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(10pts) 1. Use contradiction to prove that, if 9n3 + 7n2 + 5n is even, then n is even.

Proof. Suppose by contradiction that n is not even’ that is, suppose n is odd. Then there exists some integer k that satisfies
n = 2k + 1. But then we have

9n3 + 7n2 + 5n = 9(2k + 1)3 + 7(2k + 1)2 + 5(2k + 1)

= 9(8k3 + 12k2 + 6k + 1) + 7(4k2 + 4k + 1) + 5(2k + 1)

= (72k3 + 108k2 + 54k + 9) + (28k2 + 28k + 7) + (10k + 5)

= 72k3 + 136k2 + 92k + 21

= 72k3 + 136k2 + 92k + 20 + 1

= 2(36k3 + 68k2 + 46k + 10) + 1.

Since 36k3 + 68k2 + 46k + 10 is also an integer, we conclude that 9n3 + 7n2 + 5n is odd. But this contradicts our assumption
that n3 is even. �

(10pts) 2. Use contradiction to prove that
√

3 is irrational.

Proof. Suppose by contradiction that
√

3 is rational. Then there exist integers a, b that satisfy
√

3 =
a
b
,

where a
b is a fraction expressed in lower terms, meaning that a and b do not have a common factor greater than 1. Squaring

both sides of the above equation, we get

3 =
a2

b2 ,

from which we can algebraically rewrite as
3b2 = a2.

Since 3b2 is a multiple of 3, it follows that a2 is a multiple of 3. Furthermore, we claim that, if a is an integer such that a2

is a multiple of 3, then a is a multiple of 3. To prove this claim, suppose by contradiction that a is not a multiple of 3. Then
there exists an integer k such that we have either a = 3k + 1 or a = 3k + 2. At this point, we will continue our argument by
breaking down into separate cases.

• Case 1: If a = 3k + 1, then

a2 = (3k + 1)2

= 9k2 + 6k + 1

= 3(3k2 + 2k) + 1,

and so a2 is not a multiple of 3, which contradicts our earlier result saying that a2 is a multiple of 3.
• Case 2: If a = 3k + 2, then

a2 = (3k + 2)2

= 9k2 + 12k + 4

= 3(3k2 + 4k + 1) + 1,

and so a2 is not a multiple of 3, which contradicts our earlier result saying that a2 is a multiple of 3.

Therefore, we must have a = 3k; that is, a is a multiple of 3, proving our claim. Now, if we continue to assume that a is a
multiple of 3, then we still write a = 3k for some integer k. This implies that we have

3b2 = a2

= (3k)2

= 9k2,

from which we divide both sides by 3 to conclude
b2 = 3k2,

and so b2 is a multiple of 3. Invoking our earlier claim that we proved already, we conclude that b is a multiple of 3. Therefore,
a and b have a common factor of 3, which contradicts our earlier result stating that a and b do not have a common factor greater
than 1. Therefore,

√
3 is irrational. �



(10pts) 3. Prove that a list v1, . . . , vn is a basis of V if and only if every v ∈ V can be written uniquely in the form v = a1v1 + · · · + anvn,
where a1, . . . , an ∈ F.

Proof (2.29 of Axler). Forward direction: If a list v1, . . . , vn is a basis of V , then every v ∈ V can be written uniquely in the
form v = a1v1 + · · · + anvn. Suppose v1, . . . , vn is a basis of V . Then v1, . . . , vn is a linearly independent set that spans V .
Since the list v1, . . . , vn spans V , there exist a1, . . . , an ∈ F that satisfy

v = a1v1 + · · · + anvn.

Next, we will show that this representation of v is unique. Suppose there exist c1, . . . , cn ∈ F that satisfy

v = c1v1 + · · · + cnvn.

Subtracting the two equations, we obtain

0 = v − v

= (a1v1 + · · · + anvn) − (c1v1 + · · · + cnvn)

= (a1 − c1)v1 + · · · + (an − cn)vn.

Since the list v1, . . . , vn is linearly independent, all the scalars are zero; that is, we have

a1 − c1 = 0, . . . , an − cn = 0,

or equivalently a1 = c1, . . . , an = cn, proving the uniqueness of the form of v = a1v1 + · · · + anvn.

Backward direction: If every v ∈ V can be written uniquely in the form v = a1v1 + · · · + anvn, then v1, . . . , vn is a basis of V .
First, we will prove that v1, . . . , vm spans V . Suppose there exist a1, . . . , an ∈ F such that we can write every v ∈ V uniquely
in the form

v = a1v1 + · · · + anvn.

Then v is a linear combination of v1, . . . , vm, which means we have v ∈ span(v1, . . . , vm). So we have V ⊂ span(v1, . . . , vm).
But span(v1, . . . , vm) is a subspace of V , according to 2.7 of Axler. So we have the set equality V = span(v1, . . . , vm), and so
v1, . . . , vm spans V . Next, we will prove that v1, . . . , vn is linearly independent. Suppose a1, . . . , an ∈ F satisfy

a1v1 + · · · + anvn = 0.

We assumed that the form of every v ∈ V is unique. In particular, there is a unique representation of v = 0. Therefore, the
equation a1v1 + · · · + anvn = 0 implies

a1 = 0, . . . , am = 0,

and so v1, . . . , vn is linearly independent. Therefore, v1, . . . , vn is a basis of V . �

(10pts) 4. Suppose v1, . . . , vn is a basis of V and w1, . . . ,wn ∈ W . Prove that there exists a unique linear map T : V → W such that
Tvj = wj for each j = 1, . . . , n.

Proof (3.5 of Axler). First, we will show that there exists a linear map T : V → W such that Tvj = wj for each j = 1, . . . , n.
Define T : V → W by

T(c1v1 + · · · + cnvn) = c1w1 + · · · + cnwn

for some c1, . . . , cn ∈ F. Since v1, . . . , vn is a basis of V and w1, . . . ,wn is a basis of W , the representations c1v1+· · ·+cnvn ∈ V
and c1w1 + · · · + cnwn ∈ W are unique. This means T indeed defines a function. Furthermore, if, for all i, j = 1, . . . , n, we let

ci =

{
1 if i = j,
0 if i , j,

then T satisfies Tvj = wj . Next, we will prove that T : V → W is linear. Let u, v ∈ V be arbitrary. Again, by 2.29 of Axler,
the forms of every vector in V is unique, which means we can write

u = a1v1 + · · · + anvn

and
v = c1v1 + · · · + cnvn

for some a1, . . . , an, c1, . . . , cn ∈ F. So, for all λ ∈ F and for all u, v ∈ V , we have

T(u + v) = T((a1v1 + · · · + anvn) + (c1v1 + · · · + cnvn))

= T((a1 + c1)v1 + · · · + (an + cn)vn)

= (a1 + c1)w1 + · · · + (an + cn)wn

= (a1w1 + · · · + anwn) + (c1w1 + · · · + cnwn)

= T(a1v1 + · · · + anvn) + T(c1v1 + · · · + cnvn)

= Tu + Tv



and

T(λu) = T(λ(a1v1 + · · · + anvn))

= T((λa1)v1 + · · · + (λan)vn)

= (λa1)w1 + · · · + (λan)wn

= λ(a1w1 + · · · + anwn)

= λT(a1u1 + · · · + anun)

= λTu.

So T : V → W is linear, or equivalently we have T ∈ L(V,W). Finally, we will prove that T is unique. Suppose S ∈ L(V,W)
also satisfies

Svj = wj .

Then for all v ∈ V , we have

Sv = S(c1v1 + · · · + cnvn)

= c1Sv1 + · · · + cnSvn
= c1w1 + · · · + cnwn

= c1Tv1 + · · · + cnTvn
= T(c1v1) + · · · + T(cnvn)

= T(c1v1 + · · · + cnvn)

= Tv.

So S = T on V , which proves the uniqueness of T . Therefore, we proved that T : V → W is a unique linear map that satisfies
Tvj = wj for all j = 1, . . . , n. �

(10pts) 5. Let V and W be vector spaces. If V is finite-dimensional and T ∈ L(V,W), prove that range T is also finite dimensional and
we have dim V = dim null T + dim range T .

Proof (3.22 of Axler). Let u1, . . . , um be a basis of null T . Then we have dim null T = m and u1, . . . , um is a linearly indepen-
dent list. By 2.33 of Axler, we can extend u1, . . . , um to a basis u1, . . . , um, v1, . . . , vn of V , which means dim V = m + n. So
the equation

dim V = dim null T + dim range T

becomes
m + n = m + dim range T .

So to complete this proof we need to prove that Tv1, . . . ,Tvn is a basis of range T , which would establish that range T is
finite-dimensional and dim range T = n. First, we will show that Tv1, . . . ,Tvn spans range T . Let v ∈ V be arbitrary. Since
u1, . . . , um, v1, . . . , vn is a basis of V , it spans V , which means we can write

v = a1u1 + · · · + amum + b1v1 + · · · + bnvn

for some a1, . . . , am, b1, . . . , bn ∈ F. Recall at the beginning of our proof that u1, . . . , um is a basis of null T . Then we have
Tu1 = 0, . . . ,Tum = 0, and so we get

Tv = T(a1u1 + · · · + amum + b1v1 + · · · + bnvn)

= a1Tu1 + · · · + amTum + b1Tv1 + · · · + bnTvn
= a1 · 0 + · · · + am · 0 + b1Tv1 + · · · + bnTvn
= b1Tv1 + · · · + bnTvn.

So Tv is a linear combination of Tv1, . . . ,Tvn, which means Tv1, . . . ,Tvn spans range T . Next, we show Tv1, . . . ,Tvn is
linearly independent in range T . Suppose c1, . . . , cn ∈ F satisfy

c1Tv1 + · · · + cnTvn = 0.

Since T is linear, we have

0 = c1Tv1 + · · · + cnTvn
= T(c1v1) + · · · + T(cnvn)

= T(c1v1 + · · · + cnvn),

and so we have c1v1 + · · · + cnvn ∈ null T . Since u1, . . . , um is a basis of null T , it spans null T , which means every vector in
null T can be written as a linear combination of u1, . . . , um. In other words, since c1v1 + · · ·+ cnvn is one such vector in null T ,
we can write

c1v1 + · · · + cnvn = d1u1 + · · · + dmum.



Equivalently, we have
−d1u1 − · · · − dmum + c1v1 + · · · + cnvn = 0.

Since u1, . . . , um, v1, . . . , vn is a basis of V , it is linearly independent in V . So all the scalars are zero; that is, we have

−d1 = 0, . . . ,−dm = 0, c1 = 0, . . . , cn = 0,

or equivalently,
d1 = 0, . . . , dm = 0, c1 = 0, . . . , cn = 0.

In particular, we have
c1 = 0, . . . , cn = 0,

and so Tv1, . . . ,Tvn is linearly independent in range T . Therefore, Tv1, . . . ,Tvn is a basis of range T . So we conclude that
range T is finite-dimensional with dim range T = n, and we conclude also

dim V = m + n

= dim null T + dim range T,

as desired. �


