
3.71 product of vector spaces

suppose V . . . . .
Vm are vector spaces over Ft

• The product V. x . . . x Vm is defined by

V, X . . . X Vm = { ( Vi s . . . s Vm ) : V ,
C- Vi

,
. . . Um C- Vm }

• Addition on V , x . . . x Vm is defined by

( Ui , . . . , Um ) t ( Vi , . .
. Vm ) = ( uit Vi s . - -

, Um -1 Vm )

• Scalar multiplication on Vix . - - X Vm is defined by

XLV . . . . .

, Vm ) = Xvi . . . . . Nvm )

3.73 Product of vector spaces is a vector space

suppose Vi . . . . Vm are vector spaces over Tt
.

Then V. X - - - x Vm is a vector space over Tt
.

pn¥ let hi , vi. wit Vi for each in , . . . .

, m
and let DEF

3.74 example Is R
-

X IR
'

isomorphic to 1125

T ( Hi , Xs ) , ( Xs ,X4 , Xs ) ) = ( Xi , Xs , Xs , 74 , Xs )

First
, injective .

let @ Xi , Xd ) ,
( Xs , X4 , Xs )) C- Nhl IT which means

TRX , XD ,
( Xs , Xy , Xs ) ) = ( O , o ,

o
, 0,0 )

we have ( o , o , o , O - o ) = TCH , , XD ,
(Xs, Xg ,

Xs )) = ( Xi , Xa
, Xs , X4 , Xs )

So , X , = - - - . Xg I 0

This means ( Hi , Xa )
,
( Xs , Xy , Xs ) ) - ( o , 0,0 , o ,

O )

So null T c { ( o , ooo , 0,0 ) }

T ( ( 0,03 , ( 0,0 ,
O ) ) = ( 0,0 ,

0,0
,
O )

we also have { co , o ) .co ,
o

, OB C null T
.

Therefore
,
hull T = { Co ,

o ) ,
so , o ) }

By 3.16
,
T is injective

Next , we will show that T is surjective .

For all ( Xi , Xs . Xs ,
X4 , Xs ) C- 1125

.
We have ( Xi , Xs , Xs , X4 , Xs ) =T( IX. Xz ) ,

( Xs , Xa , Xs ) ) E range T
.

So 1125 c range T . But range T is a subspace of 1125
.
So

range -1=1125 ,
so Tis surjective .

Therefore , by 3.56 , T is invertible
.



Next , we will show that T is linear

• Additivty : For all x. , Xa , Xs , X4 , Xs , Yi , Ya , 43,44 , Ys EIR

We have Tdy , , XD , CXB ,
X4 , Xs ) ) t dy , , ya ) , Lys . Ya , Ys) ))

= T ( ( X , 1- Yi , Xztya ) , (X3TY3 , X4tY4 , X5tY5 ))

= ( X , ty , , X2tYs , Xstyz , X4 444,115-145 )

=T ( ( X , ,Xz ) ,
( Xs ,

X4 ,
Xs ) ) t Tl ly . . Ya) , Lys , ya , Ys ))

• Homagenerdy : For all deft and for all x. x . . Xxxx , Xs EIR .

THX , , XD .
( Xs ,X4 , Xs ))) -

- T (Hx , ,Xx . ) , ( Ms , Xxx ,
Xxs ))

= ( XX , , XX . , Ms , Xxx , 1) Xs ) = # UX , , XD . ( Xs , X4 , Xs ) )

Therefore , T is linear .

So
,

Tis linear and invertible

Hence
, T is an isomophism .

3.75 Example

Find a basis of Pa UR) x IR
'

* Sold : ( 1
,
Lo

,
o ) )

,
( x , lo , o ) ) , ( x ; co ,

o ) ) , ( o , ( 1,0 )) , ( o , co
,
I ) )

3.76 dim of a product is the sum of dimensions

dim ( Vix .
.

. x Vm ) = climb
, t . . - t dim Vm

Products and Direct sums

3.77 Product and Direct sums

suppose that Ui
, .

. .
Um are subspaces of V .

Define a linear map

P : U , x . . - x Um → Uit - - - turn by

( ( hi , . . . hm ) = U , t - - - t nm

Then hit - - - 1- Um is a direct sum iff r is inject in .

Pmofi G) it hit -
n

. Um is a direct sum
,

then r is injective .

Suppose Cui , - .
- Um ) e null F so that

{ ( hi , . . . hm ) = ( o , o , . . . - o )

Since U , t . . - Um
⇒

a direct sum
, by 1.44 , the only way

to write T is

to take h ,
= 0 , -

. . . Um = 0 .

So Lu , . . . . um ) -

- o and so null 9=503 Hence injective .



G) If r is injective , then hit . - - turn is a direct sum
.

Since M is injective , by 3.16 we have null f- flow . . . .
.

, o ) }

So the only way to write Ot . . . to is to take

hi IO g - - i -

, Um =D

By 1.44 ,
hit . . . t Um is a direct sum .

Ah

3.78 A sum is a direct sum iff dimensions add up .

Suppose V is finite - dimensional and U . .
- r

.

.
Um are subspaces of V .

Then hit - - - turn is a direct sum riff

dimwit . .
. turn ) -

-
dim hit -

- - tdim Um

Boot T : thx . Um → Uit .
- - turn is defined by
T ( h

. .
. . -

, nm ) = hi t - - - them is surjective

dim range f -

- dim ( hit .
. - thin )

so by 3.27
,

dimwit . - - -1hm ) = dim ( U , X -
- - xhm ) - dim mill

dimwit . - - -1hm) -

- dim ( h .
x - . . xhm )

iff f is injective .

Combine 3.77 and 3.76 that hit . . - Um is a direct sum

iff dim ( hit . - - 1- Um ) -

-
dim ( h ,

X - . . xhm )

= dim hit - ridin Um

3.78 dim ( Uit . - - th m ) = dim U , t
- . - t dim Um

3. 79 NEV and UCV Then rt U is the subset of V

defined by vtU= { vtn : u c- U }
3.80 ex : let V -

- IR
'

and U= { ix. 2×14122 : XEIR }

Then U is the line in IR
'

thru
. the origin with slope 2

.

So G. IHU is a line in 1122 that contains the point ( 3,1 ) and has slope 2
,
and C- 4

,
o ) TU is a

line in IR
'

that contains the point C- 4. o ) and has slope 2
.

( 3. Dt U -

- { (3. 1) thx ) : XEIR } = { Gtx ,
H2 x ) : XEIR }

I-4,0 HU -

- { C-4. e) tcxsxtxekf.EC - 4th
,
2x ) : XEIR }



Since ( 7,0 ) and ( 17,20 ) have the same slope ,
17,0 HU = ( 17,20 ) TU .

Proof : ( 17,20 ) t U = { ( thx ,
20-12X ) : Xt IR}

( 7,0 ) th = { ( Ttx , 2x ) : XEIR }

= { ( 17 - Iotx
,
20-20-12×1 :X ER }

=&t (X - lo ) ,
20 -12k - to ) ) : X t IR }

Since X ER , x - to ER
#

= {CITY , 20-124) : Y ER }

= ( 17,0 )tU Hence
, proved .

3.81 . An affine subset of V is a subset of V of the form ut U for some VEV and some subspace U of V
.

• For VEV and U a subspace of V
,
the affine subset VTU is said to be parallel to U .

3.82 EX : U -

- { ex , 2x ) :X TRY V -

- IR
'

as a example 3.80

Then all lines in IR
'
with slope of 2 are parallel to U

.

• Let V -

- 423 and U = { Cky , ok 1123 : x. y EIR }

Then the affine subsets of 1123 are all the planes in 1123 that are all the planes in IRS that are parallel

to U
.

For example , Lo , o
, 2) t U= { ( x , y , 2 ) : x. YER }

is an affine subset of 1123 and is parallel to U
.

3.82 UCV , quotient space VU is the set of all affine subsets of V parallel to U
.

V/U = { ve U : v EV }

3. 84 Ex : . It .

Six , HIER
'

: XEIR} RYU is the set of all lines in IR
' that have slope 2

.

* U is a line in 1123
containing the origin , then 1123kt is the set of all 1123 parallel to U

.

f. e .
U

, = {Hey , o ) : x. YHR }

RYU ,
= { 190,7 ) TU ,

= ( x , ya ) 3

Us = {Co
, y , 7) f IR

'
: Y , ZHR }

RYU ,
= { ex

,
o ,

o ) 1- Us : x. YA ER }

3.85 Two affine subsets parallel to U are equal or disjoint .

Suppose U is a subspace of V and v. WE V .
Then the following are equivalent .

La ) V - W EU
.

(b) Vt U -

- W t U
.

(c) ( VTU ) h ( wt U ) to



Proofs Want (a) → ( b ) :

suppose u - well
.
torn ,wfV and UCV .

let hell

we have cu - w ) - theft closed under addition

Then Vtu = Wtv - W tu

= Wt¢V - W ) tu ) c- Wth
.

Therefore VTUCWTU
.

Similarly , then ,

wth =VtW - Vtu

= Vt (C- Vtvvtth ) C- VTU
.

Thus WTUCVTU

Hence well -

- VTU

Want :( b) → ( c ) .

Suppose Vtu = Wth

Then I ne U sit
.

UTVEVTU
and htv c- wth

so Vtut ( VTU )N( wth )

Thus ( VTUJNLWTU ) # 0

Want : (c) → ca )

suppose ( Vt ( wth ) #

then I h . , us C- U sit
.

Vth
,

-

- wth ,

since UCV
,

it is closed under addition and scalar mnlp . . which means

U ,
- ha EU .

In fact
,

V - W= Up - hi

= - ( h ,
- Us ) C- U

3. 86 let UCV
.

• Addition : is defined on Vu by cvtlljtlwtu ) = ( VTWHU

° Scalar multiplication : is defined on NU by

a ( VTU ) -

- CAV )tU .



3.87
.

Quotient space is a vector space

VIU is a vector space .

Prati let v. well be arbitrary .

first
,

we need to show that the operations of addition and scalar multiplication make sense oh YU
.

Suppose it
,
W' eV satisfy vtU=VtU

,
wth -

- Wth
.

First , we will show that addition makes sense on WU
.

Since U is a subspace of V
,
it is closed under addition , so

( Vtv ) - ( wt W' Jell
.

By 3.85 ( Vtv ) th = ( wth ) -14

Thus addition makes sense on VIU
.

Now let TGIF
,

TEV satisfies VtU=VtU
.

by 3.85 of Ander , V - TEU since UCV

it is closed under scalar multiplication
,
which means du - b) c- U

so pv - XT -

- Xu - J KU
.

by 3. so Ruth - Titu
.

So
,

scalar multiplication makes sense .
on VU

.

Next
. we will show that VU satisfies all axioms of a vector space .

let v. w . x c- V .
and deft .

" Commutativity : Cvt Uttlwt U ) -
- ( vtwstll = (WTVHU -

- @ tutt ( ut U )

2- Associativity : Cutlet ( wth ) )
tCxtUI-CUtwItUItlxtUt-CUt@txDtU-CutUJtlcwtilItCxthD3.Ad
ditivity Identity : ( HUH lot Uk @ to HU -

- Vtu

4
.

Additivity inverse : ( vtujt G- VHU ) -

-
( VttvDtU= otu

5
. Multiplicative identity : Hutu ) -

- ( 1WtU=VtU .

6
.
Distributive property : advt UHLWTUH- a ( LVTWHU ) -

- ( autwDtU= ( art aw )tU= @ tht ( aw - th )

and Catblvth ) = @ tu )tb@ th ) : auth ) t but U )



3.88
. quotient map . IT .

Suppose UCV
,

The quotient map tis the linear map Ti :V→V/U defined by .

Tlv ) -

-
VTU

.

for VEV .

3.89 dim HU -

- dim V - dim U .

Proof : let IT :b YU
.

Claim : null IT =U .

Since V - o -

- Vell so by 3.85 of Axles
.

VTU - Oto .

In fact
,

Tillet VTU - Oth
.

So
,
VENHHTI

,
and so Ucnhll IT

.

If Venhllt
,
then Ttu ) -

- Ot U .

Since he also have Ttv ) :b to
,

we
,
conclude , VTU -

-
Oth

.

By 3.85 .
V -

- V - o C- U
.

So null IT CU .

Therefore nnHTi= U .

Claim 2 : ranger
- Yu .

For all . VEVIU .

let w -

- Tlv ) for some VEU
.

In fact , by 3.88

W = Tl ( V )

= VTU C- VIU
.

So
range Tlc VIU

.

Suppose VTUEVIU .

By 3-88

VTU -

- Titu ) C- range (Ti )

so VIU c range IT .

Thus range 'll -_V/U .

By Theorem dim V = dim nulth t dim range 'll
Fund .



dim V = dim Utdimvlu
dim Vadim V - dim U

.

3.90 TELLV , W ) F :

V1@nllTj_sW-TLvtnhllTJ-TVProof_Shpposeu.v

EV satisfy u
-

- hull T = Vt MNT
.

By 3.85 of Axler
,

U - V C- hull T .

So
,

Tla - V ) = Tu - Tv = O
.

Thus Tu -

- Tv

Therefore , Tcutnnll T ) - Tu = Tv = Fcvtnn HT )

so T is well - defined
.

3.91 Null space and range of F Note :
T : Vlnnllt → W

suppose TELLV . W ) . Then

(a) I is a linear map from Vlcnnll -11 to W
.

Cbs F is injective

co range T
-

- range -1

(d) Vllnnllt ) is isomorphic to rangeT.pro#la )

fetu.VN and AHF .

Additivity : T ( ( html5 ) t ( vtnhllt ) ) = Flattest hall T ) = Tutu , = Tut Tv = That null T )tTTVtmHT )

Homogeneity : lvtnnhtl ) -

- Tlxvtnhht ) = TCXV ) -

- XTV -

- ATT Vtnnllt )

Hence ,
I c- L(V/knhT )

,
W )

(b) Suppose VEV satisfy Fcvtnnll -11=0

Then Tv = Fcvtnnllt ) = 0

Thus VENHHT .

By 3.85 Vt null -1=0 tnnllt
.

So null 'T C { otnnllt }
Since F is linear

,
{ otnnht } Chinh 'T

so I = { o t null T }
Thus ,

T is injective .



(c) suppose we range T then w=TV

for some V EV
,

W -

- TV

= Flvtnnllt ) C- range 'T

so range T C range I

suppose x c- range T Then Lvt null T ) for some V EV

X -

- T ( Vt null T ) = Tv C- range -1

So , range Fc range T .

Therefore range T -

- range F .

(d) By part cc )

T '

: VKNNHT) → range T is surjective .

So F is surjective .

by part lab)
,

it is invertible
.

by part la ) ,
T is an isomorphism

So Vknnht ) and range I are isomorphic .

That is Vllnuht ) and
range

-

T an isomorphic .

3€ : f : U , X - i . x Um → Uit . . . -1hm

wtU= { vtu : heh }
Hu . full :veV }
Tl : V → VIU

.

T : Yunho → W Tht null T ) -

- Tv


