense. Since we assumed that (D + E)F makes sense,
the number of rows of D + E equals the number of columns of F, and D and E must both have the same size. Let Di j, Ei j ∈ F,
for each i = 1, . . . ,m and for each j = 1, . . . , n, be entries of the m × n matrices

D =
©«

D1,1 · · · D1,n
...

. . .
...

Dm,1 · · · Dm,n

ª®®¬
and

E =
©«

E1,1 · · · E1,n
...

. . .
...

Em,1 · · · Em,n

ª®®¬ ,
and let Fjk ∈ F, for each j = 1, . . . , n and for each k = 1, . . . , n, be entries of the n × p matrix

F =
©«

F1,1 · · · F1,p
...

. . .
...

Fn,1 · · · Fn,p

ª®®¬ .



So DF and EF are both m × p matrices, which means DF + EF makes sense. And we have

A(B + C) =
©«

A1,1 · · · A1,n
...

. . .
...

Am,1 · · · Am,n

ª®®¬
©«
©«

B1,1 · · · B1,p
...

. . .
...

Bn,1 · · · Bn,p

ª®®¬ +
©«
C1,1 · · · C1,p
...

. . .
...

Cn,1 · · · Cn,p

ª®®¬
ª®®¬

=
©«

A1,1 · · · A1,n
...

. . .
...

Am,1 · · · Am,n

ª®®¬
©«

B1,1 + C1,1 · · · B1,p + C1,p
...

. . .
...

Bn,1 + Cn,1 · · · Bn,p + Cn,p

ª®®¬
=

©«
A1,1 · · · A1,n
...

. . .
...

Am,1 · · · Am,n

ª®®¬
©«
(B + C)1,1 · · · (B + C)1,p

...
. . .

...
(B + C)n,1 · · · (B + C)n,p

ª®®¬
=

©«

n∑
r=1

A1,r (B + C)r,1 · · ·

n∑
r=1

A1,r (B + C)r,p

...
. . .

...
n∑

r=1

An,r (B + C)r,1 · · ·

n∑
r=1

An,r (B + C)r,p

ª®®®®®®®®¬
=

©«

n∑
r=1

A1,r (Br,1 + Cr,1) · · ·

n∑
r=1

A1,r (Br,p + Cr,p)

...
. . .

...
n∑

r=1

An,r (Br,1 + Cr,1) · · ·

n∑
r=1

An,r (Br,p + Cr,p)

ª®®®®®®®®¬
=

©«

n∑
r=1

A1,r Br,1 +

n∑
r=1

A1,rCr,1 · · ·

n∑
r=1

A1,r Br,p +

n∑
r=1

A1,rCr,p

...
. . .

...
n∑

r=1

An,r Br,1 +

n∑
r=1

An,rCr,1 · · ·

n∑
r=1

An,r Br,p +

n∑
r=1

An,rCr,p

ª®®®®®®®®¬
=

©«

n∑
r=1

A1,r Br,1 · · ·

n∑
r=1

A1,r Br,p

...
. . .

...
n∑

r=1

An,r Br,1 · · ·

n∑
r=1

An,r Br,p

ª®®®®®®®®¬
+

©«

n∑
r=1

A1,rCr,1 · · ·

n∑
r=1

A1,rCr,p

...
. . .

...
n∑

r=1

An,rCr,1 · · ·

n∑
r=1

An,rCr,p

ª®®®®®®®®¬
= AB + AC



and

(D + E)F =
©«
©«

D1,1 · · · D1,n
...

. . .
...

Dm,1 · · · Dm,n

ª®®¬ +
©«

E1,1 · · · E1,n
...

. . .
...

Em,1 · · · En,m

ª®®¬
ª®®¬
©«

F1,1 · · · F1,p
...

. . .
...

Fm,1 · · · Fn,p

ª®®¬
=

©«
D1,1 + E1,1 · · · D1,p + E1,p

...
. . .

...
Dm,1 + Em,1 · · · Dm,p + Em,p

ª®®¬
©«

F1,1 · · · F1,p
...

. . .
...

Fn,1 · · · Fn,p

ª®®¬
=

©«
(D + E)1,1 · · · (D + E)1,n

...
. . .

...
(D + E)m,1 · · · (D + E)m,n

ª®®¬
©«

F1,1 · · · F1,p
...

. . .
...

Fn,1 · · · Fn,p

ª®®¬
=

©«

n∑
r=1

(D + E)1,rFr,1 · · ·

n∑
r=1

(D + E)1,rFr,p

...
. . .

...
n∑

r=1

(D + E)m,rFr,1 · · ·

n∑
r=1

(D + E)m,rFr,p

ª®®®®®®®®¬
=

©«

n∑
r=1

(D1,r + E1,r )Fr,1 · · ·

n∑
r=1

(D1,r + E1,r )Fr,p

...
. . .

...
n∑

r=1

(Dm,r + Em,r )Fr,1 · · ·

n∑
r=1

(Dm,r + Em,r )Fr,p

ª®®®®®®®®¬
=

©«

n∑
r=1

D1,rFr,1 +

n∑
r=1

E1,rFr,1 · · ·

n∑
r=1

D1,rFr,p +

n∑
r=1

E1,rFr,p

...
. . .

...
n∑

r=1

Dm,rFr,1 +

n∑
r=1

Em,rFr,1 · · ·

n∑
r=1

Dm,rFr,p +

n∑
r=1

Em,rFr,p

ª®®®®®®®®¬
=

©«

n∑
r=1

D1,rFr,1 · · ·

n∑
r=1

D1,rFr,p

...
. . .

...
n∑

r=1

Dm,rFr,1 · · ·

n∑
r=1

Dm,rFr,p

ª®®®®®®®®¬
+

©«

n∑
r=1

E1,rFr,1 · · ·

n∑
r=1

E1,rFr,p

...
. . .

...
n∑

r=1

Em,rFr,1 · · ·

n∑
r=1

Em,rFr,p

ª®®®®®®®®¬
= DF + EF,

as desired. �

3.C.14. Prove that matrix multiplication is associative. In other words, suppose A, B,C are matrices whose sizes are such that (AB)C
makes sense. Prove that A(BC) makes sense and that (AB)C = A(BC).

Proof. Since we assumed that (AB)C makes sense, the number of rows of AB equals the number of columns of C, and A must
have the same number of rows as the number of columns of B. Let Ai j ∈ F, for each i = 1, . . . ,m and for each j = 1, . . . , n,
be entries of the m × n matrix

A =
©«

A1,1 · · · A1,n
...

. . .
...

Am,1 · · · Am,n

ª®®¬ ,
let Bjk ∈ F, for each j = 1, . . . , n and for each k = 1, . . . , p, be entries of the n × p matrix

B =
©«

B1,1 · · · B1,p
...

. . .
...

Bn,1 · · · Bn,p

ª®®¬
and let Ckl ∈ F, for each k = 1, . . . , p and for each l = 1, . . . , q, be entries of the p × q matrix

C =
©«
C1,1 · · · C1,q
...

. . .
...

Cp,1 · · · Cp,q

ª®®¬ .



Then BC is an n × q matrix, and in turn A(BC) is an m × q matrix, which means A(BC) makes sense. And we have

(AB)C =
©«
©«

A1,1 · · · A1,n
...

. . .
...

Am,1 · · · Am,n

ª®®¬
©«

B1,1 · · · B1,p
...

. . .
...

Bn,1 · · · Bn,p

ª®®¬
ª®®¬
©«
C1,1 · · · C1,q
...

. . .
...

Cp,1 · · · Cp,q

ª®®¬
=

©«

n∑
r=1

A1,r Br,1 · · ·

n∑
r=1

A1,r Br,p

...
. . .

...
n∑

r=1

Am,r Br,1 · · ·

n∑
r=1

Am,r Br,p

ª®®®®®®®®¬
©«
C1,1 · · · C1,q
...

