3.1. Find the coordinate of the vector
$$x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \in \mathbb{R}^3$$
 with respect to the basis
$$\mathcal{U} = \left\{ u_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, u_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, u_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}.$$

Proof. For all i = 1, 2, 3, there exist coefficients $x_1, x_2, x_3 \in \mathbb{R}$ such that we can write any $x \in \mathbb{R}^3$ as

$$x = x_1 u_1 + x_2 u_2 + x_3 u_2$$

= $x_1 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
= $\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$
= $\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \end{bmatrix}_{\mathcal{U}}$.

With the vector $x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, the corresponding coordinate vector $[x]_{\mathcal{U}}$ is

$$[x]_{\mathcal{U}} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 1 & -1 \\ -1 & 1 & 0 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
$$= \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}.$$

Alternatively, if one wishes to avoid taking an inverse of a 3×3 matrix, one can rewrite the matrix equation as an augmented matrix

$$\begin{bmatrix} 1 & 0 & 1 & | & 1 \\ 1 & 1 & 1 & | & 2 \\ 0 & 1 & 1 & | & 3 \end{bmatrix},$$

which, upon performing a few row operations, is row equivalent to

$$\begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

whose right-most column is $[x]_{\mathcal{U}}$.

3.2. Let P_3 be the vector space of all polynomials of variable *t* with degree no higher than 3. Find the matrix representation for taking derivative $D: P_3 \rightarrow P_3$ with respect to the basis

$$\mathcal{F} = \{f_1 = t^3, f_2 = t^3 + t^2, f_3 = t^3 + t^2 + t, f_4 = t^3 + t^2 + t + 1\}.$$

Proof. Since D is a linear map that denotes taking the derivative in t of f_1 , f_2 , f_3 , f_4 , we have

$$D(f_1) = 3t^2$$
, $D(f_2) = 3t^2 + 2t$, $D(f_3) = D(f_4) = 3t^2 + 2t + 1$.

Let $a_1, a_2, a_3, a_4 \in \mathbb{R}$ and write

$$a_1f_1 + a_2f_2 + a_3f_3 + a_4f_4 = a_1t^3 + a_2(t^3 + t^2) + a_3(t^3 + t^2 + t) + a_4(t^3 + t^2 + t + 1)$$

= $(a_1 + a_2 + a_3 + a_4)t^3 + (a_2 + a_3 + a_4)t^2 + (a_3 + a_4)t + (a_4)1.$

First, for $D(f_1) = 3t^2$, we have

$$3t^{2} = a_{1}f_{1} + a_{2}f_{2} + a_{3}f_{3} + a_{4}f_{4}$$

= $(a_{1} + a_{2} + a_{3} + a_{4})t^{3} + (a_{2} + a_{3} + a_{4})t^{2} + (a_{3} + a_{4})t + (a_{4})1.$

We can equate the coefficients to rewrite this as a system of equations:

$$a_{1} + a_{2} + a_{3} + a_{4} = 0$$
$$a_{2} + a_{3} + a_{4} = 3$$
$$a_{3} + a_{4} = 0$$
$$a_{4} = 0$$

The augmented matrix form of our system is

1	1	1	1	0	
0	1	1	1	3	
0	0	1	1	0	
0	0	0	1	0	

which, upon performing row operations, is row equivalent to

$$\begin{bmatrix} 1 & 0 & 0 & 0 & | & -3 \\ 0 & 1 & 0 & 0 & | & 3 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & | & 0 \end{bmatrix}$$

So our desired coefficients are $a_1 = -3$, $a_2 = 3$, $a_3 = 0$, $a_4 = 0$; in other words,

$$\begin{bmatrix} D(f_1) \end{bmatrix}_{\mathcal{F}} = \begin{bmatrix} -3 \\ 3 \\ 0 \\ 0 \end{bmatrix}.$$

Next, for $D(f_2) = 3t^2 + 2t$, we have

$$3t^{2} + 2t = a_{1}f_{1} + a_{2}f_{2} + a_{3}f_{3} + a_{4}f_{4}$$

= $(a_{1} + a_{2} + a_{3} + a_{4})t^{3} + (a_{2} + a_{3} + a_{4})t^{2} + (a_{3} + a_{4})t + (a_{4})1.$

We can equate the coefficients to rewrite this as a system of equations:

$$a_{2} + a_{3} + a_{4} = 0$$

 $a_{2} + a_{3} + a_{4} = 3$
 $a_{3} + a_{4} = 2$
 $a_{4} = 0$

 a_1

The augmented matrix form of our system is

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 3 \\ 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix},$$

which, upon performing row operations, is row equivalent to

$$\begin{bmatrix} 1 & 0 & 0 & 0 & | & -3 \\ 0 & 1 & 0 & 0 & | & 1 \\ 0 & 0 & 1 & 0 & | & 2 \\ 0 & 0 & 0 & 1 & | & 0 \end{bmatrix}$$

So our desired coefficients are $a_1 = -3$, $a_2 = 1$, $a_3 = 2$, $a_4 = 0$; in other words,

$$\begin{bmatrix} D(f_2) \end{bmatrix}_{\mathcal{F}} = \begin{bmatrix} -3 \\ 1 \\ 2 \\ 0 \end{bmatrix}.$$

Finally, for $D(f_3) = D(f_4) = 3t^2 + 2t + 1$, we have

$$3t^{2} + 2t + 1 = a_{1}f_{1} + a_{2}f_{2} + a_{3}f_{3} + a_{4}f_{4}$$

= $(a_{1} + a_{2} + a_{3} + a_{4})t^{3} + (a_{2} + a_{3} + a_{4})t^{2} + (a_{3} + a_{4})t + (a_{4})1.$

We can equate the coefficients to rewrite this as a system of equations:

$$a_1 + a_2 + a_3 + a_4 = 0$$

 $a_2 + a_3 + a_4 = 3$
 $a_3 + a_4 = 2$
 $a_4 = 0$

The augmented matrix form of our system is

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 3 \\ 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

which, upon performing row operations, is row equivalent to

$$\begin{bmatrix} 1 & 0 & 0 & 0 & | & -3 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & | & 1 \end{bmatrix}$$

So our desired coefficients are $a_1 = -3$, $a_2 = 1$, $a_3 = 1$, $a_4 = 1$; in other words,

$$\begin{bmatrix} D(f_3) \end{bmatrix}_{\mathcal{F}} = \begin{bmatrix} D(f_4) \end{bmatrix}_{\mathcal{F}} = \begin{bmatrix} -3 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Therefore,

$$\begin{bmatrix} D \end{bmatrix}_{\mathcal{F} \leftarrow \mathcal{F}} = \begin{bmatrix} \begin{bmatrix} D(f_1) \end{bmatrix}_{\mathcal{F}} & \begin{bmatrix} D(f_2) \end{bmatrix}_{\mathcal{F}} & \begin{bmatrix} D(f_3) \end{bmatrix}_{\mathcal{F}} & \begin{bmatrix} D(f_4) \end{bmatrix}_{\mathcal{F}} \end{bmatrix}$$
$$= \begin{bmatrix} -3 & -3 & -3 & -3 \\ 3 & 1 & 1 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

is the matrix representation of $D: P^3 \to P^3$ with respect to \mathcal{F} .

3.3. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear map defined by

$$T\left(\begin{bmatrix}a\\b\end{bmatrix}\right) = \begin{bmatrix}0 & -1\\1 & 0\end{bmatrix}\begin{bmatrix}a\\b\end{bmatrix}$$

for all $\begin{bmatrix} a \\ b \end{bmatrix} \in \mathbb{R}^2$. Consider the basis

$$\mathcal{B} = \left\{ x_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, x_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$$

(1) Compute the matrix representation of A with respect to $\{x_1, x_2\}$.

Proof. We have

$$T(x_1) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

and

$$T(x_2) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

Let $a_1, a_2 \in \mathbb{R}$ and write

$$a_1x_1 + a_2x_2 = a_1 \begin{bmatrix} 1 \\ -1 \end{bmatrix} + a_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}.$$

г	п
L	1
-	

First, for $T(x_1) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, we have

The augmented matrix form of our system is

$$\begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} 1 & 1\\-1 & 1 \end{bmatrix} \begin{bmatrix} a_1\\a_2 \end{bmatrix}.$$
$$\begin{bmatrix} 1 & 1 & | & 1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 1 & 1 \end{bmatrix}$$
,

which, upon performing row operations, is row equivalent to

$$\begin{bmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 1 \end{bmatrix}.$$

So our desired coefficients are $a_1 = 0$, $a_2 = 1$; in other words,

$$\left[T(x_1)\right]_{\mathcal{B}} = \begin{bmatrix} 0\\1 \end{bmatrix}$$

Next, for $T(x_2) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, we have

$$\begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} 1 & 1\\-1 & 1 \end{bmatrix} \begin{bmatrix} a_1\\a_2 \end{bmatrix}.$$

The augmented matrix form of our system is

$$\begin{bmatrix} 1 & 1 & | & 1 \\ -1 & 1 & | & 1 \end{bmatrix},$$

which, upon performing row operations, is row equivalent to

$$\begin{bmatrix} 1 & 0 & | & -1 \\ 0 & 1 & | & 0 \end{bmatrix}$$

So our desired coefficients are $a_1 = -1$, $a_2 = 0$; in other words,

$$\left[T(x_2)\right]_{\mathcal{B}} = \begin{bmatrix} -1\\ 0 \end{bmatrix}.$$

Therefore,

$$[T]_{\mathcal{B} \leftarrow \mathcal{B}} = \begin{bmatrix} T(x_1) \end{bmatrix}_{\mathcal{B}} \quad \begin{bmatrix} T(x_2) \end{bmatrix}_{\mathcal{B}} \\ = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

is the matrix representation of T with respect to $\{x_1, x_2\}$.

(2) Use the matrix $[T]_{\mathcal{B}\leftarrow\mathcal{B}}$ from part (1) to compute $T\left(\begin{bmatrix}1\\2\end{bmatrix}\right)$.

Proof. In order to compute $T\left(\begin{bmatrix}1\\2\end{bmatrix}\right)$ using $[T]_{\mathcal{B}\leftarrow\mathcal{B}}$, we have to first compute $\left[T\left(\begin{bmatrix}1\\2\end{bmatrix}\right)\right]_{\mathcal{B}}$ using the matrix $[T]_{\mathcal{B}\leftarrow\mathcal{B}}$. From the equation $\begin{bmatrix}1&1\\-1&1\end{bmatrix}\begin{bmatrix}\begin{bmatrix}1\\2\end{bmatrix}\end{bmatrix}_{\mathcal{B}} = \begin{bmatrix}1\\2\end{bmatrix}$,

we obtain the coordinate vector

$$\begin{bmatrix} 1\\2 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 1&1\\-1&1 \end{bmatrix}^{-1} \begin{bmatrix} 1\\2 \end{bmatrix}$$
$$= \begin{bmatrix} \frac{1}{2} & -\frac{1}{2}\\\frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1\\2 \end{bmatrix}$$
$$= \begin{bmatrix} -\frac{1}{2}\\\frac{3}{2} \end{bmatrix}.$$

Therefore, according to Theorem 3.5.1 of Xinli Xiao's lecture notes, we have

$$\begin{bmatrix} T\left(\begin{bmatrix} 1\\2 \end{bmatrix} \right) \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} T \end{bmatrix}_{\mathcal{B} \leftarrow \mathcal{B}} \begin{bmatrix} 1\\2 \end{bmatrix} \end{bmatrix}_{\mathcal{B}}$$
$$= \begin{bmatrix} 0 & -1\\1 & 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{2}\\\frac{3}{2} \end{bmatrix}$$
$$= \begin{bmatrix} -\frac{3}{2}\\\frac{1}{2} \end{bmatrix},$$

	-	
L		
_		

from which we finally obtain

$$T\left(\begin{bmatrix}1\\2\end{bmatrix}\right) = -\frac{3}{2}x_1 - \frac{1}{2}x_2$$
$$= -\frac{3}{2}\begin{bmatrix}1\\-1\end{bmatrix} - \frac{1}{2}\begin{bmatrix}1\\1\end{bmatrix}$$
$$= \begin{bmatrix}-2\\1\end{bmatrix},$$

as desired. This can be verified quickly using the definition of the linear map T:

$$T\left(\begin{bmatrix}1\\2\end{bmatrix}\right) = \begin{bmatrix}0 & -1\\1 & 0\end{bmatrix}\begin{bmatrix}1\\2\end{bmatrix}$$
$$= \begin{bmatrix}-2\\1\end{bmatrix},$$

which is the same answer.