MATH 131: Linear Algebra I University of California, Riverside Quiz 2 Solutions July 10, 2019

(10pts) 1. Use contradiction to prove that, if $9n^3 + 7n^2 + 5n$ is even, then *n* is even.

Proof. Suppose by contradiction that *n* is not even' that is, suppose *n* is odd. Then there exists some integer *k* that satisfies n = 2k + 1. But then we have

$$9n^{3} + 7n^{2} + 5n = 9(2k + 1)^{3} + 7(2k + 1)^{2} + 5(2k + 1)$$

= 9(8k³ + 12k² + 6k + 1) + 7(4k² + 4k + 1) + 5(2k + 1)
= (72k³ + 108k² + 54k + 9) + (28k² + 28k + 7) + (10k + 5)
= 72k³ + 136k² + 92k + 21
= 72k³ + 136k² + 92k + 20 + 1
= 2(36k³ + 68k² + 46k + 10) + 1.

Since $36k^3 + 68k^2 + 46k + 10$ is also an integer, we conclude that $9n^3 + 7n^2 + 5n$ is odd. But this contradicts our assumption that n^3 is even.

(10pts) 2. Use contradiction to prove that $\sqrt{3}$ is irrational.

Proof. Suppose by contradiction that $\sqrt{3}$ is rational. Then there exist integers a, b that satisfy

$$\sqrt{3} = \frac{a}{b}$$

where $\frac{a}{b}$ is a fraction expressed in lower terms, meaning that *a* and *b* do not have a common factor greater than 1. Squaring both sides of the above equation, we get

$$3 = \frac{a^2}{b^2},$$
$$3b^2 = a^2.$$

from which we can algebraically rewrite as

Since $3b^2$ is a multiple of 3, it follows that a^2 is a multiple of 3. Furthermore, we claim that, if *a* is an integer such that a^2 is a multiple of 3, then *a* is a multiple of 3. To prove this claim, suppose by contradiction that *a* is not a multiple of 3. Then there exists an integer *k* such that we have either a = 3k + 1 or a = 3k + 2. At this point, we will continue our argument by breaking down into separate cases.

• Case 1: If a = 3k + 1, then

$$a^{2} = (3k + 1)^{2}$$

= 9k² + 6k + 1
= 3(3k² + 2k) + 1,

and so a^2 is not a multiple of 3, which contradicts our earlier result saying that a^2 is a multiple of 3.

• Case 2: If a = 3k + 2, then

$$a^{2} = (3k + 2)^{2}$$

= 9k² + 12k + 4
= 3(3k² + 4k + 1) + 1,

and so a^2 is not a multiple of 3, which contradicts our earlier result saying that a^2 is a multiple of 3.

Therefore, we must have a = 3k; that is, *a* is a multiple of 3, proving our claim. Now, if we continue to assume that *a* is a multiple of 3, then we still write a = 3k for some integer *k*. This implies that we have

$$3b^2 = a^2$$
$$= (3k)^2$$
$$= 9k^2,$$

from which we divide both sides by 3 to conclude

$$b^2 = 3k^2$$
,

and so b^2 is a multiple of 3. Invoking our earlier claim that we proved already, we conclude that *b* is a multiple of 3. Therefore, *a* and *b* have a common factor of 3, which contradicts our earlier result stating that *a* and *b* do not have a common factor greater than 1. Therefore, $\sqrt{3}$ is irrational.

(10pts) 3. Prove that a list v_1, \ldots, v_n is a basis of V if and only if every $v \in V$ can be written uniquely in the form $v = a_1v_1 + \cdots + a_nv_n$, where $a_1, \ldots, a_n \in \mathbb{F}$.

Proof (2.29 of Axler). Forward direction: If a list v_1, \ldots, v_n is a basis of V, then every $v \in V$ can be written uniquely in the form $v = a_1v_1 + \cdots + a_nv_n$. Suppose v_1, \ldots, v_n is a basis of V. Then v_1, \ldots, v_n is a linearly independent set that spans V. Since the list v_1, \ldots, v_n spans V, there exist $a_1, \ldots, a_n \in \mathbb{F}$ that satisfy

$$v = a_1 v_1 + \dots + a_n v_n$$

Next, we will show that this representation of v is unique. Suppose there exist $c_1, \ldots, c_n \in \mathbb{F}$ that satisfy

$$v = c_1 v_1 + \dots + c_n v_n$$

Subtracting the two equations, we obtain

$$0 = v - v$$

= $(a_1v_1 + \dots + a_nv_n) - (c_1v_1 + \dots + c_nv_n)$
= $(a_1 - c_1)v_1 + \dots + (a_n - c_n)v_n$.

Since the list v_1, \ldots, v_n is linearly independent, all the scalars are zero; that is, we have

$$a_1 - c_1 = 0, \ldots, a_n - c_n = 0$$

or equivalently $a_1 = c_1, \ldots, a_n = c_n$, proving the uniqueness of the form of $v = a_1v_1 + \cdots + a_nv_n$.

Backward direction: If every $v \in V$ can be written uniquely in the form $v = a_1v_1 + \cdots + a_nv_n$, then v_1, \ldots, v_n is a basis of V. First, we will prove that v_1, \ldots, v_m spans V. Suppose there exist $a_1, \ldots, a_n \in \mathbb{F}$ such that we can write every $v \in V$ uniquely in the form

$$v = a_1 v_1 + \dots + a_n v_n.$$

Then v is a linear combination of v_1, \ldots, v_m , which means we have $v \in \text{span}(v_1, \ldots, v_m)$. So we have $V \subset \text{span}(v_1, \ldots, v_m)$. But $\text{span}(v_1, \ldots, v_m)$ is a subspace of V, according to 2.7 of Axler. So we have the set equality $V = \text{span}(v_1, \ldots, v_m)$, and so v_1, \ldots, v_m spans V. Next, we will prove that v_1, \ldots, v_n is linearly independent. Suppose $a_1, \ldots, a_n \in \mathbb{F}$ satisfy

$$a_1v_1+\cdots+a_nv_n=0.$$

We assumed that the form of every $v \in V$ is unique. In particular, there is a unique representation of v = 0. Therefore, the equation $a_1v_1 + \cdots + a_nv_n = 0$ implies

$$a_1=0,\ldots,a_m=0,$$

and so v_1, \ldots, v_n is linearly independent. Therefore, v_1, \ldots, v_n is a basis of V.

(10pts) 4. Suppose v_1, \ldots, v_n is a basis of V and $w_1, \ldots, w_n \in W$. Prove that there exists a unique linear map $T: V \to W$ such that $Tv_j = w_j$ for each $j = 1, \ldots, n$.

Proof (3.5 of Axler). First, we will show that there exists a linear map $T : V \to W$ such that $Tv_j = w_j$ for each j = 1, ..., n. Define $T : V \to W$ by

$$T(c_1v_1 + \dots + c_nv_n) = c_1w_1 + \dots + c_nw_n$$

for some $c_1, \ldots, c_n \in \mathbb{F}$. Since v_1, \ldots, v_n is a basis of *V* and w_1, \ldots, w_n is a basis of *W*, the representations $c_1v_1 + \cdots + c_nv_n \in V$ and $c_1w_1 + \cdots + c_nw_n \in W$ are unique. This means *T* indeed defines a function. Furthermore, if, for all $i, j = 1, \ldots, n$, we let

$$c_i = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j, \end{cases}$$

then *T* satisfies $Tv_j = w_j$. Next, we will prove that $T : V \to W$ is linear. Let $u, v \in V$ be arbitrary. Again, by 2.29 of Axler, the forms of every vector in *V* is unique, which means we can write

$$u = a_1 v_1 + \dots + a_n v_n$$

and

$$v = c_1 v_1 + \dots + c_n v_n$$

for some $a_1, \ldots, a_n, c_1, \ldots, c_n \in \mathbb{F}$. So, for all $\lambda \in \mathbb{F}$ and for all $u, v \in V$, we have

$$T(u + v) = T((a_1v_1 + \dots + a_nv_n) + (c_1v_1 + \dots + c_nv_n))$$

= $T((a_1 + c_1)v_1 + \dots + (a_n + c_n)v_n)$
= $(a_1 + c_1)w_1 + \dots + (a_n + c_n)w_n$
= $(a_1w_1 + \dots + a_nw_n) + (c_1w_1 + \dots + c_nw_n)$
= $T(a_1v_1 + \dots + a_nv_n) + T(c_1v_1 + \dots + c_nv_n)$
= $Tu + Tv$

$$T(\lambda u) = T(\lambda(a_1v_1 + \dots + a_nv_n))$$

= $T((\lambda a_1)v_1 + \dots + (\lambda a_n)v_n)$
= $(\lambda a_1)w_1 + \dots + (\lambda a_n)w_n$
= $\lambda(a_1w_1 + \dots + a_nw_n)$
= $\lambda T(a_1u_1 + \dots + a_nu_n)$
= $\lambda T u$.

So $T : V \to W$ is linear, or equivalently we have $T \in \mathcal{L}(V, W)$. Finally, we will prove that *T* is unique. Suppose $S \in \mathcal{L}(V, W)$ also satisfies

$$Sv_i = w_i$$
.

Then for all $v \in V$, we have

$$Sv = S(c_1v_1 + \dots + c_nv_n)$$

= $c_1Sv_1 + \dots + c_nSv_n$
= $c_1w_1 + \dots + c_nw_n$
= $c_1Tv_1 + \dots + c_nTv_n$
= $T(c_1v_1) + \dots + T(c_nv_n)$
= $T(c_1v_1 + \dots + c_nv_n)$
= Tv .

So S = T on V, which proves the uniqueness of T. Therefore, we proved that $T : V \to W$ is a unique linear map that satisfies $Tv_j = w_j$ for all j = 1, ..., n.

(10pts) 5. Let V and W be vector spaces. If V is finite-dimensional and $T \in \mathcal{L}(V, W)$, prove that range T is also finite dimensional and we have dim $V = \dim \operatorname{null} T + \dim \operatorname{range} T$.

Proof (3.22 of Axler). Let u_1, \ldots, u_m be a basis of null *T*. Then we have dim null T = m and u_1, \ldots, u_m is a linearly independent list. By 2.33 of Axler, we can extend u_1, \ldots, u_m to a basis $u_1, \ldots, u_m, v_1, \ldots, v_n$ of *V*, which means dim V = m + n. So the equation

$$\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$$

becomes

$$m + n = m + \dim \operatorname{range} T$$

So to complete this proof we need to prove that Tv_1, \ldots, Tv_n is a basis of range *T*, which would establish that range *T* is finite-dimensional and dim range T = n. First, we will show that Tv_1, \ldots, Tv_n spans range *T*. Let $v \in V$ be arbitrary. Since $u_1, \ldots, u_m, v_1, \ldots, v_n$ is a basis of *V*, it spans *V*, which means we can write

$$v = a_1u_1 + \dots + a_mu_m + b_1v_1 + \dots + b_nv_n$$

for some $a_1, \ldots, a_m, b_1, \ldots, b_n \in \mathbb{F}$. Recall at the beginning of our proof that u_1, \ldots, u_m is a basis of null *T*. Then we have $Tu_1 = 0, \ldots, Tu_m = 0$, and so we get

$$Tv = T(a_1u_1 + \dots + a_mu_m + b_1v_1 + \dots + b_nv_n)$$

= $a_1Tu_1 + \dots + a_mTu_m + b_1Tv_1 + \dots + b_nTv_n$
= $a_1 \cdot 0 + \dots + a_m \cdot 0 + b_1Tv_1 + \dots + b_nTv_n$
= $b_1Tv_1 + \dots + b_nTv_n$.

So Tv is a linear combination of Tv_1, \ldots, Tv_n , which means Tv_1, \ldots, Tv_n spans range T. Next, we show Tv_1, \ldots, Tv_n is linearly independent in range T. Suppose $c_1, \ldots, c_n \in \mathbb{F}$ satisfy

$$c_1Tv_1 + \dots + c_nTv_n = 0.$$

Since *T* is linear, we have

$$0 = c_1 T v_1 + \dots + c_n T v_n$$

= $T(c_1 v_1) + \dots + T(c_n v_n)$
= $T(c_1 v_1 + \dots + c_n v_n)$,

and so we have $c_1v_1 + \cdots + c_nv_n \in \text{null } T$. Since u_1, \ldots, u_m is a basis of null T, it spans null T, which means every vector in null T can be written as a linear combination of u_1, \ldots, u_m . In other words, since $c_1v_1 + \cdots + c_nv_n$ is one such vector in null T, we can write

$$c_1v_1+\cdots+c_nv_n=d_1u_1+\cdots+d_mu_m.$$

Equivalently, we have

$$-d_1u_1-\cdots-d_mu_m+c_1v_1+\cdots+c_nv_n=0.$$

Since $u_1, \ldots, u_m, v_1, \ldots, v_n$ is a basis of V, it is linearly independent in V. So all the scalars are zero; that is, we have

$$-d_1 = 0, \ldots, -d_m = 0, c_1 = 0, \ldots, c_n = 0,$$

or equivalently,

$$d_1 = 0, \ldots, d_m = 0, c_1 = 0, \ldots, c_n = 0.$$

In particular, we have

$$c_1=0,\ldots,c_n=0,$$

and so Tv_1, \ldots, Tv_n is linearly independent in range *T*. Therefore, Tv_1, \ldots, Tv_n is a basis of range *T*. So we conclude that range *T* is finite-dimensional with dim range T = n, and we conclude also

$$\dim V = m + n$$

= dim null T + dim range T,

as desired.