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5.1. Suppose V is finite-dimensional. Then each operator on V has at most dim V distinct eigenvalues.

Proof. Suppose to the contrary that some operator has n > dim V distinct eigenvalues. Then there exist n linearly independent
eigenvectors that correspond with the n distinct eigenvalues, which contradicts the fact that V has at most dim V linearly
independent vectors. Hence, V has at most dim V distinct eigenvalues. �

5.2. (1) Suppose S,T ∈ L(V) are such that ST = TS. Prove that nul(S) is invariant under T .

Proof. Let v ∈ nul(S) be arbitrary; i.e. Sv = 0. Then, since T is a linear map, we have STv = TSv = T(0) = 0, which
means Tv ∈ nul(S). Hence, nul(S) is invariant under T . �

(2) Suppose S,T ∈ L(V) are such that ST = TS. Prove that im(S) is invariant under T .

Proof. Let v ∈ im(S) be arbitrary; i.e. there exists u ∈ V such that S(u) = v. Then we have STu = TSu = Tv, which
means Tv ∈ im(S). Hence, im(S) is invariant under T . �

5.3. See the proof of Theorem 5.4.1. Let v ∈ V . Let {[v1], . . . , [vk]} ⊂ V/span(V) be a basis. Please show that {v, v1, . . . , vk} ⊂ V
is linearly independent, using the definition of linear independence.

Proof. To show that {v, v1, . . . , vk} is linearly independent in V , we need to assume that we have cv + c1v1 + · · · + ckvk = 0
for some scalars c, c1, . . . , ck ∈ C and then show that c = c1 = · · · = ck = 0. To this end, we have from our assumption
c1v1 + · · · + ckvk = −cv ∈ span(v), which means we have

0 = [c1v1 + · · · + ckvk]

= c1[v1] + · · · + ck[vk].

Since the hypothesis states that {[v1], . . . , [vk]} ⊂ V/span(V) is a basis, it follows that the equation c1[v1] + · · · + ck[vk] = 0
implies c1 = · · · = ck = 0. Returning to our equation cv + c1v1 + · · · + ckvk = 0, we conclude c = 0. Hence, we established
c = c1 = · · · = ck = 0, which means {v, v1, . . . , vk} ⊂ V is linearly independent. �

5.4. Suppose V is a finite-dimensional complex vector space and T ∈ L(V). Prove that T has an invariant subspace of dimension
k for each k = 1, . . . , dim V .

Proof. Theorem 5.4.1 of the Notes (also see 5.27 of Axler) asserts that there exists some basis B = {v1, . . . , vdimV } of V such
that we can write

[
T
]
B←B

as an upper triangular matrix. Furthermore, by Remark 5.4.10 of the Notes (also see 5.26 of Axler),
we have

Tv1 ∈ span(v1)

Tv2 ∈ span(v1, v2)

Tv3 ∈ span(v1, v2, v3)

...

TvdimV ∈ span(v1, . . . , vdimV ).

Since T(vk) is a linear combination of v1, . . . , vk , which is equivalent to saying Tvk ∈ span(v1, . . . , vk), it follows that
span(v1, . . . , vk) ⊂ V is an invariant subspace of dimension k. �

5.5. Suppose W is a complex vector space and T ∈ L(W) has no eigenvalues. Prove that every subspace of W invariant under T is
either {0} or infinite-dimensional.

Proof. Let U ⊂ W be a subspace that is invariant under T , i.e. for all v ∈ U we have T(y) ∈ Y . Suppose to the contrary that
U ⊂ W is a non-zero and finite-dimensional subspace. Then there exist a non-zero w ∈ U and λ ∈ C such that Tw = λw; i.e.
there exists an eigenvector w ∈ U. But since we have U ⊂ W , it follows that w is an eigenvector in W as well, which implies
that there exists a corresponding eigenvalue λ of T . But this contradicts our assumption that T has no eigenvalues. Hence, U
is either {0} or infinite-dimensional. �

5.6. Let T ∈ L(C3) be defined by the matrix

A =


2 −2 0
0 3 0
1 6 2

 .
Find a basis of C3 that expresses T as an upper-triangular matrix.



Proof. First, we will consider the standard basis

S :=
e1 =


1
0
0

 , e2 =


0
1
0

 , e3 =


0
0
1


 .

Then the change of basis matrix is [
T
]
S←S

=
[
T(e1) T(e2) T(e3)

]
=


2 −2 0
0 3 0
1 6 2

 .
To find the eigenvalues of T , we have

0 = det(A − λI)

= det

2 − λ −2 0

0 3 − λ 0
1 6 2 − λ


= (2 − λ)2(3 − λ),

from which we obtain our eigenvalues λ = 2 and λ = 3. For λ = 2, we have

0 = (A − 2I)x

=


0 −2 0
0 1 0
1 6 0



x1
x2
x3

 =


0
0
0

 .
So our solution is x =


x1
x2
x3

 =


0
0
x3

 ∈ span


0
0
1


, and so we can choose v1 :=


0
0
1

 to be an eigenvector for λ = 2. Next, we

consider the quotient space V/span(v1). We note that[e1] :=

1
0
0

 + span(v1), [e2] :=

0
1
0

 + span(v1)


is a basis of V/span(v1). We also have V/span(v1) � C

2 because the map from V/span(v1) to C2 defined by [e1] 7→[
1
0

]
, [e2] 7→

[
0
1

]
is an isomorphism; this observation will be useful a bit later. Now we consider the linear map T :

V/span(v1) → V/span(v1) between the quotient spaces. We have

T([e1]) = [T(e1)]

=


2
0
1

 + span(v1)

=


2
0
1

 + span


0
0
1




= 2

1
0
0

 +


0
0
1

 + span


0
0
1




= 2 ©­«

1
0
0

 + span


0
0
1


ª®¬

= 2[e1]



and

T([e2]) = [T(e2)]

=


−2
3
6

 + span(v1)

=


−2
3
6

 + span


0
0
1




= −2

1
0
0

 + 3

0
1
0

 + 6

0
0
1

 + span


0
0
1




= −2 ©­«

1
0
0

 + span


0
0
1


ª®¬ + 3 ©­«


0
1
0

 + span


0
0
1


ª®¬

= 2[e1] + 3[e2].

Using the isomorphism that we introduced just earlier, the matrix representation of T is

B =
[
T([e1]) T([e2])

]
=

[
2[e1] −2[e1] + 3[e2]

]
=

[
2 −2
0 3

]
.

To find the eigenvalues of T , we have

0 = det(B − λI)

= det
[
2 − λ −2

0 3 − λ

]
= (2 − λ)(3 − λ),

from which we get our eigenvalues λ = 2 and λ = 3. For λ = 2, we have

0 = (B − 2I)x

=

[
0 −2
0 1

] [
x1
x2

]
.

So our solution is x =

[
x1
x2

]
=

[
x1
0

]
∈

{[
1
0

]}
. Due to our isomorphism from V/span(v1) to R2, we have that


1
0
0

 + span(v1) is

an eigenvector of T , with v2 :=

1
0
0

 being a representative of this class. Now, we consider the quotient space V/span(v1, v2).

We note that [e2] :=

0
1
0

 + span(v1, v2)


is a basis of V/span(v1, v2). We also have V/span(v1, v2) � C because the map from V/span(v1, v2) to C defined by [e2] 7→[
1
0

]
= 1 is an isomorphism. Now we consider the linear map T : V/span(v1, v2) → V/span(v1, v2) between the quotient



spaces. We have

T([e2]) = [T(e2)]

=


−2
3
6

 + span(v1, v2)

=


−2
3
6

 + span


0
0
1

 ,

1
0
0




= 3

0
1
0

 − 2

1
0
0

 + 6

0
0
1

 + span


0
0
1

 ,

1
0
0




= 3 ©­«

0
1
0

 + span


1
0
0


ª®¬

= 3[e2],

which signifies that λ = 3 is an eigenvalue of T and [e2] :=

0
1
0

 + span(v1, v2) is an eigenvector of T corresponding to λ = 3,

with v3 :=

0
1
0

 being a representative of this class. So the basis of V consisting of these representatives is

B :=
v1 =


0
0
1

 , v2 =


1
0
0

 , v3 =


0
1
0


 .

So the change of basis matrix is

PS←B =


0 1 0
0 0 1
1 0 0

 .
Hence, the upper triangular matrix of T is[

T
]
B←B

= PB←S

[
T
]
S←S

[
P
]
S←B

= P−1
S←B

[
T
]
S←S

[
P
]
S←B

=


0 1 0
0 0 1
1 0 0


−1 

2 −2 0
0 3 0
1 6 2



0 1 0
0 0 1
1 0 0


=


0 0 1
1 0 0
0 1 0



2 −2 0
0 3 0
1 6 2



0 1 0
0 0 1
1 0 0


=


2 1 6
0 2 −2
0 0 3

 ,
as desired. �


