
MATH 131: Linear Algebra I
University of California, Riverside

Homework 5 Solutions
July 27, 2019
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3.E: 1, 7, 12, 13, 17, 18, 20
3.F: 3, 4, 6, 7, 8, 15, 32

3.E.1. Suppose T : V → W is a function. Then graph of T is the subset of V ×W defined by

graph of T = {(v,Tv) ∈ V ×W : v ∈ V}.

Prove that T is a linear map if and only if the graph of T is a subspace of V ×W .

Proof. Forward direction: If T is a linear map, then the graph of T is a subspace of V ×W . Suppose T is linear. We will prove
that the graph of T is a subspace of V ×W .

• Additive identity: Since T is linear, by 3.11 of Axler we have T(0) = 0. So we have (0, 0) = (0,T(0)) ∈ graph of T .

• Closed under addition: Suppose we have (u,Tu), (v,Tv) ∈ graph of T . Since T is linear, we can use its additivity to
obtain

(u,Tu) + (v,Tv) = (u + v,Tu + Tv)

= (u + v,T(u + v)).

So we conclude (u,Tu) + (v,Tv) ∈ graph of T .

• Closed under scalar multiplication: Suppose we have λ ∈ F and (v,Tv) ∈ graph of T . Since T is linear, we can use its
homogeneity to obtain

λ(v,Tv) = (λv, λTv)

= (λv,T(λv)).

So we conclude λ(v,Tv) ∈ graph of T .

Since we satisfied all the properties of a subspace, we conclude that the graph of T is a subspace of V ×W .

Backward direction: If the graph of T is a subspace of V ×W , then T is a linear map.

• Additivity: Suppose we have (u,Tu), (v,Tv) ∈ graph of T . Since the graph of T is a subspace of V ×W , in particular it
is closed under addition, which means we have (u + v,Tu + Tv) = (u,Tu) + (v,Tv) ∈ graph of T . At the same time, all
elements of the graph of T must take the form (v,Tv). So we actually have

(u + v,Tu + Tv) = (u + v,T(u + v)),

from which we can equate the second coordinates to obtain T(u + v) = Tu + Tv, establishing the additivity of T .

• Homogeneity: Suppose we have λ ∈ F and (v,Tv) ∈ graph of T .Since the graph of T is a subspace of V ×W , in particular
it is closed under scalar multiplication, which means we have (λv, λTv) = λ(v,Tv) ∈ graph of T . At the same time, all
elements of the graph of T must take the form (v,Tv). So we actually have

(λv, λTv) = (λv,T(λv)),

from which we can equate the second coordinates to obtain T(λv) = λTv, establishing the homogeneity of T .

Since additivity and homogeneity of T are satisfied, we conclude that T is a linear map. �

3.E.7. Suppose v, x are vectors in V and U,W are subspaces of V such that v + U = x + W . Prove that U = W .

Proof. Since U,W are subspaces of V , they in particular satisfy the additive identity, meaning that we have 0 ∈ U and 0 ∈ W .
So we have

v = v + 0
∈ v + U

= x + W,



and so there exists w ∈ W that satisfies v = x + w, or equivalently, x − v = w ∈ W . Similarly, we have

x = x + 0
∈ x + W

= v + U,

and so there exists u ∈ U that satisfies x = v + u, or equivalently, x − v = u ∈ U. By 3.85 of Axler, the statements x − v ∈ W
and x − v ∈ U are equivalent to their respective statements x + W = v + W and x + U = v + U. Therefore, we have

v + U = x + W

= v + W

or

x + U = v + U

= x + W .

In either case, we conclude U = W . �

3.E.12. Suppose U is a subspace of V such that V/U is finite-dimensional. Prove that V is isomorphic to U × (V/U).

Proof. Let v1 + U, . . . , vn + U be a basis of V/U. Then 2.29 of Axler asserts that, for all v ∈ V , we can write v + U ∈ V/U
uniquely in the form

v + U = a1(v1 + U) + · · · + an(vn + U)

= ((a1v1) + U) + · · · + ((anvn) + U)

= (a1v1 + · · · + anvn) + U

for some a1, . . . , an ∈ F, which is equivalent to saying v − (a1v1 + · · · + anvn) ∈ U by 3.85 of Axler. Now, define the map
T : V → U × (V/U) by

Tv = (v − (a1v1 + · · · + anvn), v + U).

We will prove that that T is an isomorphism. First, we will prove that T is linear.

• Additivity: As done with v in the problem statement, we can write w + U ∈ V/U uniquely in the form

w + U = b1(v1 + U) + · · · + bn(vn + U)

for some b1, . . . , bn ∈ F. In fact, we have

w + U = b1(v1 + U) + · · · + bn(vn + U)

= ((b1v1) + U) + · · · + ((bnvn) + U)

= (b1v1 + · · · + bnvn) + U.

By 3.85 of Axler, we have w − (b1v1 + · · · + bnvn) ∈ U. Therefore, for all v,w ∈ V , we have

T(v + w) = ((v + w) − ((a1 + b1)v1 + · · · + (an + bn)vn), (v + w) + U)

= ((v − (a1v1 + · · · + anvn)) + (w − (b1v1 + · · · + bnvn)), (v + U) + (w + U))

= (v − (a1v1 + · · · + anvn), v + U) + (w − (b1v1 + · · · + bnvn),w + U)

= Tv + Tw.

• Homogeneity: For all λ ∈ F and for all v ∈ V , we have

T(λv) = ((λv) − ((λa1)v1 + · · · + (λan)vn), (λv) + U)

= λ(v − λ(a1v1 + · · · + anvn), λ(v + U))

= λTv.

Since additivity and homogeneity of T are satisfied, T is linear. Next, we need to prove that T is injective and surjective. We
will prove first that T is injective. Suppose we have v ∈ null T , meaning that v satisfies Tv = (0, 0 + U). Then we have

(0, 0 + U) = Tv

= (v − (a1v1 + · · · + anvn), π(v))

= (v − (a1v1 + · · · + anvn), v + U)

= (v − (a1v1 + · · · + anvn), a1(v1 + U) + · · · + an(vn + U)),



from which we can equate the coordinates to obtain

v − (a1v1 + · · · + anvn) = 0

and
a1(v1 + U) + · · · + an(vn + U) = 0 + U.

Since v1 + U, . . . , vn + U is a basis of V/U, it is linearly independent in V/U, and so the second equation a1(v1 + U) + · · · +
an(vn + U) = 0 + U implies

a1 = 0, . . . , an = 0.

Furthermore, the first equation v − (a1v1 + · · · + anvn) = 0 with a1 = 0, . . . , an = 0 implies v = 0. Therefore, we have
null T ⊂ {0}. But 3.14 of Axler says that null T is a subspace of V , which means in particular that we have {0} ⊂ null T .
Therefore, we obtain the set equality null T = {0}. By 3.16 of Axler, T is injective. Now we will prove that T is surjective.
Consider an arbitrary element (u, v + U) ∈ U × (V/U). Then we have u − 0 = u ∈ U, which, according to 3.85 of Axler, is
equivalent to saying

u + U = 0 + U.

Consequently, we have

v + U = a1(v1 + U) + · · · + an(vn + U)

= ((a1v1) + U) + · · · + ((anvn) + U)

= (a1v1 + · · · + anvn) + U

= (a1v1 + · · · + anvn + 0) + U

= ((a1v1 + · · · + anvn) + U) + (0 + U)

= ((a1v1 + · · · + anvn) + U) + (u + U)

= (a1v1 + · · · + anvn + u) + U.

If we add and subtract a1v1 + · · · + amvm + u for u, then we can write

u = (a1v1 + · · · + anvn) + u − (a1v1 + · · · + anvn)

= (a1v1 + · · · + anvn + u) − (a1v1 + · · · + anvn).

Therefore, we have

(u, v + U) = ((a1v1 + · · · + anvn + u) − (a1v1 + · · · + anvn), (a1v1 + · · · + anvn + u) + U)

= T(a1v1 + · · · + anvn + u),

which means we have (u, v + U) ∈ range T , and so we get the set containment U × (V/U) ⊂ range T . But 3.19 of Axler states
that range T is a subspace of U × (V/U). So we conclude the set equality

range T = U × (V/U),

which means T is surjective. So we established that T is both injective and surjective, which means by 3.46 of Axler T is
invertible. Therefore, T is an invertible linear map, and so it is an isomorphism. �

3.E.13. Suppose U is a subspace of V and v1 + U, . . . , vm + U is a basis of V/U and u1, . . . , un is a basis of U. Prove that
v1, . . . , vm, u1, . . . , un is a basis of V . Suppose that v1 + U, . . . , vm + U is a basis of V/U and that u1, . . . , un is a basis of
U. Prove that v1, . . . , vm, u1, . . . , un is a basis of V .

Proof. First, we will show that the list v1, . . . , vm, u1, . . . , un is linearly independent in V . Suppose a1, . . . , am, c1, . . . , cn ∈ F
satisfy

a1v1 + · · · + amvm + c1u1 + · · · + cnun = 0.

Then we have

(a1v1 + · · · + amvm) − 0 = a1v1 + · · · + amvm
= −c1u1 − · · · − cnun
∈ U.

By 3.85 of Axler, we obtain
(a1v1 + · · · + anvn) + U = 0 + U.

In fact, we get

a1(v1 + U) + · · · + am(vm + U) = (a1v1 + U) + · · · + (amvm + U)

= (a1v1 + U) + · · · + (amvm + U)

= (a1v1 + · · · + amvm) + U

= 0 + U.



Recall that 0 +U is the additive identity of V/U. Since v1 +U, . . . , vm +U is a basis of V/U, it is linearly independent in V/U,
which means we must have

a1 = 0, . . . , am = 0.

Consequently, our original equation becomes

0 = a1v1 + · · · + amvm + c1u1 + · · · + cnun
= 0v1 + · · · + 0vm + c1u1 + · · · + cnun
= c1u1 + · · · + cnun.

Now, since u1, . . . , un is a basis of U, it is linearly independent in U, which means we must have

c1 = 0, . . . , cn = 0.

Altogether, we have
a1 = 0, . . . , am = 0, c1 = 0, . . . , cn = 0.

Therefore, the list v1, . . . , vm, u1, . . . , un is linearly independent in V . Next, we must show that v1, . . . , vm, u1, . . . , un spans V .
Since v1 + U, . . . , vm + U is a basis of V/U, it spans U, and so, for all v ∈ V , we can write every element in V/U uniquely in
the form

v + U = a1(v1 + U) + · · · + am(vm + U)

for some a1, . . . , am ∈ F. In fact, when applying the operations of addition and scalar multiplication defined on V/U, we
obtain

v + U = a1(v1 + U) + · · · + am(vm + U)

= (a1v1 + U) + · · · + (amvm + U)

= (a1v1 + · · · + amvm) + U.

By 3.85 of Axler, we have
v − (a1v1 + · · · + amvm) ∈ U.

Since u1, . . . , um is a basis of U, it spans U, and so we can write every vector in U as a linear combination of u1, . . . , um. In
particular, we can write

v − (a1v1 + · · · + amvm) = c1u1 + · · · + cnun

for some c1, . . . , cn ∈ F. Therefore, we have

v = (a1v1 + · · · + amvm) + (c1u1 + · · · + cnun)

= a1v1 + · · · + amvm + c1u1 + · · · + cnun,

where a1, . . . , am, c1, . . . , cn ∈ F. Since v ∈ V is arbitrary, we conclude that the list v1, . . . , vm, u1, . . . , un spans V . Therefore,
v1, . . . , vm, u1, . . . , un is a basis of V . �

Alternate proof. We already showed in our original proof to this exercise that the list v1, . . . , vm, u1, . . . , un is linearly inde-
pendent in V . We will show another way of proving that this list is a basis of V . By Exercise 3.E.12 of Axler, V is isomorphic
to U × (V/U). By 3.59 of Axler, we have

dim V = dim(U × (V/U)).

Since u1, . . . , un is a basis of U and v1 +U, . . . , vm+U is a basis of V/U, it follows that we have dim U = m and dim(V/U) = n,
respectively. This means that U and V/U are both finite-dimensional, and so 3.76 of Axler gives us

dim(U × V/U) = dim U + dim(V/U).

Therefore, we have

dim V = dim(U × (V/U))
= dim U + dim(V/U)
= m + n.

We notice that our linearly independent list v1, . . . , vm, u1, . . . , un has length m + n; in other words, this linearly independent
list has the right length. By 2.39 of Axler, v1, . . . , vm, u1, . . . , un is a basis of V . �

3.E.17. Suppose U is a subspace of V such that V/U is finite-dimensional. Prove that there exists a subspace W of V such that
dim W = dim V/U and V = U ⊕W .



Proof. Since V/U is finite-dimensional, by 2.37 of Axler, there exist v1, . . . , vn ∈ V such that v1 + U, . . . , vn + U is a basis of
V/U. In other words, v1 + U, . . . , vn + U is a linearly independent list that spans V/U. Since the list spans V/U, every vector
in V/U can be written

v + U = a1(v1 + U) + · · · + an(vn + U)

= (a1v1 + U) + · · · + (anvn + U)

= (a1v1 + · · · + anvn) + U

for some a1, . . . , an ∈ F. By 3.85 of Axler, this is equivalent to saying v−(a1v1+· · ·+anvn) ∈ U. Now let W = span(v1, . . . , vn).
By construction, the list v1, . . . , vn spans W and, by 2.7 of Axler, W is a subspace of V . We need to show that v1, . . . , vn is
linearly independent in W . Suppose by contradiction that v1, . . . , vn is linearly dependent in W . Then there exist b1, . . . , bn ∈ F,
not all zero, that satisfy

b1v1 + · · · + bnvn = 0.

So we have

b1(v1 + U) + · · · + bn(vn + U) = ((b1v1) + U) + · · · + ((bnvn) + U)

= (b1v1 + · · · + bnvn) + U

= 0 + U,

which means v1+U, . . . , vn+U is linearly dependent in V/U. But this contradicts our earlier result saying that v1+U, . . . , vn+U
is linearly independent in V/U. Therefore, v1, . . . , vn is linearly independent in W . So we proved that v1, . . . , vn is a linearly
independent list that spans W , and so v1, . . . , vn is a basis of W . So we have dim W = n = dim(V/U), and every vector in W
can be written in the form a1v1 + · · · + anvn for some a1, . . . , an ∈ F. Therefore, if we have v ∈ V , then we can write

v = (v − (a1v1 + · · · + anvn)) + (a1v1 + · · · + anvn)

∈ U + W .

Therefore, we have V ⊂ U + W . At the same time, by 1.39 of Axler, that U + W is a subspace of V . Therefore, we have
V = U + W . Next, we need to establish U ∩W = {0}. Suppose we have v ∈ U ∩W . Then we have v ∈ U and v ∈ W , the
latter of which means that, with the basis v1, . . . , vn of W , we can write

v = a1v1 + · · · + anvn

for some a1, . . . , an ∈ F. Since we have v − 0 = v ∈ U, by 3.85 of Axler it is equivalent to saying v + U = 0 + U. In fact, we
have

0 + U = v + U

= (a1v1 + · · · + anvn) + U

= ((a1v1) + U) + · · · + ((anvn) + U)

= a1(v1 + U) + · · · + an(vn + U).

Since v1 + U, . . . , vn + U is a basis of V/U, it is linearly independent in V/U, which means we must have

a1 = 0, . . . , an = 0.

Therefore, we conclude

v = a1v1 + · · · + anvn
= 0v1 + · · · + 0vn
= 0.

