July.22 3E Quotients of Vector Spaces 3.79 Definition Suppose veV and U is a subspace of V. Then v+U is the subset of V. defined v+ U= {v+u: uell} 3.80 Example Let V=R2 and U= f(x.2x) ER2: xEIR] Then U is the line in R² through the origin with slope 2. So (3.1) + U is a line in R² that contains the point (3.1) and has slope 2. and (-4.0)+U is a line in IR' that contains the point (-4.0) and has slope 2. (3.1)+4= {(3.1)+(x.2x): x= [R] 13.1)+4 = {(3+1x, 1x+1): NE [R] (-4,0)+0 (-4.9)+11= \$ (-4.0)+1 (X. 10): X 6 [R] = (F4tx, 2x) : x E R} Since (7.0) and (17,20) lie on the same line. Prove: (7.2)+U= (17, 29)+U

Proof: (17,20)
$$+U = \{(17,2), \pm(10, 200)^{+}(10, 200)^{+}(10, 200) \pm (10, 200)^{+}$$

3.81 Definition
An affine subset of V is a subset of V of the form v+U for some veV and some subspace U of V.
If U is a subspace of V, for all veV, the affine subset v+U is said be parallel to U.

3.82 Example
Let V= ℝ³ and U= f(x, 2x) ∈ ℝ² as in Example 3.30 Then all the lines in ℝ² with slope 2 are parallel to U. And these lines are affine subset in ℝ².
Let V= ℝ³ and U= f(x, y, 0) ∈ ℝ³, x, y ∈ ℝ] Then the affine subsets of ℝ³ are all the planes in ℝ³ that are parallel to U. for example, (0.0, 2) + U= f(0,0,2) + UX y, 0): X, y ∈ ℝ? = f(x, y, 2): x, y ∈ ℝ)

is an affine subset of IR3 and is parrolel to U.

323	Definition		
	Let U be a subspace of V. Then the quotient space V/n,		
	is the set of all affine subsets of V parrollel to U.		
	written : $V/u = ivtu: v \in V$		

Example:
· If U=F(x,) x) e R2: xER], then R2/u is the set of all
lines in IR ² that have slope 2.
· If U is a line in R ³ containing the origin, then R ³ /H is
the set of all lines in R ³ , parallel to U.
For example, U= f(x,y, 0) eIR3: x, y GR3
R3/U. = {(0,0,2)+U: x,y,ZER)
U2= {(0,y, ≥) ∈ R3 : x, y ∈ R}
R3/U2= f(x.0,0) + U2 = x .y. ZE R)

3.85	Two affine subsets parallel to U are equal or disjoint.
	let U be a subspace of V and V.w eV.
	Then the following are equivalent:
	a). VWEU
	b). v+U =w+U
	c). $(V+U) \land (w+U) \neq \phi$
	Proof: a) implies b)
	Suppose a) holds: V-WEU let NEU, be arbitrary

.. U Since U is a subspace of V, in particular it is closed under addition. Since well and v-well, we have (V-w) fuell. for all nell, we have Vtu= Wtv-wtu eV = $Wf((v-w)+v) \in W+U$: VILCWIL Similarly, for all nell. we have W+U= 1/+W-1/+U = V+ (- (V-W)+n) & U Ewl : w+UCV+U So we conclude the set equality. v+U= w+U. which i3 b. b) implies () Suppose b) holds: v+U=w+U Then there exists nell that V+ue v+U = w+U . vtue v+U and vtue w+U. That is , UTUE (VTU) ((WTU) In other words, (v+U) ∩ (w+U) ≠\$, which is C) C) implies a) Suppose c) holds: (v+U) ((v+U) = . Then there exist U., U. EU that satisfies EV+U Utu: =W+U2

Since U is a subspace of V, it is closed under addition and scalar multiplication, which means $u - uz \in U$. In fact, we have, $v - W = Uz - U_1$

 $= -(u, -u_{\star}) \in U,$

which is a).

- 3.86 Definition
 Let U be a subspace of V. Then:
 addition is defined on V/U by
 (v+U) + (w+U)= (J+W) + U
 scalar multiplication is defined on V/U by
 A(v+W) = (Av) + U
- 3.87 Quotient space is a vector space
 Let U be a subspace of U. Then V/U is a vector space with respect to the operations defined in 3.86.
 Proof:
 Let V:W&V be arbitrary.
 First, we need to show that the operations of addressing and scalar multiplication make sense of V/U.
 Suppose v.weV sotisfy vtU=v+U and wtU=w+U.
 First, we will show that address sense on V/U.
 since U is a subspace of V, it is closed under addressin.
 So (v+v)+(w-w) = U.

By 3.85
$$(V+W)+U = iP+W)+U$$

So addition makes sense on V/U
Now, let $\lambda \in IF$ be arbitrary Suppose $P \in V$ satisfy
 $v+U = P+U$. By 3.85, $v - P \in U$. Since U is a subspace of
V, it is closed under scalar multiplication. Which means
 $\lambda(u-R) \in V$.
So we have.
 $\lambda v - \lambda P = \lambda(v-0) \in U$
By 3.85 $\lambda v + U < \lambda V + U$
So scalar multiplication makes sense on V/U.
Next, we will show that V/U satisfies all axioms of a
vector space.
Let $v.w.x \in V$ and $A \in IF$.
Commutativity: $(v+U)+(w+U)=(v+vv)+U$
 $= (w+v)+U$
 $= (w+U)+(v+U)$
Associativity: $(v+U)+(w+U)=(v+vv)+U$
 $= (v+U)+(v+U)$
 $= (v+U)+(v+U)$
 $= (v+U)+(v+U)$
 $= (v+U)+(v+U)+(w+U)=(v+v)+U$
 $= (v+U)+(v+U)$
 $= (v+U)+(v+U)$
 $= (v+U)+(v+U)$
 $= (v+U)+(v+U)$
 $= (v+U)+((w+a)+(h))$
 $= (v+U)+((w+a)+(h))$
 $= (v+U)+((w+a)+(h))$
 $= v+U$
Additive identity: $(v+U)+(v+U)=(v+v)+U$
 $= v+U$
Additive inverse: $(v+U)+(v+U)=(v+v)+U$

• Multiplicative identity: 1(v+U)=(v)+U	
U+v =	
· Distributive properties: a (1+11)+(w+11)=	a (1++++++++++++++++++++++++++++++++++++
	$-\alpha(v+w) + U$
•	= (autaw) + U
	= lav+W)+(law]+W)
	=a(u+K)+alw+W
and: $(a+b)(u+U) = (a+b)u+U$	
= (av+ bv)+ U	
= (W+W)+ (bv+W)	
$= \alpha(v+\mathcal{W}) + \beta(v+\mathcal{W})$	

3.88 Definition Let V be a subspace of V. The quotient map is the linear map. The V/U defined by The V-U for all ve V.

3.81	Dimension of a quotient space
	Suppose U is finite-dimensional and U is a subspace of
	V. Then $\dim V/H = \dim V - \dim H$
	Proof let $n: V \rightarrow V/U$ be the quotient map.
	First, we claim null R= U.
	Since, vell, we have V-O=VELL, so by 3.85.
	V+U= 0+U
	In fact, we have

π(v)= v+U= 0+U.	
So venuliz, and so UCnull R.	
If venull T, then T(v)= 0+4.	
Since we also have $\mathcal{R}(v) = v + \mathcal{U}$.	
We conclude,	
v+U= 0+U	
By 3.85 V=V-OEU	
So millACU.	
Therefore, we conclude the set equality null-24.	
Next claim, range $\pi = V/U$	
July.23 Let werange TL	
Then w= Trivi for some vell	
By 3.88	
We have $w = \pi(v)$	
$=vtU \in V/U$	
: We get range T < V/U	
Suppose we have v+UEV/U	
By 5-88	
$v + U = \pi (v) \in range \pi$	
So V/U = range TL	
\therefore range $\mathcal{R} = V/\mathcal{N}$	
0	