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5. Solutions to Exercise 5

Exercise 5.1. Suppose V is finite-dimensional. Then each operator on V has at most dimV

distinct eigenvalues.

Solution 5.1. Let T ∈ L(V ). Suppose λ1, . . . , λm are distinct eigenvalues of T . Let v1, . . . , vm

be corresponding eigenvectors. Then {v1, . . . , vm} is linearly independent. Thus m ≤ dimV .

Exercise 5.2.

(1) Suppose S, T ∈ L(V ) are such that ST = TS. Prove that Nul(S) is invariant under T .

Solution 5.2. For any v ∈ Nul(S), S(v) = 0. Since ST = TS, S(T (v)) = T (S(v)) =

T (0) = 0. Then T (v) ∈ Nul(S). Then Nul(S) is invariant under T .

(2) Suppose S, T ∈ L(V ) are such that ST = TS. Prove that im(S) is invariant under T .

Solution 5.2. For any v ∈ im(S), there exists w ∈ V such that S(w) = v. Since ST = TS,

T (v) = T (S(w)) = S(T (w)). Then T (v) ∈ im(S). Then im(S) is invariant under T .

Exercise 5.3. See the proof of Theorem 5.4.1. Let v ∈ V . Let {[v1], . . . , [vk]} be a basis

V / Span(v). Please show that {v, v1, . . . , vk} is linearly independent using the definition of

linearly independence.

Solution 5.3. Set up the equation in V :

cv + c1v1 + . . .+ ckvk = 0. (**)

Then c1v1 + . . .+ ckvk = −cv ∈ Span(v). Then [c1v1 + . . .+ ckvk] = 0 ∈ V / Span(v). So

c1[v1] + . . .+ ck[vk] = [c1v1 + . . .+ ckvk] = 0.

Since {[v1], . . . , [vk]} is a basis of V / Span(v), c1 = . . . = ck = 0. Then in Equation (**), we

have cv = 0. Therefore c = 0. Then {v, v1, . . . , vk} is linearly independent. □

Exercise 5.4. Suppose V is a finite-dimensional complex vector space and T ∈ L(V ). Prove

that T has an invariant subspace of dimension k for each k = 1, . . . , dimV .
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Proof. Let n = dimV . By Theorem 5.4.1, there is a basis B = {v1, . . . , vn} such that
[
T
]
B←B

is upper-triangular. Then
T (v1) ∈ Span(v1),

T (v2) ∈ Span(v1, v2),

. . . . . .

T (vn) ∈ Span(v1, . . . , vn).

Then Wk = Span(v1, . . . , vk) is the desired T -invariant subspace of dimension k for any k =

1, . . . , n. □

Exercise 5.5. Suppose W is a complex vector space and T ∈ L(W ) has no eigenvalues. Prove

that every subspace of W invariant under T is either {0} or infinite-dimensional.

Proof. Use contradiction. Assume that there is a finite-dimensional non-zero subspace U of W

invariant under T . Then by Theorem 5.4.2, T |U has an eigenvector in U . Then there exists

w ∈ U , λ ∈ C such that w ̸= 0 and T (w) = λw. Since w ∈ U ⊂ W , w is an eigenvector of T in

W . This is a contradiction. So the assumption is wrong. Then every subspace of W invariant

under T is either {0} or infinite-dimensional. □

Exercise 5.6. Let T ∈ L(C3) which is defined by the matrix

A =


2 −2 0

0 3 0

1 6 2

.
Find a basis C3 to write T as an upper-triangular matrix.

Solution 5.6. Let V = C3. Let S =

e1 =


1

0

0

, e2 =

0

1

0

, e3 =

0

0

1


 be the standard basis.

Then

[
T
]
S←S

=


2 −2 0

0 3 0

1 6 2

.
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(1) Find an eigenvector of T on V : det(A− λI) = 0. Then (2−λ)2(3−λ) = 0. So 2 and 3 are

eigenvalues. We use 2 as our current eigenvalue here. Solve the equation (A − 2I)X = 0

for X ∈ C3. 
2− 2 −2 0

0 3− 2 0

1 6 2− 2

X = 0.

Solutions are X ∈ Span



0

0

1


. We take v1 =


0

0

1

 as our first eigenvector.

(2) Consider the quotient space V / Span(v1). Consider the basis
{[

e1

]
,
[
e2

]}
where

[
e1

]
=


1

0

0

+ Span(v1),
[
e2

]
=


0

1

0

+ Span(v1).

V / Span(v1) ≃ C2 by
[
e1

]
7→

1
0

, [e2] 7→
0
1

.
(3) Since

T
([

e1

])
=
[
T (e1)

]
=



2

0

1


 = 2

[
e1

]
,

T
([

e2

])
=
[
T (e2)

]
=



−2

3

6


 = −2

[
e1

]
+ 3
[
e2

]
.

Therefore under the basis
{[

e1

]
,
[
e2

]}
, the matrix of T is B =

2 −2

0 3

.
(4) Find an eigenvector of T on V / Span(v1): det(B − λI) = 0. Then (2 − λ)(3 − λ) = 0.

So 2 and 3 are eigenvalues. We use 2 as our current eigenvalue here. Solve the equation
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(B − 2I)X = 0 for X ∈ C2 ≃ V / Span(v1).2− 2 −2

0 3− 2

X = 0.

Solutions are X ∈ Span

1
0

. We take v2 =

1
0

. By the isomorphism between C2 and

V / Span(v1),

1
0

 is corresponding to


1

0

0

 + Span(v1). We take a representative from the

class to be v2. For example we can pick v2 =


1

0

0

.
(5) Consider the quotient space V / Span(v1, v2). Consider the basis

{[
e2

]}
where

[
e2

]
=


0

1

0

+ Span(v1, v2).

V / Span(v1, v2) ≃ C by
[
e2

]
7→ 1.

(6) Since

T
([

e2

])
=
[
T (e2)

]
=



−2

3

6


 = 3

[
e2

]
.
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Then
[
e2

]
is an eigenvector of T in V / Span(v1, v2). The vector is corresponding to the

class


0

1

0

+ Span(v1, v2). We take a representative from the class to be v3. For example we

can pick v3 =


0

1

0

.

(7) We now have a basis B =

v1 =


0

0

1

, v2 =

1

0

0

, v3 =

0

1

0


. The change-of-basis PS←B =


0 1 0

0 0 1

1 0 0

. Then the matrix of T is

[
T
]
B←B

= P−1S←B

[
T
]
S←S

PS←B =


2 1 6

0 2 −2

0 0 3

.


