July. 23
3.90 Definition
Suppose
$$T \in \mathcal{L}(V, W)$$
. Define $\tilde{T}: V | (null T) \rightarrow W$ by
 $\tilde{T} (v + null T) = T v$
Show that \tilde{T} makes sense (\tilde{T} is well-defined)
Suppose $u, v \in V$ satisfy
 $u + null T = v + null T$
By 3.85, we have
 $u - v \in null T$
This means
 $T(u - v) = 0$
In fact, we have
 $Tu = Tv = T(u - v) = 0$,
 $\tilde{T} = Tv$
 $= \tilde{T} (v + null T)$
and so \tilde{T} is well-defined.

Proof: (0) Let U.VEV and REF. · additivity: ~ ((ut nullT)+(v+nullT)) = $\tilde{T}((u+v)+nu(T))$ = T(U+V) · Tu+Tu = T (++ null T) + T (+ null T) ·homogeneity: F(2(v+nullT)) = $\widetilde{T}(12v) + null T)$ = T () = Tr $= \lambda \widetilde{T} (v + nullT)$ T is linear. b). Suppose veV and f(v+nullT)=0 Then we have Tv= 7(v+nullT) :0 So v-O=venullT By 3.85 V+nullT= 0+ nullT additive identity of V/nullT .. nullif c fo+nullT} 7 (of null T) = O since I is linear : 0+ nullTCnullif, or fot null T = nullif, By 3.16, T is injocine. C). For all veV, f(v+ nullT) = Tu Suppose we ronge T. Then W=Tw for some vGV. In fact,

- 3F. Duality
- 3.92 Definition

A linear functional on V is a linear map $\varphi: V \rightarrow IF$. In other words, $\varphi \in \mathcal{L}(V, F)$

3.93 Example · Define φ: ℝ³→ℝ bu

- 3.94 Definition Then dual space of V, denoted V', is the vector space of all linear functionals on V. In other words, V'= L(V, IF).
- 3.95 dim V'= dim V Suppose V is finite-dimensional. Then V' is also finite-dimensional and dim V'= dim V Proof: dim V'= dim 1.(V, IF)

$$imV = dim \mathcal{L}(V, H)$$

= (dim V) (dim HF) by ≥ 6
=(dim V)·1
= dimV

 is the list $P_{1},...,P_{n}$ of elements of V', where each P_{j} for any j=1,...,n is a linear functional on V that satisfies $P_{j}(V_{k}) = \begin{cases} 1 & k=j \\ 0 & k\neq j \end{cases}$

Example 3-97 What is the dual basis of the standard basis e.,..., en of F?? $e_1 = (1, 0, ..., p)$ $e_n = (0, ..., 0!)$ solution: For all j=1,..., n, write $\Psi_{i}(\alpha_{1},...,\alpha_{n})=c_{1}\alpha_{1}+...+c_{n}\alpha_{n}$ Then $I = \varphi_1(V_1) = \varphi_1(e_1) = \varphi_1(1, 0, ..., 0) = C_1(1) + (c_1(0) + ... + C_n(0)) = C_1(1) + ... + C_n(0) = C_1(1) + ...$ $0=\varphi_{1}(V_{2})=\varphi_{1}(e_{2})=\varphi(0,1,...0)=C_{1}(0)+C_{1}(1)+...+C_{n}(0)=(2)$ $0 = \varphi_1(v_n) = \varphi(e_n) = \varphi_1(0, ..., 0, 1) = (1, 0) + ... + C_n - 1(0) + (n (1) = C_n$ 50 Y2 (1 , ..., Nn)= (1) N1+ 10) N2+ ...+ (0) Nn = 1%, Similarly Q. (x.,.., x.)= x, P2 (x1, ..., Nu)= N2

Axler	Define P_j to be the linear functional on F [*] that
	selects the jth coordinate of a vector in F ⁿ .
	In other words,
	$\varphi_j(\chi_1,\ldots,\chi_n) \in \chi_j$ for all $(\chi_1,\ldots,\chi_n) \in \mathbb{F}^n$.
3.98	Dual basis is a basis of the dual space.
	Suppose V is finite-dimensional.
	Then the dual basis of a basis of V is a pasis of V.
	Prest
	Let v.,, vn be a basis of V, and let q,,, qn be a dual
	basis of Vis, Vn.
	We will show that $\varphi_1,, \varphi_n$ is linearly independent.
	Suppose a.,, an EF scrisfy
	$\alpha_1, q_1 + \dots + \alpha_n, q_n = 0$
	Then, for any j=1,, n we have
	$(a, q, + + an q_n) (V_j) = a_i q_i (V_j) + + a_n q_i (V_j)$
	= Q. P. (V;)++ Q; P; (V;)++ Q. P. (Vn)
	= a. 0+ + a; 1+ + a~ 0
	=0;
	So we have
	$a_j = (a_i \varphi_i + \dots + \alpha_n \varphi_n)(V_j)$
	= 0-(V;)

=0
In other words,

$$\Omega = 0, ..., \Omega_n = 0$$

So $\Psi_{1,..., \Psi_n}$ is linearly molependent.
By 395, dim V': dim V
By 2.39. $\Psi_{1,...,\Psi_n}$ is Ω basic $\int V'$.
3.99 Definition
If $T \in \pm 1V.W$, then the dual map of T is the linear
map $T' \in \pm (W', V')$ defined by
 $T'(\Psi) = \Psi 0T$
imput a linear Out put a linear functional
tractional
Show: $T' \in \pm 1W', V'$
Let $\lambda \in F$ and $\Psi, \Psi \in W'$ be arbitrary.
· additivity: $T'(\Psi + \Psi) = (\Psi + \Psi) \circ T$
 $= \Psi \circ T + \Psi \circ T$
 $= T'(\Psi) + T'(\Psi)$
'homogenerty: $T'(\lambda \Psi) = (\lambda \Psi) \circ T$
 $= \lambda (\Psi \circ T)$
 $= \lambda T'(\Psi)$

3.100 Example Define D:P(R)→P(R) by Dp=p1 · Define: F∈ L(P(R). F) by

 $\Psi(P) = D(3)$ Then D'(p) is the linear functional on P(IR) that satisfies (D'(0))(p)= (q.D)(p) $= \varphi D_{p}$ = (p') = p'(3) · Define QELIDIR, F) by P(P)= [p(x) dx. Then D'(4) is then linear functional on P(R) given 헌 $(D'(q))(p) = (q_0 D)(p)$ $= \psi(\mathbf{0}_{\mathbf{p}})$ = (q(p') = ['p'(nodx = >(1)->(3)-Algebraic Proporties of Dual Maps 3.101 a. (StT)'= S'+T' for all s, TE L(V.W) 6. (AT)'= AI' for all REFF and for all TEL (V.W) c. (ST)'= T'S' for all Teglu, v) and for all seglv. w) Proof: c). for all $\varphi \in \mathcal{L}(V, \mathbb{F})$, we have

(S+T)' (q)= 4. (S+L)

= 405 + 40T

 $=S'(\varphi)+T'(\varphi)$

ь)). For all yell (V, F)	
	(TJ(Q) = 4 = (2T)	
	= እዋ•፲	
	$= AT'(\varphi)$	
()). For all PEL(V.F.).	we have
	(ST)'(Q)= Q @ (ST)	
	= (405)0T	
	= T'[ψ 05)	
	= T' (5' (4))	
	=(T' s')(4)	
	So (ST)'(4) = T'5'	
	(ST)'(Q) = QO(ST) = $(QOS) = T'(QOS)$ = $T'(QOS)$ = $T'(S'(QS))$ = $(T'S')(Q)$ So $(ST)'(Q) = T'S'$	

3.102	Definit: 9N		
	If U is a subspace of V. then the annihilator of U.		
	denoted 4°, is defined by		
	$U^{\circ} = \{\varphi \in V': \varphi(u) = 0 \text{ for all } u \in U\}$		

3.103 Example Let U be the subspace of P(PR) consisting of all polynomial of x^1 , such as $x^1p(x)$. If $P \in \mathcal{L}(P(PR), FF)$ is defined by $P(0) = P^1(0)$. then $P \in U^\circ$ $x^1p(x) = U$ if $P \in P(PR)$ And $P(x^1 - p(x)) = (x^1p(x))^1 | x = 0$ $= (2x (P(x) + x^1 p^1(x)) | x = 0$

3104 Example Let e, e, e, e, es denote the standard basis of RS, and let \$1, \$2, \$3, \$4, \$5 denote the dual basis of (R5)' Suppose U= Span (e, e2) = { (x, x, 0,0,0) & R" : x, x, c, R} Show U°= span (Pz, Ya. Ps) Solution: Recall from Example 3.97 that (4; 1x, x, x, x, x, x) = N; for any j=1.2,3,4.3 Suppose we have respan (43, 94, Ps) Then P= C3 43+ Ca 44+ (5 45 for some Ca.Cy.CoE IR For all (X1, X2, 0,0,0) EU. We have \$ (x,x, 0,0.0) = (Co \$ 4, Co \$ 4, Co \$ 10, x, 2, 0, 0, 0) = (3 43 (x, x, 0, 0, 0)+ (4 44 (x, x, 0, 0, 0)+ (543 (x, x, 0, 0, 0) = Ca.0 + C4.0 1 (5.0 = 0 . VEU°, and so span 14, 44, 45) CU°. Suppose PCU°. Since 4, R, R, Ps, fu, 4s is the dual basis of (R^s)', we can write uniquely as

4= C. f. t ... t C. 45 for some C. CEE IR.

Since e.e. U, we have

$$Q=Q(e_1)$$

= (c. 4, t (s. 4, t ... + (5. 46)(e_1))
= C. 4, (e_1) + C_2 Q. (e_1) + C_3 Q_3(e_1) + C_3 Q_4(e_1) + (5. 4)(e_1))
= C. 4, (e_1) + C_2 Q. (e_1) + C_3 Q_3(e_1) + C_3 Q_4(e_2) + C_3 Q_5(e_2))
= (C. 4, t ... + (5. 4)(e_1) + C_3 Q_3(e_2) + C_3 Q_4(e_2) + C_3 Q_5(e_2))
= (C. 4, t ... + (5. 4)(e_1) + C_3 Q_3(e_2) + C_3 Q_4(e_2) + C_3 Q_5(e_2))
= (C. 4, t ... + C_5 Q_5)
= C. 4, (e_1) + C. 4, (e_1) + C_3 Q_3(e_2) + C_3 Q_4(e_2) + C_3 Q_5(e_2))
= C. 4, (e_1) + C. 4, (e_3) + C_4 Q_4 + C_5 Q_5)
= C. 4, (e_1) + C. 4, (e_3) + C_4 Q_4 + C_5 Q_5)
= C. 4, (e_1) + C. 4, (e_3) + C_4 Q_4 + C_5 Q_5)
= C. 4, (e_3) + C_4 Q_4 + C_5 Q_5)
= C. 4, (e_3) + C_4 Q_4 + C_5 Q_5)
So U° C Span (Q_3, Q_4, Q_5)
So U° C Span (Q_3, Q_4, Q_5)
3. [05] The ganihilator is a subspace of V.
Then U° is a subspace of V.
Then U° is a subspace of V.

Proof:

Additive identity: Since Ow= O for all NEU,

July. 24.

Suppose we have
$$k=1,...,p$$
 and $j=1,...,m$
Then, $((Ac)^{t})_{k,j} = (Ac)_{j,k}$
 $= \frac{n}{r_{ij}} A_{j,r} Cr. k$
 $= \frac{n}{r_{ij}} (A^{t})_{r,j} (C^{t})_{k,r}$
 $= \frac{n}{r_{ij}} (C^{t})_{k,r} (A^{t})_{r,j}$

Therefore, we have $(Ac)^{t} = C^{t}A^{t}$

3.114	The matrix of I' is the transpose of the matrix of
	Τ.
	Suppose TGL(V,W). Then M(T')= (M(T))t
	Proof:
	Let A=M(T) and C=M(T').
	Suppose we have j=1,, m and k=1,, n
	By definition 3.32, we have.
	TVK= Fit Arik Wr and
	T(qj)= ZCrj 4r
	Therefore, we have
	$(\Psi_{i} \circ T)(V_{k}) = (T'(\Psi_{i}))(V_{k})$
	$= \left(\sum_{r=1}^{4} C_{r+1} \varphi_{v} \right) (V_{R})$
	= (Cy; Pi+ + (n.: 4n) (Vk)

$$= C_{i,j} \varphi_{i} (V_{k}) + ... + C_{n,j} \psi_{n} (V_{k})$$

$$= C_{i,j} \varphi_{i} (V_{k}) + ... + C_{k,j} \psi_{k} (V_{k}) + ... + C_{n,j} \psi_{n} (V_{k})$$

$$= C_{i,j} \cdot 0 + ... + C_{k,j} \cdot 1 + ... + C_{n,j} \cdot 0$$

$$= C_{k,j}$$
and
$$(\varphi_{j} \circ T) (V_{k}) = \varphi_{j} (T_{V_{k}})$$

$$= \varphi_{j} (\sum_{i=1}^{n} A_{i,k} W_{i})$$

$$= \varphi_{j} (A_{i,k} W_{i} + ... + A_{n,k} W_{n})$$

$$= \varphi_{j} (A_{i,k} W_{i} + ... + \varphi_{i} (A_{n,k} W_{n}))$$

$$= A_{i,k} \varphi_{j} (W_{i}) + ... + A_{i,k} \cdot \varphi_{j} (W_{n})$$

$$= A_{i,k} \cdot 0 + ... + A_{j,k} \cdot (1 + ... + A_{n,k} \cdot \psi_{j} (W_{n})^{0})$$

$$= A_{j,k} \cdot 0 + ... + A_{j,k} \cdot (1 + ... + A_{n,k} \cdot 0)$$

$$= A_{j,k}$$
Therefore, we conclude,
$$C_{k,j} = A_{j,k}$$
So $C = A^{t}$
and
$$= (M_{(T)})^{t}$$

Annihilator

3.106 Dimension of the annihilator Suppose V is a finite-dimensional vector space and U is a subspace of V. Then

dimUt olim
$$U^{\circ} = d_{im}V.$$

Proof:
Let $i \in \mathcal{L}(U,V)$ be the inclusion map defined by $iw_{i} = u$
for all $u \in U.$
First, we will show that i is linear.
Let $\Lambda \in I$ and $\Psi, \Psi \in V.$
· Additivity: For all $u \in U$, we have
 $(i'(\Psi + \Psi))(u) = (i\Psi + \Psi) \circ i)(u)$
 $= (\Psi + \Psi)(iuu)$
 $= (\Psi + \Psi)(u)$
 $= (i(\Psi))(u) + (i'(\Psi))(u)$
Therefore,
 $(i'(\Lambda + \Psi) = i'(\Psi) + i(\Psi))$
· Homogeneity: For all $u \in U$, we have
 $(i'(\Lambda + \Psi) = (i(\Psi)) + i(\Psi))$
 $= (\Lambda + \Psi)(u)$
 $= ((\Psi)(u))$
 $= ((\Psi)(u))$
 $= ((\Psi)(u))$
 $= ((\Pi)(u))$
 $=$

Next, we will show null i'=
$$U^{\circ}$$
.
We have null i'= $\{\varphi \in V': i': \psi\}=0\}$
 $= \{\psi \in V': \psi \in i=0\}$
 $= \{\psi \in V': \psi \in i\}=0$ for all $u \in U\}$
 $= \{\psi \in V': \psi(u)=0$ for all $u \in U\}$
 $= \{\psi \in V': \psi(u)=0$ for all $u \in U\}$
 $= \{\psi \in V': \psi(u)=0$ for all $u \in U\}$
 $= U^{\circ}$

By the fundamental theorem of linear maps. we have dimV=dimV' by 3.95

= dim range i' + dim nulli' by 3.22

= dim rangei' + dim U°

= dim Ut dim U°

once we show range i'=U. Suppose we have $P \in U'$. By 3A.11. We can extend to a linear functional φ on V. And by definition of i' we have $i'(\psi)=0$. So $\varphi \in range i'$, and so we have UC range i'. But 3-19 says that range i' is a subspace of U. Therefore, range i'=U, as desired.

3.107 The null space of T
Suppose V and W are finite dimensional vector spaces
ond Te L(V.W). Then:
a. null T'= (range T)^o
b. dim null T = dim null T + dim W - dim V.

Proof: G). Suppose Genull T', Then we have: T'(P)=O. So for all veV. we have Q= 0(v) $=(T'(\varphi))(\gamma)$ = ((VoT)(V) $= \varphi(T_V)$ So pe (range T)°, and so we have null T'C (range T)°. Suppose yeirange T)? Then P(Tu)=0 for all veV. So we have (T'(P))(v)=[POT)(v) $= \Psi(T_v)$ $= \varphi(0)$ = 0 and so penull T. So mange T)°C null T'. Therefore, (ronge T)° = null T'. b). We have dim null T'= dim (range T)° by part a. = dim W - dim range T by 3.106 = dim W - (dim V - dim null T) by. 3.22 = dim nullT + drm W - dimV T surjective is equivalent to T' injective. Suppose V and W are finite-dimensional vector spaces

and $T \in \mathcal{L}(V, W)$. Then T is surjective iff T' is myedive. Proof: \Leftrightarrow = iff $T \in \mathcal{L}(V, W)$ is surjective \Leftrightarrow range T = W

3.108

	$(rome T)^{\circ} = 10$
	\Leftrightarrow null T' = for by 3.107
	T' is iniccline.
	Prove irance TJ° = {0}
	We have diminange T)°= dim W- dim range T by 3.106
	= dimW-dimW
	= 0
	= dim {0}
	itt (nonnoe T)°= {0}. by 2. cl of Axler.
3.109	The range of T'
	Suppose V and W are finite-dimensional vector spaces
	and TELIVIW) Then
	a). dim range T'= dim range T,
	b). range T'= (null T)°
	Proof:
	a). We have
	dim range t' = dim W - dim null T' by 3-22
	= dim W - dim null T' by 3.95
	= dimW - dim trance T1° by 3.107 a.
	= dim range T by \$.106
	b). Suppose Gerange I'. Then there exists yew' that
	Satisfies. $f=T'(\Psi)$. For all $v \in null T$, we have.
	4(v)= (T'(4))(v)
	= (ψ oŢ) (v)

=
$$\psi(T_v)$$

= $\psi(0)$ since $v \in null T$
= 0
So $\psi \in (null T)^\circ$. Therefore, range T'c $(null T)^\circ$
Show dim range T'= dim $(null T)^\circ$
We have
dim range T'= dim range T by 3.109 a.
= dim V-dim null T by 3.22
= dim $(null T)^\circ$ by 3.106

T injective is equivalent to T' surjective. 3.110 Suppose V and W are finite - dimensional vector spaces and TEL(V,W). Then T is injective iff T' is surjective. Proof: Te L(V,W) is injective <> null T= {0} by 316 ⇔ fullT)°=V ⇒ range T' = V' by 3.109 b. T' is surjective. Prove (null T)= V' We have dim(null T)° = dim V - dim null T by 3.106 = dim V - dim for = dimV-D = dim V = dim V' by 3.95

iff (null T) = V', by 2. c. l exercise.