. . .
...

Cp,1 · · · Cp,q

ª®®¬

=

©«

p∑
s=1

(
n∑

r=1

A1,r Br,s

)
Cs,1 · · ·

p∑
s=1

(
n∑

r=1

A1,r Br,s

)
Cs,q

...
. . .

...
p∑

s=1

(
n∑

r=1

Am,r Br,s

)
Cs,1 · · ·

p∑
s=1

(
n∑

r=1

Am,r Br,s

)
Cs,q

ª®®®®®®®®¬
=

©«

n∑
r=1

A1,r

(
p∑

s=1

Br,sCs,1

)
· · ·

n∑
r=1

A1,r

(
p∑

s=1

Br,sCs,q

)
...

. . .
...

n∑
r=1

Am,r

(
p∑

s=1

Br,sCs,1

)
· · ·

n∑
r=1

Am,r

(
p∑

s=1

Br,sCs,q

)
ª®®®®®®®®¬

=
©«

A1,1 · · · A1,n
...

. . .
...

Am,1 · · · Am,n

ª®®¬
©«

p∑
s=1

B1,sCs,1 · · ·

p∑
s=1

B1,sCs,q

...
. . .

...
p∑

s=1

Bn,sCs,1 · · ·

p∑
s=1

Bn,sCs,q

ª®®®®®®®®¬
=

©«
A1,1 · · · A1,n
...

. . .
...

Am,1 · · · Am,n

ª®®¬
©«
©«

B1,1 · · · B1,p
...

. . .
...

Bn,1 · · · Bn,p

ª®®¬
©«
C1,1 · · · C1,q
...

. . .
...

Cp,1 · · · Cp,q

ª®®¬
ª®®¬

= A(BC),

as desired. �

3.C.15. Suppose A is an n×n matrix and j, k = 1, . . . , n. Show that the entry in row j, colum k, of A3 (which is defined to mean AAA)
is

(A3)j,k =

n∑
p=1

n∑
r=1

Aj,pAp,r Ar,k .

Proof. Let n be a positive integer, and suppose we have Aj,k ∈ F for any j, k = 1, . . . , n. Since A is an n × n matrix, we can
write

A =
©«

A1,1 · · · A1,n
...

. . .
...

An,1 · · · An,n

ª®®¬ .
Now, for our ease of notation, define the n × n matrix B = A2 and define

Bj,k =

n∑
p=1

Aj,pAp,k



for any j, k = 1, . . . , n. Then we have Bj,k ∈ F for any j, k = 1, . . . , n, and so we have

B = A2

= AA

=
©«

A1,1 · · · A1,n
...

. . .
...

An,1 · · · An,n

ª®®¬
©«

A1,1 · · · A1,n
...

. . .
...

An,1 · · · An,n

ª®®¬
=

©«

n∑
p=1

A1,pAp,1 · · ·

n∑
p=1

A1,pAp,n

...
. . .

...
n∑

p=1

An,pAp,1 · · ·

n∑
p=1

An,pAp,n

ª®®®®®®®®¬
=

©«
B1,1 · · · B1,n
...

. . .
...

Bn,1 · · · Bn,n

ª®®¬ .
In other words, for all j, k = 1, . . . , n, the element Bj,k ∈ F denotes the entry in row j, column k of B. So we have

A3 = A2 A

= BA

=
©«

B1,1 · · · B1,n
...

. . .
...

Bn,1 · · · Bn,n

ª®®¬
©«

A1,1 · · · A1,n
...

. . .
...

An,1 · · · An,n

ª®®¬
=

©«

n∑
r=1

B1,r Ar,1 · · ·

n∑
r=1

B1,r Ar,n

...
. . .

...
n∑

r=1

Bn,r Ar,1 · · ·

n∑
r=1

Bn,r Ar,n

ª®®®®®®®®¬
.

Therefore, the entry in row j, column k of A3 is

(A3)j,k =

n∑
r=1

Bj,r Ar,k

=

n∑
r=1

©«
n∑

p=1

Aj,pAp,r
ª®¬ Ar,k

=

n∑
p=1

n∑
r=1

Aj,pAp,r Ar,k,

as desired. �

3.D.1. Suppose T ∈ L(U,V) and S ∈ L(V,W) are both invertible linear maps. Prove that ST ∈ L(U,W) is invertible and that
(ST)−1 = T−1S−1.

Proof. Since S and T are both invertible, their respective inverses S−1 and T−1 exist. Let IV and IW be identity maps on V and
W , respectively. We have

(T−1S−1)(ST) = T−1(S−1S)T

= T−1IVT

= T−1T

= IU

and

(ST)(T−1S−1) = S(TT−1)S−1

= SIUS−1

= SS−1

= IV .

Therefore, ST is invertible with inverse (ST)−1 = T−1S−1. �



3.D.9. Suppose V is finite-dimensional and S,T ∈ L(V). Prove that ST is invertible if and only if both S and T are invertible.

Proof. Forward direction: If ST is invertible, then both S and T are invertible. Since ST is invertible, there exists R ∈ L(V)
that satisfies R(ST) = I and (ST)R = I, where I is the identity map on V . First, we will prove that T is injective. Suppose we
have v ∈ null T , meaning that v ∈ V satisfies Tv = 0. Then we have

v = Iv

= (R(ST))v

= RS(Tv)

= RS(0)
= R(0)
= 0.

Therefore, we have v ∈ {0}, and so null T ⊂ {0}. By 3.14 of Axler, null T is a subspace of V , so in particular we have
0 ∈ null T , or {0} ⊂ null T . So we conclude the set equality null T = {0}. We conclude by 3.16 of Axler that T is injective.
Since V is finite-dimensional and T ∈ L(V), saying T is injective is equivalent to saying that T is invertible, according to 3.69
of Axler.

Backward direction: If S and T are both invertible, then ST is invertible. We already proved this in Exercise 3.D.1. �

3.D.10. Suppose V is finite-dimensional and S,T ∈ L(V). Prove that ST = I if and only if TS = I.

Proof. Forward direction: If ST = I, then TS = I. Suppose we have ST = I. As an identity map, I is automatically invertible,
which means ST is invertible. By Exercise 3.D.9 of Axler, S and T are both invertible, which means their respective inverses
S−1 and T−1 exist. So we obtain

TS = TS(TT−1)

= T(ST)T−1

= T IT−1

= TT−1

= I,

as desired.

Backward direction: If TS = I, then ST = I. We can interchange the roles of S and T from the last proof. Suppose we have
TS = I. As an identity map, I is automatically invertible, which means TS is invertible. By Exercise 3.D.9 of Axler, S and T
are both invertible, which means their respective inverses S−1 and T−1 exist. So we obtain

ST = ST(SS−1)

= S(TS)S−1

= SIS−1

= SS−1

= I,

as desired. �

3.D.11. Suppose V is finite-dimensional, S,T,U ∈ L(V), and STU = I. Show that T is invertible and that T−1 = US.

Proof. Since we have STU = I and, as an identity map, I is invertible, it follows by Exercise 3.D.9 of Axler that S and TU
are invertible. Since TU is invertible, it follows by Exercise 3.D.9 of Axler again that T and U are invertible. In particular, T
is invertible. There exist maps S−1,T−1,U−1, which are respective inverses of S,T,U. So we have

US = IUS

= (T−1T)US

= T−1TUS

= T−1ITUS

= T−1(S−1S)TUS

= T−1S−1(STU)S

= T−1S−1IS

= T−1S−1S

= T−1I

= T−1,

as desired. �



3.D.13. Suppose V is a finite-dimensional vector space and R, S,T ∈ L(V) are such that RST is surjective. Prove that S is injective.

Proof. Since V is finite-dimensional and RST is surjective, 3.69 of Axler states that RST is also invertible. By Exercise 3.D.9
of Axler, RS is invertible and T is invertible. Since RS is invertible, by Exercise 3.E.9 of Axler again, R and S is invertible. In
particular, S is invertible. By 3.69 of Axler, S is injective. �

3.D.14. Suppose v1, . . . , vn is a basis of V . Prove that the map T : V → Fn,1 defined by

Tv =M(v)

is an isomorphism of V onto Fn,1; hereM(v) is the matrix of v ∈ V with respect to the basis v1, . . . , vn.

Proof. To show that T : V → Fn,1 is an isomorphism, we need to show that T is linear and invertible. First, we will show that
T is linear. Since v1, . . . , vn is a basis of V , there exist a1, . . . , an, b1, . . . , bn ∈ F such that

u = a1v1 + · · · + anvn

and
v = b1v1 + · · · + bnvn.

So, for all u, v ∈ V and for all λ ∈ F, we have

T(u + v) =M(u + v)

=M((a1v1 + · · · + anvn) + (b1v1 + · · · + bnvn))

=M((a1 + b1)v1 + · · · + (an + bn)vn)

=
©«

a1 + b1
...

an + bn

ª®®¬
=

©«
a1
...

an

ª®®¬ +
©«

b1
...

bn

ª®®¬
=M(a1v1 + · · · + anvn) +M(b1v1 + · · · + bnvn)

=M(u) +M(v)

= Tu + Tv,

satisfying additivity, and

T(λu) =M(λu)

=M(λ(a1v1 + · · · + anvn))

=M((λa1)v1 + · · · + (λan)vn)

=
©«
λa1
...

λan

ª®®¬
= λ

©«
a1
...

an

ª®®¬
= λM(a1v1 + · · · + anvn)

= λM(u)

= λTu,

satisfying homogeneity. So T is linear. Next, we will show that T is invertible. According to 3.56 of Axler, this is equivalent
to showing that T is injective and surjective. First, we will show that T is injective. Suppose Tu = 0. Since we have from
earlier u = a1v1 + · · · + anvn, we get

M(a1v1 + · · · + anvn) =M(u)

= Tu

= 0.

We can write both sides of the above equation as matrices:

©«
a1
...

an

ª®®¬ =
©«
0
...
0

ª®®¬ .



So our scalars are a1 = 0, . . . , an = 0, which means

u = a1v1 + · · · + anvn
= 0v1 + · · · + 0vn
= 0.

So null T = {0}, which means, by 3.16 of Axler, T is injective. Next, we will show that T is surjective. We have

Tu =M(u)

=M(a1v1 + · · · + anvn)

=
©«
a1
...

an

ª®®¬ .
Since a1, . . . , an ∈ F are arbitrary values, we conclude that T is also surjective. Therefore, T is both injective and surjective,
which means T is invertible. Moreover, T is both linear and invertible, which means T is an isomorphism. �

3.D.16. Suppose V is finite-dimensional and T ∈ L(V). Prove that T is a scalar multiple of the identity if and only if ST = TS for all
S ∈ L(V).

Proof. Forward direction: If T is a sclar multiple of the identity, then ST = TS for all S ∈ L(V). Suppose T is the scalar
multiple of the identity map on V . Then there exists λ ∈ F such that we have T = λIV , where IV is the identity map on V .
Therefore, for all S ∈ L(V), we get

ST = S(λIV )

= λSIV
= λS

= (λIV )S

= TS,

as desired.

Backward direction: If ST = TS for all S ∈ L(V), then T is a sclar multiple of the identity. Suppose that we have ST = TS
for all S ∈ L(V). First, we will show that, for all v ∈ V , the list v,Tv is linearly dependent. Suppose instead by contradiction
that v,Tv is linearly independent. Then, according to 2.33 of Axler, we can extend v,Tv to a basis v,Tv, u1, . . . , un of V . (This
means the dimension of V is dim V = n + 2, but that is not really important in this proof.) So every vector in V can be written
in the form av + bTv + c1u1 + · · · + cnun for some a, b, c1, . . . , cn ∈ F. This means that we can define S ∈ L(V) by

S(av + bTv + c1u1 + · · · + cnun) = bv,

which satisfies in particular S(Tv) = v and Sv = 0. Therefore, since ST = TS, we obtain

v = S(Tv)

= (ST)v

= (TS)v

= T(Sv)

= T(0)
= 0,

using 3.11 of Axler to justify the last equality above. So we can choose nonzero scalars such as a1 = 1, a2 = 1 ∈ F to satisfy

a1v + a2Tv = 1(0) + 1T(0)
= 1(0) + 1(0)
= 0 + 0
= 0,

meaning that the list v,Tv is linearly dependent. But this contradicts our assumption at the beginning that v,Tv is linearly
independent. Therefore, the list v,Tv must be linearly dependent. By the Linear Dependence Lemma (2.21 of Axler), we
have Tv ∈ span(v). In other words, for all nonzero v ∈ V , there exists λv ∈ F (the subscript notation signifies that the scalar
λv depends on our choice of some vector v) such that Tv = λvv, which means T = λv IV , where once again IV is the identity
map on V . At this stage, we have almost completed our proof. To show that T is a scalar multiple of the identity, we need to
establish T = λIV , where λ ∈ F does not depend on v. In other words, it is not enough to stop at Tv = λvv; we need to show
that λv is actually constant in v, at which point would allow us to write λv = λ. Let w ∈ V be another arbitrary vector. Then



v,w form a list that is either linearly independent or linearly dependent. Consider λv, λw, λv+w ∈ F, the scalars that depend on
v,w, v + w, respectively. In the first case, assume that v,w is linearly independent. Applying Tv = λvv, we obtain

(λv+w − λv)v + (λv+w − λw)w = λv+wv − λvv + λv+ww − λww

= λv+w(v + w) − λvv − λww

= T(v + w) − λvv − λww

= Tv + Tw − λvv − λww

= λvv + λww − λvv − λww

= 0.

Since v,w is linearly independent, all scalars are zero; that is, we have

λv+w − λv = 0, λv+w − λw = 0,

or λv = λv+w = λw . Any function that outputs the same value such as λv = λw for all input values such as v,w ∈ V must be a
constant function; in other words, we conclude that λv is constant, or λv = λ. Therefore, we conclude T = λv IV = λIV , which
means that T is a scalar multiple of the identity. �

3.D.20. Suppose n is a positive integer and ai, j ∈ F for all i, j = 1, . . . , n. You may assume without proof that, since Fn is a finite-
dimensional vector space, T ∈ L(Fn) is injective if and only if T is surjective (from 3.69 of Axler). Prove that the following
are equivalent (note that in both parts below, the number of equations equals the number of variables):

(a) The trivial solution x1 = · · · = xn = 0 is the only solution to the homogeneous system of equations

n∑
k=1

a1,k xk = 0

...
n∑

k=1

an,k xk = 0.

(b) For all c1, . . . , cn ∈ F, there exists a solution to the system of equations

n∑
k=1

a1,k xk = c1

...
n∑

k=1

an,k xk = cn.

Proof. Define T ∈ L(Fn) by

T(x1, . . . , xn) =

(
n∑

k=1

a1,k xk, . . . ,
n∑

k=1

an,k xk

)
.

Statement (a) says that we have
T(x1, . . . , xn) = (0, . . . , 0)

if and only if (x1, . . . , xn) = (0, . . . , 0), if and only if null T = {(0, . . . , 0)}, if and only if T is injective. Statement (b) says that,
for all c1, . . . , cn ∈ F, we have

T(x1, . . . , xn) = (c1, . . . , cn)

if and only if T is surjective. Since Fn is finite-dimensional, T is injective if and only if T is surjective, according to 3.69 of
Axler. Therefore, statement (a) holds if and only if statement (b) holds. �


