July.08 Monday.

3.2 Definition
A linear map from V to W is a function
T: V=W that satisfies:

additivity.
T(U+V)=T(U) + T(V) for all u, v eV
homogeneity.
T(U) = λT(V) for all v eV, λ eff

The set of all linear maps T: V=W is denoted L(V, W)

3.4 Examples Let 0 be the zero map defined by average of a constraint of the sero map because: 0 constraint of the sero map because:

=20(1)
-levidentity map:
Define I: v=v by Iv=V
Then $I \in \mathcal{L}(v,v)$ because
additivity: If u,veV, then
I(U+V) = N+V
=](u) + [v
· homogeneity: If reff and VEV, then
I (Av) [≤] 人 V
* ኢ፤‹ሃ)
Differentiation:
Define D:P(R) >>P(R) by
Dp=p'.
Then DEL(P(R), P(R)) because:
additivity: If p.g. EP(IR). then
D(p+q) = (p+q)'
∽ p'+G'
= Døt Da
homogeneity: if REFF, PEP(IR).then
homogeneity: if REFF, PEP(IR).then DURP)= (RP) ¹
= ND(p)
& Integration:
Define T: P(R) -> R by
Tp= jo proces alge
Then we have TE L(P(R), R) because:

• Additivity:
$$rf p.q. \in P(R)$$
, then
 $T(ptq_i) = \int_{0}^{1} (ptq_i) (x) dx$
 $= \int_{0}^{1} prodex + \int_{0}^{1} qroundx$
 $= \int_{0}^{1} prodex + \int_{0}^{1} qroundx$
 $= Tp + Tq$
• Homogeneity: $lf \land eff$ and $p \in P(R)$, then
 $T(\Lambda p) = \int_{0}^{1} (\Lambda p) (x) dx$
 $= \int_{0}^{1} \lambda p(x) dx$
 $= \lambda Tp$
 $SI \cdot Multiplication by x2$
Define: $T: P(R) \Rightarrow P(R)$ by $(Tp) (x) = x^{2} p(x)$
for all $x \in R$. Then $T \in \mathcal{L}(P(R, F(R)))$ because:
• Additivity: If $P,q \in P(R)$, then for all $x \in R$, we have
 $(T(ptq_1)(x) = x^{2}(ptq_1)(x)$
 $= \alpha^{2} p(x) t (X^{2}t(x))$
 $= (Tp)(x) t(Tq_1) x)$
 $= (Tp)(x) t(Tq_1) x)$
 $= (Tp)(x) t(Tq_1) x)$
 $= (Tp+tq_1) = Tp + Tq.$
• Homogeneity: If $A \in H$, and $p \in P(R)$, then for all $x \in R$, we have
 $(T(Lqp))(x) = x^{2}(Ap)(x)$
 $= \alpha^{2}(Ap)(x)$
 $= A(Tp)(x)$

\$\$ From
$$\mathbb{R}^{3}$$
 to \mathbb{R}^{2} : Define T: $\mathbb{R}^{3} \Rightarrow \mathbb{R}^{2}$ by
T(x, y, 2) = (2x, y + 32, 7x, +5y - 62).
Then T $\in \mathcal{L}(\mathbb{R}^{3}, \mathbb{R}^{3})$ because:
additivity: If (x, y, 2), $(\overline{x}, \overline{y}, \widehat{z}) \in \mathbb{R}^{3}$, then
T(x, y, 2) + $(\overline{x}, \overline{y}, \widehat{z})$) = T (x+ \overline{x} , y+ \overline{y} , $\overline{z} + \widehat{z}$)
= (2(x+2) - (y+9) + 3z + \overline{z}_{7} 7 bes \overline{z} ; + 5(y+ \overline{y}) - (BHÉ))
= (0x - y + 3z) + (x $\overline{x}, \overline{y}, \overline{z})$
= T(x, y, 2) + T(x, $\overline{y}, \widehat{z})$
= T(x, y, 2) + T(x, $\overline{y}, \widehat{z})$
= homogeneity: If $\Lambda \in \mathbb{R}$ and (x, y, z) $\in \mathbb{R}^{3}$. then
T(Λ (x, y, z)) = T (Λ x, Λy , λz)
=
3.5 Lineor maps and basis of domain
Suppose v.,..., Vn is a basis of V and w.,..., Wn $\in W$.
Then there exists a unique lineor map T: V $\Rightarrow W$ s.t.
T $V_{1} = W_{1}$ for each $j = 1, ..., N$
Proof:

First, we will prove that the linear map T exists. Define T:V=>W by T(C,V,+...+CnVn)=C.W,+...+CnWn.

for some c., ..., CnEFF, Since V., ..., Un is a basis of V.
every vector in V is uniquely of the form c.v.t...tc.vn.
So this map T as we defined above indeed define a
function T: V=>vV.
Furthermore, for each j=1,..., m. if
Cj: f1 if j=i
if j#i
then, T scutisties Ty=Wj.
Next, we will prove that T is linear, that is, T
$$\leq L(V,w)$$
.
· additivity: If u.v $\leq V$. then since v.,..., Vn is a basis of V.
We can write
 $u=\alpha_V,t...+\alpha_Nv_n$ and
 $V = C.V,t...+\alpha_Nv_n$ ound
 $V = C.V,t...+\alpha_Nv_n$ (C.v.t...+C.v.v.)
= T((a.v.t...+anv_h)+(C.v.t...+C.v.v.))
= T((a.v.t....+anv_h)+(C.v.t...+C.v.v.))
= T((a.v.t...+anv_h)+(C.v.t...+C.v.v.))
= T((a.v.t...+anv_h)+(C.v.t...+C.v.v.))
= T((a.v.t...+anv_h)+(C.v.t...+C.v.v.))
= T(a.v.t...+anv_h)+(C.v.t...+C.v.v.))
= T(a.v.t...+anv_h)+(C.v.t...+C.v.v.))
= T(a.v.t...+C.v.v.)
= Tu+TV.
Homogeneity: If $\lambda \in F$ and $v \in V$, then we can write
 $v = c.v.t \cdots t C.v.n$
for some c......cn eff. So we have

3.6 Definition

Suppose S.T EL(V, W) and AEIF

· The sum StT is a linear map defined by (StT)(v)= SutTv.

· The product AT is a linear map defined by (AT) (V)= A(TV)

3.7 L(V,W) is a vector space The set L(v,w) is a vector space with respect to the operations defined in Definition 3.6 of Axler. Proof: Let R.S.TELIVING and REFF be arbitrary. · Commune tivity: For all LEV, we have (S+T)v = Sv + Tv= Tut Su =(T+S)V. S+T = T+S · Associativity: For all veV, we have: ((R+S)+T)V = (R+S)V + Tv= Rut Su tTu = Rvt(StT)v $= (R+(S+T))_{J}$ (R+S)+T = R+(S+T)· Additive identity: Let OE L(v, w) be the zero function. For all ve V, we have. (T+0) v = Tv + OV = Tv + 0

= Tv
50 T+0=T
· Additive inverse:
Note that we have -TELLV, W). For all VEV, we have
$(T_{+}(-T))_{v} = T_{v+}(-T)_{v}$
$= T_V - T_V$
=0
=0v
·· T+I-T)=0
· Multiplicative identity:
For all veV, we have:
(T)V = TV
= Tv
∴ 1T=T
· Distributive properties:
For all a EFF, all veV. we have:
$(\alpha(s+\tau)) \vee = \alpha(s_V + \tau_V)$
= aSvtaTv
= (ast at) V
$\therefore G(ST) = aStaT$
For all a, b ∈ IF, for all v ∈ V, we have
(a+b)T)V = (a+b)Tv
= aTv + bTv
= (aT + bT)v.
$\therefore (a+b)T = aT + bT$

Therefore, Livin) is a vector space with respect to the defined operations.

3.9 Algebraic properties of products of lineour maps.
Associativity
If R.S., T are lineour maps such that the product RST makes sence then (RS)T = R(ST)
Identity
If Te L(V,W) and I: V=V is an identity map, then T·I=T=IT
Distributive properties
If T.T., Ts ∈ L(U,V) and S. S., Ss ∈ L(V,W), then (S1+S2)T = S.T+S.T mod
SCT.+Ts) = ST1+ST2

.: T(0)=0, as desired.