So we have U ∩W ⊂ {0}. But U and W are subspaces of V , which means 0 ∈ U and 0 ∈ W , and so we get 0 ∈ U ∩W , or
{0} ⊂ U ∩W . Therefore, we obtain the set equality U ∩W = {0}. Finally, by 1.45 of Axler, we can write V = U ⊕ W , as
desired. �

3.E.18. Suppose T ∈ L(V,W) and U is a subspace of V . Let π : V → V/U be the quotient map. Prove that there exists S ∈ L(V/U,W)
such that T = S ◦ π if and only if U ⊂ null T .

Proof. Forward direction: If there exists S ∈ L(V/U,W) such that T = S ◦ π, then U ⊂ null T . Suppose there exists
S ∈ L(V/U),W) such that T = S ◦ π. Let u ∈ U be arbitrary. We have v − 0 = v ∈ U, and so, by 3.85—(a) implies (b)—of
Axler, we have v + U = 0 + U. So, using 3.88 of Axler, for all u ∈ U, we have

Tu = (S ◦ π)u

= S(π(u))

= S(u + U)

= S(0 + U)

= 0,



where we also used 3.11 of Axler in the last equality above. So we have u ∈ null T , and so we conclude U ⊂ null T .

Backward direction: If U ⊂ null T , then there exists S ∈ L(V/U,W) such that T = S ◦ π. Suppose that we have U ⊂ null T .
Let v ∈ V be arbitrary, and define S : V/U → W by

S(v + U) = Tv.

Consider another vector v̂ ∈ V that satisfies v + U = v̂ + U. Since we assumed U ⊂ null T , we have v − v̂ ∈ null T , which
means we have T(v − v̂) = 0. So we get

S(v + U) = Tv

= T((v − v̂) + v̂)

= T(v − v̂) + T v̂

= 0 + T v̂

= T v̂

= S(v̂ + U),

which means S indeed defines a function. Next, we need to show that S is linear, given already that T is linear. For all λ ∈ F
and for all v,w ∈ V , we have

S((v + U) + (w + U)) = S((v + w) + U)

= T(v + w)

= Tv + Tw

= S(v + U) + S(w + U),

satisfying additivity, and

S(λ(v + U)) = S(λv + U)

= T(λv)

= λTv

= λS(v + U),

satisfying homogeneity. So S is linear. Finally, for all v ∈ V , we have

(S ◦ π)v = S(π(v))

= S(v + V)

= Tv,

from which we conclude T = S ◦ π. �

3.E.20. Suppose U is a subspace of V . Define Γ : L(V/U,W) → L(V,W) by

Γ(S) = S ◦ π.

(a) Show that Γ is a linear map.

Proof. For all λ ∈ F and for all S,T ∈ L(V/U,W), we have

Γ(S + T) = (S + T) ◦ π

= S ◦ π + T ◦ π

= Γ(S) + Γ(T),

satisfying additivity, and

Γ(λS) = (λS) ◦ π

= λS ◦ π

= λΓ(S),

satisfying homogeneity. So Γ is linear. �

(b) Show that Γ is injective.



Proof. Suppose we have S ∈ null Γ, which means Γ(S) = 0. Then we have S ◦ π = Γ(S) = 0, and so for all v ∈ V we
have (S ◦ π)v = 0. Therefore,

0 = (S ◦ π)v

= S(π(v))

= S(v + U).

Since v ∈ V is arbitrary, we must have S = 0, and so null Γ ⊂ {0}. But 3.14 of Axler says that null Γ is a subspace in V ,
which means in particular that null Γ contains the additive identity, or {0} ⊂ null Γ. Therefore, we have the set equality
null Γ = {0}. Finally, by 3.16 of Axler, Γ is injective. �

(c) Show that range Γ = {T ∈ L(V,W) : Tu = 0 for all u ∈ U}.

Proof. By Exercise 3.E.18 of Axler (or Question 2 of this examination), there exists S ∈ L(V/U,W) satisfying T = S◦π
if and only if we have U ⊂ null T . Therefore, we have

range Γ = {Γ(S) ∈ L(V,W) : S ∈ L(V/U,W)}

= {S ◦ π ∈ L(V,W) : S ∈ L(V/U,W)}

= {T ∈ L(V,W) : T = S ◦ π, S ∈ L(V/U,W)}

= {T ∈ L(V,W) : U ⊂ null T}

= {T ∈ L(V,W) : Tu = 0 for all u ∈ U},

as desired. �

3.F.3. Suppose V is finite-dimensional and v ∈ V with v , 0. Prove that there exists ϕ ∈ V ′ such that ϕ(v) = 1.

Proof. Since v ∈ V is nonzero, it follows that the list v (yes, the list with one element only) is linearly independent. Further-
more, by 2.33 of Axler, we can extend this linearly independent list to a basis v, u1, . . . , un of V . By 3.96 of Axler, we also
have a corresponding dual basis ϕ, ϕ1, . . . , ϕn of elements in V ′, with ϕ(v) = 1 in particular. �

3.F.4. Suppose V is finite-dimensional and U is a subspace of V such that U , V . Prove that there exists ϕ ∈ V ′ such that ϕ(u) = 0
for every u ∈ U but ϕ , 0.

Proof. Since V is finite-dimensional and U is a subspace of V , it follows by 2.26 of Axler that U is also finite-dimensional.
By 2.32 of Axler, there exists a basis u1, . . . , um of U. By 2.33 of Axler, we can extend it to a basis u1, . . . , um, v1, . . . , vn of V .
Because we also assumed U , V , the extension cannot be trivial; that is, we must be able to extend u1, . . . , um by v1, . . . , vj
for some j ∈ {1, . . . , n}. So there exist at least one vector, which we can call it v1 ∈ V without any loss of generality. This
motivates us to define ϕ : V → F by

ϕ(a1u1 + · · · + amum + b1v1 + · · · + bnvn) = b1

for some a1, . . . , am, b1, . . . , bn ∈ F. According to the proof of 3.5 of Axler, this map indeed defines a function. We will prove
that ϕ is linear.

• Additivity: If we have v,w ∈ V , then, since u1, . . . , um, v1, . . . , vn is a basis of V , we can write uniquely

v = a1u1 + · · · + amum + b1v1 + · · · + bnvn

and
w = c1u1 + · · · + cmum + d1v1 + · · · + dnvn

for some a1, . . . , am, b1, . . . , bn, c1, . . . , cm, d1, . . . , dn ∈ F. So we have

ϕ(v + w) = ϕ((a1u1 + · · · + amum + b1v1 + · · · + bnvn) + (c1u1 + · · · + cmum + d1v1 + · · · + dnvn))

= ϕ((a1 + c1)u1 · · · + (am + cm)um + (b1 + d1)v1 + · · · + (bn + dn)vn)

= b1 + d1

= ϕ(a1u1 + · · · + amum + b1v1 + · · · + bnvn) + ϕ(c1u1 + · · · + cmum + d1v1 + · · · + dnvn)

= ϕ(v) + ϕ(w).

• Homogeneity: Suppose we have λ ∈ F. If we have v,w ∈ V , then, since u1, . . . , um, v1, . . . , vn is a basis of V , we can
write uniquely

v = a1u1 + · · · + amum + b1v1 + · · · + bnvn
for some a1, . . . , am, b1, . . . , bn ∈ F. So we have

ϕ(λv) = ϕ(λ(a1u1 + · · · + amum + b1v1 + · · · + bnvn))

= ϕ((λa1)u1 + · · · + (λam)um + (λb1)v1 + · · · + (λbn)vn)

= λb1

= λϕ(a1u1 + · · · + amum + b1v1 + · · · + bnvn)

= λϕ(v).



Since additivity and homogeneity of ϕ are satisfied, ϕ is linear; in other words, we have ϕ ∈ L(V, F) = V ′. Now, if u ∈ U,
then, since u1, . . . , um is a basis of U, we can write uniquely in the form

u = a1u1 + · · · + amum

for some a1, . . . , am ∈ F. Therefore, for all u ∈ U, we have

ϕ(u) = ϕ(a1u1 + · · · + amum)

= ϕ(a1u1 + · · · + amum + 0v1 + · · · + 0vn)
= 0.

However, if we consider the vector v1 ∈ V , then we have v1 < U, and more importantly, we have b1 , 0. So we have

ϕ(v1) = ϕ(0u1 + · · · + 0um + 1v1 + 0v2 + · · · + 0vn)
= 1
, 0.

In other words, we found an element v1 ∈ V for which ϕ is nonzero, and so can conclude ϕ , 0. �

3.F.6. Suppose V is finite-dimensional and v1, . . . , vm ∈ V . Define a linear map Γ : V ′→ Fm by

Γ(ϕ) = (ϕ(v1), . . . , ϕ(vm)).

(a) Prove that v1, . . . , vm spans V if and only if Γ is injective.

Proof. Forward direction: If v1, . . . , vm spans V , then Γ is injective. Since v1, . . . , vm spans V , we can write every v ∈ V
uniquely as

v = a1v1 + · · · + amvm

for some a1, . . . , am ∈ F. Now, suppose we have ϕ ∈ null Γ. Then we have Γ(ϕ) = (0, . . . , 0), and so we have

(0, . . . , 0) = (ϕ(v1), . . . , ϕ(vm)),

from which we can equate the coordinates of both sides to write

ϕ(v1) = 0, . . . , ϕ(vm) = 0.

As we assumed throughout Section 3.F of Axler that ϕ ∈ V ′ = L(V, F), we can use its additivity and homogeneity to
write

ϕ(v) = ϕ(a1v1 + · · · + amvm)

= ϕ(a1v1) + · · · + ϕ(amvm)

= a1ϕ(v1) + · · · + amϕ(vm)

= a1 · 0 + · · · + am · 0
= 0.

Since v ∈ V is arbitrary, we conclude that ϕ must be the zero map; that is, we conclude ϕ = 0. Therefore, we have
have null Γ ⊂ {0}. But 3.14 of Axler says that null Γ is a subspace in V ′, which means in particular that null Γ contains
the additive identity, or {0} ⊂ null Γ. Therefore, we have the set equality null Γ = {0}. Finally, by 3.16 of Axler, Γ is
injective.
Backward direction: If Γ is injective, then v1, . . . , vm spans V . Define U = span(v1, . . . , vn), which is a subspace of V
by 2.7 of Axler. Suppose by contradiction that v1, . . . , vm does not span V . Then we have U , V . By Exercise 3.F.4 of
Axler, there exists ϕ ∈ V ′ such that ϕ(u) = 0 for all u ∈ U but ϕ , 0. Therefore, as Γ is linear, we have

Γ(ϕ) = (ϕ(v1), . . . , ϕ(vm))

= (0, . . . , 0)
= Γ(0).

In other words, we found the zero map 0 ∈ V ′ and a nonzero functional ϕ ∈ V ′ such that Γ(0) = 0 and Γ(ϕ) = 0. This
signifies that Γ is not injective, which contradicts our assumption that Γ is injective. Therefore, v1, . . . , vm spans V . �

(b) Prove that v1, . . . , vm is linearly independent if and only if Γ is surjective.

Proof. Forward direction: If v1, . . . , vm is linearly independent, then Γ is surjective. Since v1, . . . , vm is linearly inde-
pendent, by 2.33 of Axler, the list extends to a basis v1, . . . , vm, u1, . . . , un of V . Define ϕ : V → F by

ϕ(a1u1 + · · · + amum + b1v1 + · · · + bnvn) = aj xj



for some a1, . . . , am, b1, . . . , bn ∈ F, for all xj ∈ F and for any j = 1, . . . ,m. Then we can consider an arbitrary vector
(x1, . . . , xm) ∈ Fm. According to the proof of 3.5 of Axler, this map indeed defines a function. Also, for all j = 1, . . . ,m,
we have

ϕ(vj) = ϕ(0u1 + · · · + 0u j−1 + 1u j + 0u j+1 + · · · + 0um + 0v1 + · · · + 0vn)
= 1xj
= xj .

Therefore, we have

Γ(ϕ) = (ϕ(v1), . . . , ϕ(vm))

= (x1, . . . , xm),

and so we get (x1, . . . , xm) ∈ range Γ. So we have Fm ⊂ range Γ. But 3.19 of Axler states that range Γ is a subspace of
Fm. Therefore, we conclude the set equality range Γ = Fm, which means Γ is surjective.
Backward direction: If Γ is surjective, then v1, . . . , vm is linearly independent. Suppose by contradiction that v1, . . . , vm
is linearly dependent. By the Linear Dependence Lemma (2.21 of Axler), there exists j ∈ {1, . . . ,m} such that we have
vj ∈ span(v1, . . . , vj−1). In other words, we can write

vj = −
a1

aj
v1 − · · · −

aj−1

aj
vj−1

for some a1, . . . , aj ∈ F and for some j ∈ {1, . . . ,m}. So we have

ϕ(vj) = ϕ

(
−

a1

aj
v1 − · · · −

aj−1

aj
vj−1

)
= ϕ

(
−

a1

aj
v1 − · · · −

aj−1

aj
vj−1 + 0vj + · · · + 0vn

)
= 0xj
= 0.

In other words, we have

Γ(ϕ) = (ϕ(v1), . . . , ϕ(vm))

= (ϕ(v1), . . . , ϕ(vj−1), ϕ(vj), ϕ(vj+1), . . . , ϕ(vm))

= (ϕ(v1), . . . , ϕ(vj−1), 0, ϕ(vj+1), . . . , ϕ(vm)),

where the 0 appearing in the last expression of Γ(ϕ) is placed at the j th coordinate of the vector in Fm. This implies, for
example, that we have (0, . . . , 0, 1, 0, . . . , 0) < range Γ, where the 1 is placed at the j th coordinate of the vector in Fm,
because we cannot, for example, set ϕ(vj) = 1 when we just established ϕ(vj) = 0 above. As soon as we discover at
least one element in Fm—such as (0, . . . , 0, 1, 0, . . . , 0)—that does not belong to range Γ, we conclude range Γ , Fm, and
so Γ is not surjective. But this contradicts our assumption that Γ is surjective. So we conclude that v1, . . . , vm is linearly
independent. �

3.F.7. Suppose m is a positive integer. Show that the dual basis of the basis 1, x, . . . , xm of Pm(R) is ϕ0, ϕ1, . . . , ϕm, where ϕj(p) =
p( j)(0)

j! . Here, p(j) denotes the j th derivative of p, with the understanding that the 0th derivative of p is p.

Proof. Let j, k = 0, 1, . . . ,m. To show that ϕ1, . . . , ϕn is a dual basis of V ′, we need to satisfy Definition 2.96 of Axler, which
states that ϕj satisfies

ϕj(vk) =

{
1 if k = j,
0 if k , j .

To prove this, we must consider the three cases k < j, k = j, k > j. If k < j, then

ϕj(vk) =

d j

dx j xk |x=0

j!

=

d j−k

dx j−k
dk

dxk
xk |x=0

j!

=

d j−k

dx j−k k!|x=0

j!
= 0.



If k = j, then

ϕj(vk) = ϕj(vj)

=

d j

dx j x j |x=0

j!

=
j!x j−j |x=0

j!

=
j! · 1|x=0

j!
= 1.

If k > j, then

ϕj(vk) =

d j

dx j xk |x=0

j!

=
k(k − 1) · · · (k − j)xk−j |x=0

j!

=
k(k − 1) · · · (k − j)(0)k−j

j!
= 0.

So we satisfied Definition 3.96 of Axler for ϕj(vk). We conclude that ϕ1, . . . , ϕn is the dual basis of the basis in part (a). �

3.F.8. Suppose m is a positive integer.

(a) Show that 1, x − 5, . . . , (x − 5)m is a basis of Pm(R).

Proof. Suppose a0, a1, . . . , am ∈ F satisfy

a0 + a1(x − 5) + · · · + am(x − 5)m = 0.

We will follow Example 2.41 of Axler, which does not require expanding out the polynomials. For all j = 1, . . . ,m, we
see that the left-hand side of the above equation has an aj(x − 5)j term but the right-hand side does not, which implies
aj = 0. In other words, we have a1 = 0, . . . , am = 0. The above equation a0 + a1(x − 5) + · · · + am(x − 5)m = 0 with
a1 = 0, . . . , am = 0 implies a0 = 0. So we have

a0 = 0, a1 = 0, . . . , am = 0,

and so the list 1, x − 5, . . . , (x − 5)m is linearly independent. Finally, since the length of the list 1, x − 5, . . . , (x − 5)m has
length m + 1 and we have dimPm(R) = m + 1, by 2.39 of Axler, the list 1, x − 5, . . . , (x − 5)m is a basis of Pm(R). �

(b) What is the dual basis of the basis in part (a)?

Proof. Define ϕ : Pm(R) → R by

ϕj(p) =
p(j)(5)

j!
,

where p(j) is the j th-order derivative of p ∈ Pm(R). According to the definition of the dual basis (3.96 of Axler), for all
j, k = 1, . . . ,m, we must check that ϕj satisfies

ϕj(vk) =

{
1 if k = j,
0 if k , j .

where v1 = 1, v2 = x − 5, . . . , vm = (x − 5)m. To prove this, we must consider the three cases k < j, k = j, k > j. If
k < j, then

ϕj(vk) =

d j

dx j (x − 5)k |x=5

j!

=

d j−k

dx j−k
dk

dxk
(x − 5)k |x=5

j!

=

d j−k

dx j−k k!|x=5

j!
= 0.



If k = j, then

ϕj(vk) = ϕj(vj)

=

d j

dx j (x − 5)j |x=5

j!

=
j!(x − 5)j−j |x=5

j!

=
j! · 1|x=5

j!
= 1.

If k > j, then

ϕj(vk) =

d j

dx j (x − 5)k |x=5

j!

=
k(k − 1) · · · (k − j)(x − 5)k−j |x=5

j!

=
k(k − 1) · · · (k − j)(5 − 5)k−j

j!
= 0.

We conclude that ϕ1, . . . , ϕn is the dual basis of the basis in part (a). �

3.F.15. Suppose W is finite-dimensional and T ∈ L(V,W). Prove that T ′ = 0 if and only if T = 0.

Proof. Forward direction: If T ′ = 0, then T = 0. Suppose we have T ′ = 0. Then, for all ϕ ∈ V ′, we have T(ϕ) = 0. Suppose
by contradiction that we have T , 0. Then there exists v ∈ V such that Tv , 0. By Exercise 3.F.3 of Axler (or part (a) of this
question), there exists ϕ ∈ V ′ such that ϕ(Tv) = 1. In fact, by 3.99 of Axler, we have

T ′(ϕ(v)) = ϕ ◦ T(v)

= ϕ(Tv)

= 1.

But this contradicts our assumption that, for all ϕ ∈ V ′, we have T ′(ϕ) = 0. So we conclude T = 0.

Backward direction: If T = 0, then T ′ = 0. Suppose we have T = 0. Thenk for all ϕ ∈ W ′, the dual map of T is T ′(ϕ) = ϕ ◦T .
Since T = 0, for all ϕ ∈ W ′, we have

T ′(ϕ) = ϕ ◦ T

= ϕ(0)
= 0.

So we conclude T ′ = 0. �

3.F.32. Suppose T ∈ L(V), and u1, . . . , un and v1, . . . , vn are bases of V . Prove that the following are equivalent:

(a) T is invertible.

(b) The columns ofM(T) are linearly independent in Fn,1.

(c) The columns ofM(T) span Fn,1.

(d) The rows ofM(T) are linearly independent in F1,n.

(e) The rows ofM(T) span F1,n.

HereM(T) meansM(T, (u1, . . . , un), (v1, . . . , vn)).

Proof. According to 3.69 of Axler, statement (a) holds if and only if T is injective and if and only if T is surjective. Therefore,
to establish that all the statements are equivalent, it remains to prove the following:

• T is injective if and only if statement (b) holds,

• Statement (b) is equivalent to statement (d),

• T is surjective if and only if statement (c) holds,

• Statement (c) is equivalent to statement (e).



The first two statements in the above list will establish that statement (a) is equivalent to statements (b) and (d). The last two
statements in the above list will establish that statement (a) is equivalent to statements (c) and (e). These results signify that
proving the above list means proving that statements (a), (b), (c), (d), (e) are equivalent to each other, as desired. To facilitate
our proofs of the statements in the above list, we represent the matrixM(T) ∈ Fn,n with respect to the bases u1, . . . , un and
v1, . . . , vn of V as

M(T) =
©­­«

A1,1 · · · A1,n
...

. . .
...

An,1 · · · An,n

ª®®¬
with its entries Aj,k ∈ F, for any j, k = 1, . . . , n. Since u1, . . . , un and v1, . . . , vn are bases of V , it follows that, according to
3.60 of Axler,M is an isomorphism between L(V,V) and Fn,n.

First, we will prove that T is injective if and only if statement (b) holds. By 3.16 of Axler, T is injective if and only if we
have null T = {0}. And we have null T = {0} if and only if the equation Tu = 0 has only the trivial solution u = 0. This is
equivalent to saying that

M(T)M(u) =M(Tu) =M(0),

or equivalently ©­­«
A1,1 · · · A1,n
...

. . .
...

An,1 · · · An,n

ª®®¬
©­­«
c1
...

cn

ª®®¬ =
©­­«
0
...
0

ª®®¬ ,
has only the trivial solution c1 = · · · = cn = 0. This is equivalent to saying that the equation

c1M(T)·,1 + · · · + cnM(T)·,n = c1 A·,1 + · · · + cnA·,n

= c1
©­­«

A1,1
...

An,1

ª®®¬ + · · · + cn
©­­«

An,1
...

An,n

ª®®¬
=

©­­«
A1,1 · · · A1,n
...

. . .
...

An,1 · · · An,n

ª®®¬
©­­«
c1
...

cn

ª®®¬
=

©­­«
0
...
0

ª®®¬
has only the trivial solution c1 = 0, . . . , cn = 0. This is equivalent to saying thatM(T)·,1, . . . ,M(T)·,n—the list of columns of
M(T)—is linearly independent in Fn,1, which is statement (b).

Next, we will prove that statement (b) is equivalent to statement (d). According to the previous paragraph, statement (b) holds
if and only if the matrix equation

M(T)M(u) =M(0)

has only the trivial solution u = 0. Taking transposes of both sides of the matrix equation, we find that our previous statement
is equivalent to saying

(M(u))t (M(T))t = (M(T)M(u))t

= (M(0))t,

or equivalently (
c1 · · · cn

) ©­­«
A1,1 · · · An,1
...

. . .
...

A1,n · · · An,n

ª®®¬ =
(
0 · · · 0

)
,

has only the trivial solution u = 0. This is equivalent to saying that the equation

c1M(T)1, · + · · · + cnM(T)n, · = c1 A1, · + · · · + cnAn, ·

= c1
(
A1,1 · · · An,1

)
+ · · · + cn

(
An,1 · · · An,n

)
=

(
c1 · · · cn

) ©­­«
A1,1 · · · An,1
...

. . .
...

A1,n · · · An,n

ª®®¬
=

(
0 · · · 0

)
has only the trivial solution c1 = 0, . . . , cn = 0. This is equivalent to saying thatM(T)1, ·, . . . ,M(T)n, ·—the list of rows of
M(T)—is linearly independent in Fn,1, which is statement (d).



Next, we will prove that T is surjective if and only if statement (c) holds. By definition, T is surjective if and only if we have
range T = V . According to the proof of the Fundamental Theorem of Linear Maps (3.22 of Axler), the list Tu1, . . . ,Tun is
a basis of V , which means in particular that the list spans V , and so we have span(Tu1, . . . ,Tun) = range T . Therefore, T is
surjective if and only if we have

V = range T

= span(Tu1, . . . ,Tun).

This is equivalent to saying that, for all v ∈ V , we have

v = Tu

= c1Tu1 + · · · + cnTun

for some c1, . . . , cn ∈ F. Using their matrix representations, the vector v written as a linear combination of the basis vectors
Tu1, . . . ,Tun of range T is equivalent to saying

M(v) =M(c1Tu1 + · · · + cnTun)

=M(c1Tu1) + · · · +M(cnTun)

= c1M(Tu1) + · · · + cnM(Tun)

= c1M(T)·,1 + · · · + cnM(T)·,n

for some c1, . . . , cn ∈ F. This is equivalent to saying thatM(T)·,1, . . . ,M(T)·,n—the list of columns ofM(T)—spans Fn,1,
which is statement (c).

Finally, we will prove that statement (c) is equivalent to statement (e). According to the previous paragraph, statement (c)
holds if and only if we have the matrix equation

M(v) = c1M(T)·,1 + · · · + cnM(T)·,n

for some c1, . . . , cn ∈ F. Taking transposes of both sides of the matrix equation, we find that our previous statement is
equivalent to saying

(M(v))t = (c1M(T)·,1 + · · · + cnM(T)·,n)t

= (c1 A·,1 + · · · + cnA·,n)t

=
©­­«
©­­«

A1,1 · · · A1,n
...

. . .
...

An,1 · · · An,n

ª®®¬
©­­«
c1
...

cn

ª®®¬
ª®®¬
t

=
©­­«
c1
...

cn

ª®®¬
t ©­­«

A1,1 · · · A1,n
...

. . .
...

An,1 · · · An,n

ª®®¬
t

=
(
c1 · · · cn

) ©­­«
A1,1 · · · An,1
...

. . .
...

A1,n · · · An,n

ª®®¬
=

(
c1 A1,1 + · · · + cnAn,1 · · · c1 A1,n + · · · + cnAn,n

)
=

(
c1 A1,1 · · · c1 A1,n

)
+ · · · +

(
cnAn,1 · · · cnAn,n

)
= c1

(
A1,1 · · · A1,n

)
+ · · · + cn

(
An,1 · · · An,n

)
= c1 A1, · + · · · + cnAn, ·

= c1M(T)1, · + · · · + cnM(T)n, ·

for some c1, . . . , cn ∈ F. This is equivalent to saying thatM(T)1, ·, . . . ,M(T)n, ·—the list of rows ofM(T)—spans F1,n, which
is statement (e). �


