Exercise 3.1. Find the coordinate of the vector $x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \in \mathbb{R}^3$ with respect to the basis

$$\mathcal{U} = \left\{ u_1 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \quad u_3 = \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$

Exercise 3.2. Let P_3 be the vector space of all polynomials of variable t with degree no higher than 3. Find the matrix representation for taking derivative $D: P_3 \to P_3$ with respect to the basis

$$\mathcal{F} = \{ f_1 = t^3, \quad f_2 = t^3 + t^2, \quad f_3 = t^3 + t^2 + t, \quad f_4 = t^3 + t^2 + t + 1 \}.$$

Exercise 3.3. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear map defined by

$$T\left(\begin{bmatrix}a\\b\end{bmatrix}\right) = \begin{bmatrix}0 & -1\\1 & 0\end{bmatrix}\begin{bmatrix}a\\b\end{bmatrix}$$
 for $\begin{bmatrix}a\\b\end{bmatrix} \in \mathbb{R}^2$.

Consider the basis

$$\mathcal{B} = \left\{ x_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, x_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}.$$

- (1) Compute the matrix representation of T with respect to \mathcal{B} .
- (2) Use the above matrix (computed from Part (1)) to compute $T\left(\begin{bmatrix} 1\\2 \end{bmatrix} \right)$.

The homework is due on Apr. 5.

Exercise 3.1. Find the coordinate of the vector $x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \in \mathbb{R}^3$ with respect to the basis

$$\mathcal{U} = \left\{ u_1 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \quad u_3 = \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$

Solution 3.1. To find the \mathcal{U} -coordinate, we need to find the coefficients x_1, x_2, x_3 such that

$$x = x_1 u_1 + x_2 u_2 + x_3 u_3.$$

Then we have a linear system:

$$x_1 \begin{bmatrix} 1\\1\\0 \end{bmatrix} + x_2 \begin{bmatrix} 0\\1\\1 \end{bmatrix} + x_3 \begin{bmatrix} 1\\1\\1 \end{bmatrix} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}.$$

That is

$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$$

The solution is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}.$$

Then we have

$$\begin{bmatrix} x \end{bmatrix}_{\mathcal{U}} = \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}.$$

Exercise 3.2. Let P_3 be the vector space of all polynomials of variable t with degree no higher than 3. Find the matrix representation for taking derivative $D: P_3 \to P_3$ with respect to the basis

$$\mathcal{F} = \{ f_1 = t^3, \quad f_2 = t^3 + t^2, \quad f_3 = t^3 + t^2 + t, \quad f_4 = t^3 + t^2 + t + 1 \}.$$

Solution 3.2. Apply *D* to all basis vectors:

$$D(f_1) = 3t^2$$
, $D(f_2) = 3t^2 + 2t$, $D(f_3) = 3t^2 + 2t + 1$, $D(f_4) = 3t^2 + 2t + 1$

We need to find the \mathcal{F} -coordinates of each result. Let us first compute $x_1f_1 + x_2f_2 + x_3f_3 + x_4f_4$:

$$x_1f_1 + x_2f_2 + x_3f_3 + x_4f_4$$

= $x_1(t^3) + x_2(t^3 + t^2) + x_3(t^3 + t^2 + t) + x_4(t^3 + t^2 + t + 1)$
= $(x_1 + x_2 + x_3 + x_4)t^3 + (x_2 + x_3 + x_4)t^2 + (x_3 + x_4)t + x_4.$

 $D(f_1)$: The equation is $3t^2 = x_1f_1 + x_2f_2 + x_3f_3 + x_4f_4$. Then we have

$$3t^{2} = (x_{1} + x_{2} + x_{3} + x_{4})t^{3} + (x_{2} + x_{3} + x_{4})t^{2} + (x_{3} + x_{4})t + x_{4}.$$

That is

$$x_{1} + x_{2} + x_{3} + x_{4} = 0,$$

$$x_{2} + x_{3} + x_{4} = 3,$$

$$x_{3} + x_{4} = 0,$$

$$x_{4} = 0.$$

$$1 \quad 1 \quad 1 \quad 1 \quad 1 \quad \begin{bmatrix} x_{1} \\ \end{bmatrix} \quad \begin{bmatrix} 0 \\ \end{bmatrix}$$

Then we have

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 0 \\ 0 \end{bmatrix}.$$

4

The solution is $x_1 = -3$, $x_2 = 3$, $x_3 = 0$, $x_4 = 0$. Therefore

$$\begin{bmatrix} D(f_1) \end{bmatrix}_{\mathcal{F}} = \begin{bmatrix} -3 \\ 3 \\ 0 \\ 0 \end{bmatrix}.$$

 $D(f_2)$: The equation is $3t^2 + 2t = x_1f_1 + x_2f_2 + x_3f_3 + x_4f_4$. Then we have

$$3t^{2} + 2t = (x_{1} + x_{2} + x_{3} + x_{4})t^{3} + (x_{2} + x_{3} + x_{4})t^{2} + (x_{3} + x_{4})t + x_{4}.$$

That is

$$x_1 + x_2 + x_3 + x_4 = 0,$$

 $x_2 + x_3 + x_4 = 3,$
 $x_3 + x_4 = 2,$
 $x_4 = 0.$

Then we have

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 2 \\ 0 \end{bmatrix}.$$

Then solution is $x_1 = -3$, $x_2 = 1$, $x_3 = 2$, $x_4 = 0$. Therefore

$$\begin{bmatrix} D(f_2) \end{bmatrix}_{\mathcal{F}} = \begin{bmatrix} -3 \\ 1 \\ 2 \\ 0 \end{bmatrix}.$$

 $D(f_3)$: The equation is $3t^2 + 2t + 1 = x_1f_1 + x_2f_2 + x_3f_3 + x_4f_4$. Then we have

$$3t^{2} + 2t + 1 = (x_{1} + x_{2} + x_{3} + x_{4})t^{3} + (x_{2} + x_{3} + x_{4})t^{2} + (x_{3} + x_{4})t + x_{4}.$$

That is

$$x_1 + x_2 + x_3 + x_4 = 0,$$

 $x_2 + x_3 + x_4 = 3,$
 $x_3 + x_4 = 2,$
 $x_4 = 1.$

Then we have

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 2 \\ 1 \end{bmatrix}.$$

Then solution is $x_1 = -3$, $x_2 = 1$, $x_3 = 1$, $x_4 = 1$. Therefore

$$\left[D(f_3)\right]_{\mathcal{F}} = \begin{bmatrix} -3\\1\\1\\1\\1\end{bmatrix}.$$

 $D(f_4)$: The equation is $3t^2 + 2t + 1 = x_1f_1 + x_2f_2 + x_3f_3 + x_4f_4$. This is actually the same equation as $D(f_3)$ -case. Then we have

$$\begin{bmatrix} D(f_4) \end{bmatrix}_{\mathcal{F}} = \begin{bmatrix} -3 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}.$$

To sum up, the matrix of D with respect to the basis \mathcal{F} of both domain and codomain is

$$\begin{bmatrix} D \end{bmatrix}_{\mathcal{F}\leftarrow\mathcal{F}} = \begin{bmatrix} -3 & -3 & -3 & -3 \\ 3 & 1 & 1 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}.$$

Exercise 3.3. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear map defined by

$$T\left(\begin{bmatrix}a\\b\end{bmatrix}\right) = \begin{bmatrix}0 & -1\\1 & 0\end{bmatrix}\begin{bmatrix}a\\b\end{bmatrix}$$
 for $\begin{bmatrix}a\\b\end{bmatrix} \in \mathbb{R}^2$.

Consider the basis

$$\mathcal{B} = \left\{ x_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, x_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$$

(1) Compute the matrix representation of T with respect to \mathcal{B} .

Solution 3.3. Apply T on the basis vectors of \mathcal{B} :

$$T(x_1) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad T(x_2) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

Now we want to find the \mathcal{B} -coordinates of these two vectors.

 $T(x_1): \text{ The equation is } \begin{bmatrix} 1\\1 \end{bmatrix} = a_1 x_1 + a_2 x_2 = a_1 \begin{bmatrix} 1\\-1 \end{bmatrix} + a_2 \begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} 1 & 1\\-1 & 1 \end{bmatrix} \begin{bmatrix} a_1\\a_2 \end{bmatrix}. \text{ The solution is } a_1 = 0, a_2 = 1. \text{ Then}$

$$\left[\begin{bmatrix} 1 \\ 1 \end{bmatrix} \right]_{\mathcal{B}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

 $T(x_2): \text{ The equation is } \begin{bmatrix} -1\\1 \end{bmatrix} = a_1x_1 + a_2x_2 = a_1 \begin{bmatrix} 1\\-1 \end{bmatrix} + a_2 \begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} 1 & 1\\-1 & 1 \end{bmatrix} \begin{bmatrix} a_1\\a_2 \end{bmatrix}. \text{ The solution is } a_1 = -1, a_2 = 0. \text{ Then}$

$$\left[\begin{bmatrix} -1\\1 \end{bmatrix} \right]_{\mathcal{B}} = \begin{bmatrix} -1\\0 \end{bmatrix}.$$

To sum up, the matrix of T with respect to \mathcal{B} is

$$\begin{bmatrix} T \end{bmatrix}_{\mathcal{B} \leftarrow \mathcal{B}} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$$

(2) Use the above matrix (computed from Part (1)) to compute $T\left(\begin{bmatrix}1\\2\end{bmatrix}\right)$.

Solution 3.3. We first find the \mathcal{B} -coordinate of $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$. That is, to solve the equation $\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$

Then solution is $a_1 =, a_2 =$. Then

$$\begin{bmatrix} 1\\2 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} -1/2\\3/2 \end{bmatrix}.$$

Then

$$\begin{bmatrix} T\left(\begin{bmatrix}1\\2\end{bmatrix}\right) \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} T \end{bmatrix}_{\mathcal{B}\leftarrow\mathcal{B}} \begin{bmatrix} 1\\2 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 0 & -1\\1 & 0 \end{bmatrix} \begin{bmatrix} -1/2\\3/2 \end{bmatrix} = \begin{bmatrix} -3/2\\-1/2 \end{bmatrix}.$$
$$T\left(\begin{bmatrix}1\\2\end{bmatrix}\right) = -\frac{3}{2}x_1 - \frac{1}{2}x_2 = -\frac{3}{2}\begin{bmatrix} 1\\-1 \end{bmatrix} - \frac{1}{2}\begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} -2\\1 \end{bmatrix}.$$

Then