July. 15 2019.

3. C.

Addition and scalar multiplication of matrices.

3.36 The matrix of the sum of linear maps. Suppose S, T $\in L(V, W)$. Then M(S+T) = M(S) + M(T)

3.37 Definition

Scalar multiplication of a matrix is the product of a scalar and a matrix, obtained by multiplying each entry in the matrix by the scalar:

$$\lambda \begin{bmatrix} A_{i,0} & \cdots & A_{i,n} \end{bmatrix} = \begin{bmatrix} \lambda A_{i,1} & \cdots & \lambda A_{i,n} \\ \vdots & \vdots & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{bmatrix} = \begin{bmatrix} \lambda A_{i,1} & \cdots & \lambda A_{i,n} \\ \vdots & \vdots & \vdots \\ \lambda A_{m,1} & \cdots & \lambda A_{m,n} \end{bmatrix}$$

In other words, (NA)j.K= NAjik for each j=1,...,m; k=1,...,n.

3.38 The matrix of a scalar times a linear map.
Suppose
$$\lambda \in \mathbb{F}$$
 and $T \in \mathcal{L}(V, W)$. Then $M(\lambda T) = \lambda M(T)$
3.40 dim $\mathbb{F}^{m,n} = mN$
Let m and n be positive integers. Let $\mathbb{F}^{m,n}$ is the set
of all man matrices with entries in \mathbb{F} . Then dim $\mathbb{F}^{m,n} = mn$.
Proof:
 $\mathbb{F}^{m,n}$ is a vector space with respect to operations of
matrix addition and scalar multiplication of a matrix.
Now dim $\mathbb{F}^{m,n} = mn$ because
 $\begin{bmatrix} 0, \dots, 0 \\ 1, \dots, 0 \end{bmatrix}, \begin{bmatrix} 0, \dots, 0 \\ 0, \dots,$

Matrix multiplication

Let U,..., Un be a basis of U and W,..., Won be a basis of W. Also let U be a vector space and u.,..., up is a basis of U. Let T: U->V and S: V->W be linear maps.

j 2	1.	6 5	43	=	[10	٦	4		
3 4	•	121	0-1		26	19	12.	5	

Suppose. A is an max matrix and C is an not matrix.

Then
$$(A C)_{j:k} \in A_{j:} \cdot C_{j:k}$$

Proof $(AC)_{j:k} = \left(\begin{bmatrix} A_{1,1} \cdots A_{l:n} \\ A_{n:1} \cdots A_{n:n} \end{bmatrix} \begin{bmatrix} C_{1:1} \cdots C_{1:n} \\ \vdots \\ A_{n:1} \cdots A_{n:n} \end{bmatrix} \right)_{j:k}$

$$= \begin{bmatrix} \sum_{i=1}^{n} A_{1:i} \cdot C_{i:1} \cdots \sum_{i=1}^{n} A_{i:i} \cdot C_{i:n} \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ A_{i:n} \cdot C_{i:n} \end{bmatrix} + A_{i:n} \cdot C_{i:n}$$

$$= \begin{bmatrix} \sum_{i=1}^{n} A_{i:i} \cdot C_{i:n} \\ A_{i:n} \cdot C_{i:n} \end{bmatrix} + A_{i:n} \cdot C_{i:n}$$

$$= \begin{bmatrix} \sum_{i=1}^{n} A_{i:n} \cdot C_{i:n} \\ A_{i:n} \cdot C_{i:n} \end{bmatrix} + \begin{bmatrix} C_{i:n} \\ C_{i:n} \\ C_{i:n} \end{bmatrix} + \begin{bmatrix} C_{i:n} \\ C_{i:n} \end{bmatrix} + \begin{bmatrix} C_{i:n} \\ C_{i:n} \end{bmatrix} + \begin{bmatrix} C_{i:n} \\ C_{i:n} \\ C_{i:n} \end{bmatrix} + \begin{bmatrix} C_{i:n} \\ C$$

3.20	Example							
	112	·[s] =	1-1-					
	34	[1]	19					
	56		[31]					

3.4)	121	.16	5	43):	AC=	01]	7	4	1	
	34	12	(0 -1/			26	19	12	5	
	56						142	31	19	91	

3.52 Linear combination of columns. Suppose A is an maximatic and C= [C_1] is an n×1 motrix. Then Ar=C_1A:1 + ...+CnA...

Proof:

$$C_{1A,i} + \dots + C_{nA_{i},n} = C_{i} \begin{pmatrix} A_{i,1} \\ \vdots \\ A_{m,1} \end{pmatrix} + \dots + C_{n} \begin{pmatrix} A_{i,n} \\ \vdots \\ A_{m,n} \end{pmatrix}$$

$$= \begin{pmatrix} C_{i}A_{i,1} \\ \vdots \\ C_{i}A_{m,1} \end{pmatrix} + \dots + \begin{pmatrix} C_{n}A_{i,n} \\ \vdots \\ C_{n}A_{m,n} \end{pmatrix}$$

$$= \begin{pmatrix} C_{i}A_{i,1} + \dots + C_{n}A_{i,n} \\ \vdots \\ C_{i}A_{m,1} + \dots + C_{n}A_{n,n} \end{pmatrix}$$

$$= \begin{pmatrix} A_{i,1} \dots + A_{i,n} \\ \vdots \\ A_{m,1} + \dots + C_{n}A_{m,n} \end{pmatrix}$$

$$= \begin{pmatrix} A_{i,1} \dots + A_{i,n} \\ \vdots \\ A_{m,1} + \dots + A_{m,n} \end{pmatrix}$$

$$= \begin{pmatrix} A_{i,1} \dots + A_{i,n} \\ \vdots \\ A_{m,1} + \dots + A_{m,n} \end{pmatrix}$$

3.D Invertibility and Isomorphic Vector Spaces.

Invertible linear maps.

3.53 Definition

• A linear map TEL(V,W) is called invertible if there exists a linear map SEL(W,V) s.t. ST=IV and TS=IW, where Iv and Iw are identity maps on V and W respective.

identity maps:

T: V-> V	V,W	vector spaces
Lv (v)= V	V,W	vectors in VIW
Iw: w>W		
Iw (w)= W	T: L	'>W
	5:1	N⇒V
	. 2	ST: V->V
	L	v:V->V
lf T is invertib	ole with	inverse S, then ST=I. and TS=IW.
TS=IW		
S: W->V		
T:V>W		
: TS: W-DW		
(Iw:W->W)		
3.59 Inverse is un	ighe	
An invertible l	inear may	s has a unique inverse.
Proot:		•
Suppose Tel	(V·W) is	invertible, and let S and S be
inverse of T.		
Then S=SIw	beco	use 5 is an inverse of T
-ସାହିଁ)		
÷ (۲) د ~	beca	use s is an inverse of T.
= 1,5		
-3		
.". s=3 Whi	ch mean	the inverse of T is unique.

If T is invertible, then its inverse is denoted by T^{-1} . If T $\in \mathcal{L}(V,W)$ is invertible, then $T^{-1} = \mathcal{L}(V,V)$ is the whighe element s.t. $T^{-1}T = LV$, and TT = LW.