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Solutions to assigned homework problems from Linear Algebra Done Right (third edition) by Sheldon Axler

3E:1,7,12,13,17, 18,20
3F:3,4,6,7,8, 15,32

3.E.1. Suppose T : V — W is a function. Then graph of T is the subset of V x W defined by
graphof T = {(v,Tv) e VX W :v € V}.

Prove that T is a linear map if and only if the graph of T is a subspace of V x W.
Proof. Forward direction: If T is a linear map, then the graph of T is a subspace of V x W. Suppose T is linear. We will prove
that the graph of T is a subspace of V. x W.

e Additive identity: Since T is linear, by 3.11 of Axler we have T(0) = 0. So we have (0,0) = (0,7(0)) € graph of T'.

e Closed under addition: Suppose we have (u, Tu), (v, Tv) € graph of T. Since T is linear, we can use its additivity to
obtain

(u, Tu) + (v, Tv) = (u+v,Tu +Tv)
=w+v,T(u+v)).

So we conclude (1, Tu) + (v, Tv) € graph of T.

e Closed under scalar multiplication: Suppose we have A € F and (v,Tv) € graph of 7. Since T is linear, we can use its
homogeneity to obtain

AW, Tv) = (Av, ATv)
= (v, T(Av)).

So we conclude A(v, Tv) € graph of T.

Since we satisfied all the properties of a subspace, we conclude that the graph of T is a subspace of V x W.

Backward direction: If the graph of T is a subspace of V X W, then T is a linear map.

o Additivity: Suppose we have (u, Tu), (v, Tv) € graph of T. Since the graph of T is a subspace of V x W, in particular it
is closed under addition, which means we have (u + v, Tu + Tv) = (u, Tu) + (v, Tv) € graph of T. At the same time, all
elements of the graph of T must take the form (v, Tv). So we actually have

u+v,Tu+Tv)=w+v,T(u+v)),

from which we can equate the second coordinates to obtain 7'(u + v) = Tu + Tv, establishing the additivity of 7.

e Homogeneity: Suppose we have A € F and (v, Tv) € graph of T.Since the graph of T is a subspace of V X W, in particular
it is closed under scalar multiplication, which means we have (Av, ATv) = A(v,Tv) € graph of T. At the same time, all
elements of the graph of 7 must take the form (v, Tv). So we actually have

(Av, ATv) = (Av, T(Av)),
from which we can equate the second coordinates to obtain T(1v) = ATv, establishing the homogeneity of T.

Since additivity and homogeneity of T are satisfied, we conclude that T is a linear map. O
3.E.7. Suppose v, x are vectors in V and U, W are subspaces of V such that v + U = x + W. Prove that U = W.

Proof. Since U, W are subspaces of V, they in particular satisfy the additive identity, meaning that we have 0 € U and 0 € W.
So we have

v=v+0
ev+U
=x+W,



and so there exists w € W that satisfies v = x + w, or equivalently, x —v = w € W. Similarly, we have

x=x+0
ex+W
=v+U,

and so there exists u € U that satisfies x = v + u, or equivalently, x — v = u € U. By 3.85 of Axler, the statements x —v € W
and x — v € U are equivalent to their respective statements x + W = v + W and x + U = v + U. Therefore, we have

v+U=x+W
=v+W
or
x+U=v+U
=x+W.
In either case, we conclude U = W. |

3.E.12. Suppose U is a subspace of V such that V /U is finite-dimensional. Prove that V is isomorphic to U x (V/U).

Proof. Letv; +U,...,v, + U be a basis of V/U. Then 2.29 of Axler asserts that, for all v € V, we can write v + U € V/U
uniquely in the form

v+U=a(vi+U)+---+a,(v, +U)
=((@v) +U)+ -+ ((anvn) + U)
=(avi+---+apvy)+U
for some ay, . ..,a, € F, which is equivalent to saying v — (ajvy + - -+ + a,v,) € U by 3.85 of Axler. Now, define the map

T:V—->Ux(V/U)by
Tv=w-=(avi+ -+ ayvu),v+U).

We will prove that that T is an isomorphism. First, we will prove that T is linear.

e Additivity: As done with v in the problem statement, we can write w + U € V /U uniquely in the form
w+U=b(vi+U)+ -+ b,(v, +U)
for some by, ..., b, € F. In fact, we have

w+U=bi(vi+U)+---+b,(v, +U)
=((biv) +U) + -+ ((byvn) + U)
=(byvi+---+byvy)+ U.

By 3.85 of Axler, we have w — (byv| + - - - + b,v,) € U. Therefore, for all v, w € V, we have

To+w)=((v+w)=((a; +b)vi + -+ (an + by)vp), (v +w) + U)
=((v=(avi+---+apwp)+W—=(b1vi + -+ byvp)), v+ U) + (w+ U))
=(v=(avi+---+ayvy),v+U)+(w—=(bvi+---+byv,),w+U)
=Tv+Tw.

o Homogeneity: For all 1 € F and for all v € V, we have

T(v) = (Av) = ((Aap)vy + -+ + (Aan)va), (Av) + U)
=AW = Aarvy + -+ + apvp), A(v + U))
=aTv.

Since additivity and homogeneity of T are satisfied, T is linear. Next, we need to prove that 7 is injective and surjective. We
will prove first that T is injective. Suppose we have v € null 7', meaning that v satisfies Tv = (0,0 + U). Then we have

0,0+U)=Tv
= —(a1vi + -+ apvn), n(v))
=W —(avi+---+ayvy),v+U)
=W—(avi++-+apvy),a(vi +U) + - -+ + ay(v, + U)),



3.E.13.

from which we can equate the coordinates to obtain
v—(aivi+---+apvy) =0
and
a(n+U)+---+a,(v, +U)=0+U.

Since vi + U, ...,v, + U is a basis of V/U, it is linearly independent in V /U, and so the second equation a;(v; + U) + - -- +
an(vy, + U) = 0+ U implies
a=0,...,a, =0.

Furthermore, the first equation v — (ayvy + -+ + ayv,) = 0 witha; = 0,...,a, = 0 implies v = 0. Therefore, we have
null7 c {0}. But 3.14 of Axler says that null 7 is a subspace of V, which means in particular that we have {0} C nullT.
Therefore, we obtain the set equality null7 = {0}. By 3.16 of Axler, T is injective. Now we will prove that T is surjective.
Consider an arbitrary element (u,v + U) € U X (V/U). Then we have u — 0 = u € U, which, according to 3.85 of Axler, is
equivalent to saying

u+U=0+U.

Consequently, we have
v+U=a(vi+U)+---+a,(v, +U)
= ((alvl)+U)+"'+((anVn)+U)
=(avi+---+ayvy)+U
=(avi+---+ay, +0)+U
={avi+--+apvy)+U)+(0+U)
={(avi+--+apvy)+U)+w+U)
=(avi+---+ayv, +u)+U.
If we add and subtract a;vq + - - - + a,,v,, + u for u, then we can write
u=(@vi+---+apvy)+u—(@vi+--+a,vn)
=(avi+ -+ agvy +u)—(a1vi + -+ apvp).
Therefore, we have
u,v+U)=aivi+--+apgvp+u)—(avi + -+ apvp), (@vi + -+ ayvy +u) + U)
=T(ajvy + -+ ayvy, + u),

which means we have (i, v + U) € range T, and so we get the set containment U X (V/U) C range T. But 3.19 of Axler states
that range T is a subspace of U x (V/U). So we conclude the set equality

rangeT = U x (V/U),

which means 7 is surjective. So we established that T is both injective and surjective, which means by 3.46 of Axler T is

invertible. Therefore, T is an invertible linear map, and so it is an isomorphism. O
Suppose U is a subspace of V and v + U,...,v, + U is a basis of V/U and uy,...,u, is a basis of U. Prove that
Viyewos Vi UL, ..., Uy 1S & basis of V. Suppose that vi + U, ..., v, + U is a basis of V/U and that uy, ..., u, is a basis of
U. Prove that vy, ..., v, U1, ..., u, is a basis of V.

Proof. First, we will show that the list vy, ..., vy, u1, . . ., 4, is linearly independent in V. Suppose ay, ..., am,c1,...,cn € F
satisfy

aijvy + -+ amvm + iy + -+ cpity, = 0.

Then we have

(avi+--+amvm)—0=avi + -+ amvm
= —Cluyp — - — Chlpn
ey.

By 3.85 of Axler, we obtain
(ayvi +--+apvp)+U=0+U.

In fact, we get

aivi+U)+---+a,(vpy +U)=(a1vi +U)+ - - + (@ + U)
=(avi+U)+- -+ (auvm + U)
=(avi+-+amvm) +U
=0+U.
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Recall that 0 + U is the additive identity of V/U. Since vi + U, . .., v, + U is a basis of V /U, it is linearly independent in V /U,
which means we must have
ar=0,...,a, =0.

Consequently, our original equation becomes

O=avi+- -+ auvm +cru; + -+ cuty
=0vi+--+0v, +crup +- -+ cpuy

=cCciuy + -+ cpuy.
Now, since uy, . . ., u, is a basis of U, it is linearly independent in U, which means we must have
c1=0,...,¢, =0.

Altogether, we have

a1=0,...,a4,, =0,¢1=0,...,¢,, =0.
Therefore, the list vy, ..., Vi, U1, . . ., Uy is linearly independent in V. Next, we must show that vy, ..., vy, U1, ..., U, spans V.
Since vi + U, ..., vy, + U is a basis of V/U, it spans U, and so, for all v € V, we can write every element in V /U uniquely in
the form

v+U=a(vi+U)+- -+ au(vy, +U)
for some ay,...,a, € F. In fact, when applying the operations of addition and scalar multiplication defined on V /U, we
obtain

v+U=a(vi+U)+- -+ au(vy, +U)
=(avi+U)+ -+ (apvm + U)
=(avi + -+ amvm) + U.
By 3.85 of Axler, we have
v—(aivi+ - +anuvy) € U.

Since uj, ..., U, is a basis of U, it spans U, and so we can write every vector in U as a linear combination of uy, ..., u,. In
particular, we can write
v—(avi + -+ amvm) = cup + -+ + cuty

for some ¢y, ..., c, € F. Therefore, we have

v=C(aivi+ -+ auvm) + (cruy + -+ + cylty)

=avy+---+auvm +Ccruy + -+ cpp,

where ay, ..., amy,c1,...,c, € F. Since v € V is arbitrary, we conclude that the list vy, ..., vy, uy, ..., u, spans V. Therefore,
Vieewos Vs UL, . . ., Uy 18 @ basis of V. O
Alternate proof. We already showed in our original proof to this exercise that the list vy,..., v, U1, ..., u, is linearly inde-

pendent in V. We will show another way of proving that this list is a basis of V. By Exercise 3.E.12 of Axler, V is isomorphic
to U X (V/U). By 3.59 of Axler, we have
dimV = dim(U x (V/U)).

Since uy,...,u, isabasisof U and vi+U,...,v,,+ U is a basis of V/U, it follows that we have dim U = m and dim(V /U) = n,
respectively. This means that U and V /U are both finite-dimensional, and so 3.76 of Axler gives us

dim(U x V/U) = dimU + dim(V/U).
Therefore, we have

dimV = dim(U x (V/U))

=dimU + dim(V/U)

=m+n.
We notice that our linearly independent list vy, ..., vy, uy, . . ., u, has length m + n; in other words, this linearly independent
list has the right length. By 2.39 of Axler, vy, ..., vy, Ui, . .., U, is a basis of V. 0O

Suppose U is a subspace of V such that V/U is finite-dimensional. Prove that there exists a subspace W of V such that
dmW =dimV/UandV=Ue&W.
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Proof. Since V /U is finite-dimensional, by 2.37 of Axler, there exist vy, ..., v, € V such thatv; + U, ..., v, + U is a basis of
V/U. In other words, v; + U, ..., v, + U is a linearly independent list that spans V/U. Since the list spans V /U, every vector
in V/U can be written
v+U=a(vi+U)+- - +a,(v, +U)
=(avi+U)+ -+ (ayvp + U)
=(avi+--+apvy)+U

forsome ay, . . ., a, € B. By 3.85 of Axler, this is equivalent to saying v—(avi+- - -+a,v,) € U. Now let W = span(vy, . . ., vy).
By construction, the list vy, ..., v, spans W and, by 2.7 of Axler, W is a subspace of V. We need to show that vi,...,v, is
linearly independent in W. Suppose by contradiction that vy, . . ., v, is linearly dependent in W. Then there exist by, ..., b, € F,

not all zero, that satisfy
bivi+--+byv, =0.

So we have
bivi+U)+---+b,(vp, +U)=((b1v))+U) + -+ ((bpv,) + U)

=i+ +byvy)+U

=0+U0,
which means vi+U, ..., v,+U is linearly dependent in V/U. But this contradicts our earlier result saying that vi+U, . .., v,+U
is linearly independent in V/U. Therefore, vy, ..., v, is linearly independent in W. So we proved that vy, ..., v, is a linearly
independent list that spans W, and so vy, ..., v, is a basis of W. So we have dim W = n = dim(V/U), and every vector in W
can be written in the form ayvq + - - - + a,v,, for some ay, .. .,a, € F. Therefore, if we have v € V, then we can write

v=W—(aqyvi+ -+ ayvp)+(@vi+--+ayv)
eU+W.
Therefore, we have V. U + W. At the same time, by 1.39 of Axler, that U + W is a subspace of V. Therefore, we have

V = U + W. Next, we need to establish U N W = {0}. Suppose we have v € U N W. Then we have v € U and v € W, the
latter of which means that, with the basis vy, ..., v, of W, we can write

v=avy+---+ayvu

for some ay, . ..,a, € F. Since we have v — 0 = v € U, by 3.85 of Axler it is equivalent to saying v + U = 0 + U. In fact, we
have
0+U=v+U
=(@vi+--+apvy)+U
=((@av)) +U) + -+ + ((anvn) + U)
=ai(v+U)+---+ap(vy + U).

Since vi + U, ..., v, + U is a basis of V/U, it is linearly independent in V /U, which means we must have
a=0,...,a,=0.
Therefore, we conclude

v=avy+- - +ayvu
=0vi+---+0v,
=0.
So we have U N W c {0}. But U and W are subspaces of V, which means 0 € U and 0 € W, and so we get 0 € U N W, or

{0} c U n W. Therefore, we obtain the set equality U N W = {0}. Finally, by 1.45 of Axler, we can write V = U & W, as
desired. O

Suppose T € L(V,W)and U is a subspace of V. Let & : V — V /U be the quotient map. Prove that there exists S € L(V /U, W)
such that7 = Somif and only if U C null 7.

Proof. Forward direction: If there exists S € L(V/U,W) such that T = S o x, then U C null7. Suppose there exists
S e L(V/U),W)suchthat T = S ox. Let u € U be arbitrary. We have v — 0 = v € U, and so, by 3.85—(a) implies (b)—of
Axler, we have v + U = 0 + U. So, using 3.88 of Axler, for all u € U, we have
Tu=(Somu

= S(m(u))

=Swu+U)

=S(0+U)

=0,



where we also used 3.11 of Axler in the last equality above. So we have u# € null 7', and so we conclude U C nullT.
Backward direction: If U C null 7, then there exists S € L(V/U, W) such that T = S o 7. Suppose that we have U C null 7.
Let v € V be arbitrary, and define S : V/U — W by

Sw+U)=Tv.

Consider another vector v € V that satisfies v + U = ¥ + U. Since we assumed U C nullT, we have v — ¥ € null T, which
means we have T(v — ) = 0. So we get
Sv+U)=Tyv
=T(v=")+9D)
=T(v—-9)+TV
=0+TV
=TP
=S+ U),
which means § indeed defines a function. Next, we need to show that § is linear, given already that T is linear. For all 1 € F
and for all v, w € V, we have
S(v+U)+(w+U)=S(v+w)+U)
=T +w)
=Tv+Tw
=Sv+U)+Sw+U),

satisfying additivity, and

SA(v +U)) =SQv +U)
=T(v)
=ATv
= AS(v + U),

satisfying homogeneity. So S is linear. Finally, for all v € V, we have

(Somyv =S8(x(v)
=S(v+V)
=Tv,

from which we conclude 7 = S o 7. |

3.E.20. Suppose U is a subspace of V. Define I' : L(V/U,W) — L(V,W) by
I'(S)y=Sonmn.
(a) Show that I is a linear map.
Proof. Forall A € Fand forall S,T € L(V/U, W), we have

I'S+7)=8+T)onr
=Son+Tonm
=TI(S) + I(T),
satisfying additivity, and
Ir(as)=AS)on
=ASonm
= AL(S),
satisfying homogeneity. So I' is linear. O

(b) Show that I" is injective.



3.E3.

3.F4.

Proof. Suppose we have S € nullT', which means I'(S) = 0. Then we have S o 7 = T'(S) = 0, and so forall v € V we
have (S o m)v = 0. Therefore,
0=(Somv
= S(n(v))
=Sv+U).
Since v € V is arbitrary, we must have S = 0, and so null " c {0}. But 3.14 of Axler says that null T is a subspace in V,

which means in particular that null I" contains the additive identity, or {0} C nullI'. Therefore, we have the set equality
nullT" = {0}. Finally, by 3.16 of Axler, I is injective. O

(c) Show thatrangel ={T € L(V,W):Tu =0forallu € U}.
Proof. By Exercise 3.E.18 of Axler (or Question 2 of this examination), there exists S € L(V /U, W) satisfying T = Sox

if and only if we have U C null T. Therefore, we have
range " = {T'(S) € L(V,W): S e L(V/U,W)}
={Sore L(V,W):Se LV/UW)}
={Te LIV,W):T=SonSe LIV/UW)}
={T e LV,W):U CnullT}
={T € L(V,W):Tu=0forallu € U},

as desired. O

Suppose V is finite-dimensional and v € V with v # 0. Prove that there exists ¢ € V' such that ¢(v) = 1.

Proof. Since v € V is nonzero, it follows that the list v (yes, the list with one element only) is linearly independent. Further-
more, by 2.33 of Axler, we can extend this linearly independent list to a basis v, uy, ..., u, of V. By 3.96 of Axler, we also
have a corresponding dual basis ¢, ¢y, . . ., ¢, of elements in V', with ¢(v) = 1 in particular. O

Suppose V is finite-dimensional and U is a subspace of V such that U # V. Prove that there exists ¢ € V' such that ¢(u) = 0
for every u € U but ¢ # 0.

Proof. Since V is finite-dimensional and U is a subspace of V, it follows by 2.26 of Axler that U is also finite-dimensional.

By 2.32 of Axler, there exists a basis uy, . . ., u,, of U. By 2.33 of Axler, we can extend it to a basis uy, . .., U, V1, ..., v, of V.
Because we also assumed U # V, the extension cannot be trivial; that is, we must be able to extend uy, ..., u, by vi,...,v;
for some j € {1,...,n}. So there exist at least one vector, which we can call it v; € V without any loss of generality. This

motivates us to define ¢ : V — F by
go(alul + -+ apmly, +b1V1 + .- +bnvn) = bl

for some ay, . .., am, b1, . .., by € F. According to the proof of 3.5 of Axler, this map indeed defines a function. We will prove
that ¢ is linear.

e Additivity: If we have v, w € V, then, since uy, ..., U, vi, . . ., v, is a basis of V, we can write uniquely

Vv=aiu+---+ auity, + bivi + -+ by,

and
W=ciuy+ -+ Cply +divi + -+ dyvy
forsome ay,...,am, b1,...,bu,C1,...,Cm,dy, . ..,d, €F. So we have
o(v+w)=g((aju; + -+ amity + byvi + -+ byvy) + (crup + -+ - + oty + dyvy + - + dpvy))
= @((ay + cpuy -+ (@m + cm)itm + (b1 + dy)vy + - + (by + dp)va)
= b1 +d1
=@(ajuy + -+ + Ay + byvy + -+ byvy) + e(crug + -+ -+ Cpltyy + divy + - -+ dyvy)
= (V) + @(w).
e Homogeneity: Suppose we have A € F. If we have v,w € V, then, since uy, ..., up, v1,..., v, is a basis of V, we can
write uniquely
Vv=aiu+-+ auity, + bivi+ -+ by,
for some ay,...,am, by, ...,b, € F. So we have

©(Av) = (A ajuy + -+ + QGuity, + b1vy + -+ -+ byvy))
= o((Aapuy + - + (Aap)um + (Ab)vy + -+ (Aby)vy)
= b,
= dp(ajuy + - - + amity, + byvy + -+ + byvy)
= Ap(v).



Since additivity and homogeneity of ¢ are satisfied, ¢ is linear; in other words, we have ¢ € L(V,F) = V’. Now, ifu € U,

then, since uj, . . ., u,, is a basis of U, we can write uniquely in the form
u=auy+---+auuy
for some ay, ..., a,, € F. Therefore, for all u € U, we have

p(u) = plarur + -+ + amity)
=@(ajuy + -+ + amty, + Ovy + -+ -+ 0vy)
=0.

However, if we consider the vector v; € V, then we have v; ¢ U, and more importantly, we have b; # 0. So we have

©(v1) = eOuy + -+ + 0wy + 1vy + 0vp + - - - + Ovy)

=1
# 0.
In other words, we found an element v; € V for which ¢ is nonzero, and so can conclude ¢ # 0. O
3.FE.6. Suppose V is finite-dimensional and vy, ..., v, € V. Define a linear map I" : V' — E™ by
[(p) = (e(v1), - - - @(Vin))-
(a) Prove thatvy,..., v, spans V if and only if I is injective.
Proof. Forward direction: If vy, ..., v,, spans V, then I is injective. Since vy, ..., v,, spans V, we can write every v € V
uniquely as
vV=aivi+---+auvm
for some ay, . .., a, € F. Now, suppose we have ¢ € nullT". Then we have I'(¢) = (0, ..., 0), and so we have

(b)

0,...,0) = (e(v1)s .. .. @(Vm)),

from which we can equate the coordinates of both sides to write

(1) =0,...,0(vm) =0.

As we assumed throughout Section 3.F of Axler that ¢ € V' = L(V,F), we can use its additivity and homogeneity to
write

e(v) = plarvi + -+ amvm)
= g(aivi) + -+ + @(amvm)
=ajp(vi) + -+ amp(Vin)
=a-0+---+a,-0
=0.

Since v € V is arbitrary, we conclude that ¢ must be the zero map; that is, we conclude ¢ = 0. Therefore, we have
have null " c {0}. But 3.14 of Axler says that null " is a subspace in V’, which means in particular that null I" contains
the additive identity, or {0} C nullT". Therefore, we have the set equality null " = {0}. Finally, by 3.16 of Axler, I is
injective.

Backward direction: If T is injective, then vy, ..., v,, spans V. Define U = span(vy,...,v,), which is a subspace of V
by 2.7 of Axler. Suppose by contradiction that vy, ..., v,, does not span V. Then we have U # V. By Exercise 3.F.4 of
Axler, there exists ¢ € V’ such that ¢(u) = 0 for all u € U but ¢ # 0. Therefore, as I' is linear, we have

I(e) = (1), - .., 0(Vim))

=(0,...,0)

=T(0).
In other words, we found the zero map 0 € V' and a nonzero functional ¢ € V’ such that I'(0) = 0 and I'(¢) = 0. This
signifies that I is not injective, which contradicts our assumption that I" is injective. Therefore, vy, ...,v,, spans V. O
Prove that vy, . . ., v, is linearly independent if and only if I is surjective.
Proof. Forward direction: If vy, ..., v, is linearly independent, then I is surjective. Since vy, ..., v, is linearly inde-

pendent, by 2.33 of Axler, the list extends to a basis vy, ..., Vj, Uy, ..., u, of V. Define ¢ : V — F by

elaiuy + -+ + amity, + bivi + -+ + byvy) = a;x;



for some ay, ..., am, by,...,b, € F, forall x; € Fand forany j = 1,...,m. Then we can consider an arbitrary vector
(x1, ..., Xxm) € F™. According to the proof of 3.5 of Axler, this map indeed defines a function. Also, forall j = 1,...,m,
we have

@(vj) = @Ouy + -+ +0uj_y + luj + Oujpy + - -+ + Oupy + Ovy + - - + 0vyy)

= lXj
= Xj-
Therefore, we have
I(@) = (e(v1). . . - @(Vm))
= (X1, 0y X)),
and so we get (x1,...,x;,) € range'. So we have F" C rangeI. But 3.19 of Axler states that range I is a subspace of
F™. Therefore, we conclude the set equality range I' = ', which means I' is surjective.
Backward direction: If I is surjective, then vy, . . ., v, is linearly independent. Suppose by contradiction that vy,..., v,
is linearly dependent. By the Linear Dependence Lemma (2.21 of Axler), there exists j € {1,. .., m} such that we have
v; € span(vy, ..., vj—1). In other words, we can write
ay aj—1
V] = -V == —V]_l
J aj
for some ay, . ..,a; € F and for some j € {1,...,m}. So we have
ap a;—q
e(vj) =¢ (——Vl — = J_Vj—l)
aj aj
aj-
=<p(—ﬂv1 — = J—lvj,l +Ov,~+-~+0v,,)
aj aj '
= O)Cj
=0.

In other words, we have

F(SO) = (@(V1)9 ) SD(Vm))
= ((,D(Vl), B QD(Vj—l)’ QO(Vj)’ QO(V]'+1), B ()D(VM))
= (@ @(vj-1), 0, 0(vjs1): - - - @(Vim)),
where the 0 appearing in the last expression of I'(¢) is placed at the j" coordinate of the vector in . This implies, for

example, that we have (0,...,0,1,0,...,0) ¢ range ', where the 1 is placed at the jth coordinate of the vector in F™,
because we cannot, for example, set ¢(v;) = 1 when we just established ¢(v;) = 0 above. As soon as we discover at

least one element in F”"—such as (0, ...,0, 1,0, . ..,0)—that does not belong to range I', we conclude range I" # F™, and
so I' is not surjective. But this contradicts our assumption that I" is surjective. So we conclude that vy, .. ., v, is linearly
independent. o

3.F.7. Suppose m is a positive integer. Show that the dual basis of the basis 1, x, ..., x™ of P,,(R) is @0, ¢1, . . ., ©m, Where @;(p) =

0 ; o . . o .
’%!(0). Here, p") denotes the j™ derivative of p, with the understanding that the 0" derivative of p is p.

Proof. Let j,k =0,1,...,m. To show that ¢y, ..., ¢, is a dual basis of V’, we need to satisfy Definition 2.96 of Axler, which
states that ¢; satisfies

) 1 ifk=j,

(v) =
IV =00 itk # .

To prove this, we must consider the three cases k < j, k = j, k > j. If k < j, then

A= xk lx=0
j!

a7k g+ g
dxik dxk X x=0

Jj!
di—k

T k!x=0

U

J!



If k = j, then

i) = ¢j(v))

_ %xj |x=0
= —j!
_ J1 7 o
= i
J' =0
Jj!
=1.
If k > j, then
%xk |x:0
‘Pj(Vk) =T
J!
_ k(k=1) - (k= )x* =0
= 7
Kk =1 (k= YO
= i
=0.
So we satisfied Definition 3.96 of Axler for ¢;(vr). We conclude that ¢y, . . ., ¢, is the dual basis of the basis in part (a). O

3.F.8. Suppose m is a positive integer.

(a)

(b)

Show that 1, x = 5,...,(x —5)" is a basis of £,,(R).
Proof. Suppose ag, ay, . . ., a, € F satisfy

ap+ai(x =5+ +au(x-5"=0

We will follow Example 2.41 of Axler, which does not require expanding out the polynomials. Forall j = 1,...,m, we
see that the left-hand side of the above equation has an a;(x — 5) term but the right-hand side does not, which implies
a; = 0. In other words, we have a; = 0, ..., a, = 0. The above equation ap + a;(x — 5) + - - - + a(x — 5)" = 0 with
a; =0,...,a, =0implies ag = 0. So we have

ap=0,a; =0,...,a, =0,

and so the list 1, x — 5, . .., (x — 5)™ is linearly independent. Finally, since the length of the list 1, x — 5, ..., (x — 5)" has
length m + 1 and we have dim P (R) = m + 1, by 2.39 of Axler, the list 1, x — 5, ..., (x — 5)™ is a basis of P"*(R). O

What is the dual basis of the basis in part (a)?

Proof. Define ¢ : P™(R) — R by
_ P
¢j(p) = ——
J!
where pU) is the j™-order derivative of p € P™(R). According to the definition of the dual basis (3.96 of Axler), for all
J.k=1,...,m, we must check that ¢; satisfies

) 1 ifk =,
(v) =
FVEN0 ko
where vi = 1,v; = x = 5,...,v;; = (x = 5)™. To prove this, we must consider the three cases k < j, k = j, k > j. If
k < j, then
%(x - 5)k|x:5
@i(vi) = T
-k gk
_ A (x = 5)x=s
= i
ik
_ %k”x:s
= —j!



3.F15.

3.E32.

If k = j, then

i) = ¢;(v)

(x5 ]

J!
_ JUx = 5) 7 =5
= —j!
— ]' i 1|x:5

If k > j, then
d’ k
_j(x - 5) |x:5
0j(ve) = dﬂ.—'
J!
Ck(k=1)- - (k= j)(x =5 ],s
= i
_k(k=1)--- (k= j)(5-57
= i
=0.
We conclude that ¢y, . . ., ¢, is the dual basis of the basis in part (a). |

Suppose W is finite-dimensional and 7 € L(V, W). Prove that 77 = 0 if and only if 7 = 0.

Proof. Forward direction: If 7" = 0, then T = 0. Suppose we have T’ = 0. Then, for all ¢ € V’, we have T(¢) = 0. Suppose
by contradiction that we have T # 0. Then there exists v € V such that Tv # 0. By Exercise 3.F.3 of Axler (or part (a) of this
question), there exists ¢ € V' such that ¢(Tv) = 1. In fact, by 3.99 of Axler, we have

T'(e(v)) = ¢ o T(v)
= ¢(Tv)
=1.

But this contradicts our assumption that, for all ¢ € V', we have T’(¢) = 0. So we conclude 7' = 0.

Backward direction: If T = 0, then 7’ = 0. Suppose we have T' = 0. Thenk for all ¢ € W’, the dual map of T is T"(p) = poT.
Since T = 0, for all ¢ € W’, we have

T'(p)=¢oT
= ¢(0)
=0.
So we conclude 77 = 0. O
Suppose T € L(V), and uy, .. .,u, and vy, ..., v, are bases of V. Prove that the following are equivalent:

(a) T is invertible.

(b) The columns of M(T) are linearly independent in F™'.
(c) The columns of M(T) span F"™!.

(d) The rows of M(T) are linearly independent in F".

(e) The rows of M(T) span F"".

Here M(T) means M(T, (uy, - .., up), (V15 -+ -, Vp))-

Proof. According to 3.69 of Axler, statement (a) holds if and only if T is injective and if and only if T is surjective. Therefore,
to establish that all the statements are equivalent, it remains to prove the following:

o T is injective if and only if statement (b) holds,

Statement (b) is equivalent to statement (d),

e T is surjective if and only if statement (c) holds,

Statement (c) is equivalent to statement (e).



The first two statements in the above list will establish that statement (a) is equivalent to statements (b) and (d). The last two
statements in the above list will establish that statement (a) is equivalent to statements (c) and (e). These results signify that
proving the above list means proving that statements (a), (b), (c), (d), (e) are equivalent to each other, as desired. To facilitate

our proofs of the statements in the above list, we represent the matrix M(T) € F™" with respect to the bases uj, ..., u, and
Vi,...,vyof Vas
A o0 A
M(T) = :
An,l e An,n
with its entries Aj; € F, for any j,k = 1,...,n. Since uy,...,u, and vy,...,v, are bases of V, it follows that, according to

3.60 of Axler, M is an isomorphism between £L(V, V) and F"".

First, we will prove that T is injective if and only if statement (b) holds. By 3.16 of Axler, T is injective if and only if we
have null7 = {0}. And we have null7 = {0} if and only if the equation Tu = 0 has only the trivial solution # = 0. This is
equivalent to saying that

MT)M(u) = M(Tu) = M(0),

or equivalently

A o A\ [a 0
An,] ce An,n Cn 0
has only the trivial solution ¢; = --- = ¢, = 0. This is equivalent to saying that the equation

M)+ + e MT)p=ctA 1+ +chA.,

K

At A
=c| ¢ |+ Fen|
An,l An,n
At 0 A\ fa
An,l te An,n Cn
0
0

has only the trivial solution ¢; =0, ..., ¢, = 0. This is equivalent to saying that M(T). 1, ..., M(T). ,—the list of columns of
M(T)—is linearly independent in F™!, which is statement (b).

Next, we will prove that statement (b) is equivalent to statement (d). According to the previous paragraph, statement (b) holds
if and only if the matrix equation

MTIM(u) = M(0)

has only the trivial solution u = 0. Taking transposes of both sides of the matrix equation, we find that our previous statement
is equivalent to saying

(M) (M(T))" = MTIM(w))’

= (M),
or equivalently
A o Ann
(Cl e Cn) E "' . :(O “ee 0)’
Al,n e An,n

has only the trivial solution # = 0. This is equivalent to saying that the equation

M@y, + -+ enM@)p,. = 1A+ + crAy

n

=c(Ar - Apt) o+ cn (A o Ann)
A o A
= (e )| 1o
Ain - Ann
(0 - 0)
has only the trivial solution ¢; = 0, ...,¢, = 0. This is equivalent to saying that M(T); ., ..., M(T),,.—the list of rows of

M(T)—is linearly independent in F™!, which is statement (d).



Next, we will prove that T is surjective if and only if statement (c) holds. By definition, T is surjective if and only if we have
rangeT = V. According to the proof of the Fundamental Theorem of Linear Maps (3.22 of Axler), the list Tuy, ..., Tu, is
a basis of V, which means in particular that the list spans V, and so we have span(Tuy, ..., Tu,) = rangeT. Therefore, T is
surjective if and only if we have

V =rangeT
=span(Tuy, ..., Tuy).

This is equivalent to saying that, for all v € V, we have

v=Tu

=ciTuy+---+c,Tuy,

for some cy, ..., c, € F. Using their matrix representations, the vector v written as a linear combination of the basis vectors
Tuy,...,Tu, of range T is equivalent to saying

M) = M(ciTuy + -+ - + c,Tuy,)

M(ciTuy) + -+ M(c,Tuy,)
ccM(Tuy) + -+ cy M(Tuy,)
= MT) 1+ + caMT) .

for some ¢y, .. .,c, € F. This is equivalent to saying that M(T). 1, ..., M(T). ,—the list of columns of M(T)—spans F"!,
which is statement (c).

Finally, we will prove that statement (c) is equivalent to statement (e). According to the previous paragraph, statement (c)
holds if and only if we have the matrix equation

MW)=ctMT) g1+ +caMT).p

for some cy,...,c, € F. Taking transposes of both sides of the matrix equation, we find that our previous statement is
equivalent to saying

M) = (@MT). 1+ +caM(T).)
=(ClA 1+ -+ Ay

Al o A\ (e
An,l e An,n cn.
a\ (A - Al
Cn An,l Apn
Arl An
Sl a)| o
Ain -+ Apn
=(61A1,1+--'+CnAn,1 clAl,n+"'+CnAn,n)
z(clAl,l ClAl,n)+"‘+(CnAn,l CnAn,n)
=ci (A1 0 Apa)+-+en(Ant 0 Ang)

=clAy,. + -+ LAy,
=c M, + -+ M)y,

for some cy, . .., c, € F. This is equivalent to saying that M(T);.., . . ., M(T),,, . —the list of rows of M(T)—spans F", which
is statement (e). ]



