Exercise 5.1. Suppose V is finite-dimensional. Then each operator on V has at most $\dim V$ distinct eigenvalues.

Solution 5.1. Let $T \in \mathcal{L}(V)$. Suppose $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T. Let v_1, \ldots, v_m be corresponding eigenvectors. Then $\{v_1, \ldots, v_m\}$ is linearly independent. Thus $m \leq \dim V$.

Exercise 5.2.

(1) Suppose $S, T \in \mathcal{L}(V)$ are such that ST = TS. Prove that Nul(S) is invariant under T.

Solution 5.2. For any $v \in \text{Nul}(S)$, S(v) = 0. Since ST = TS, S(T(v)) = T(S(v)) = T(0) = 0. Then $T(v) \in \text{Nul}(S)$. Then Nul(S) is invariant under T.

(2) Suppose $S, T \in \mathcal{L}(V)$ are such that ST = TS. Prove that im(S) is invariant under T.

Solution 5.2. For any $v \in im(S)$, there exists $w \in V$ such that S(w) = v. Since ST = TS, T(v) = T(S(w)) = S(T(w)). Then $T(v) \in im(S)$. Then im(S) is invariant under T.

Exercise 5.3. See the proof of Theorem 5.4.1. Let $v \in V$. Let $\{[v_1], \ldots, [v_k]\}$ be a basis $V/\operatorname{Span}(v)$. Please show that $\{v, v_1, \ldots, v_k\}$ is linearly independent using the definition of linearly independence.

Solution 5.3. Set up the equation in V:

$$cv + c_1v_1 + \ldots + c_kv_k = 0.$$
 (**)

Then $c_1v_1 + \ldots + c_kv_k = -cv \in \operatorname{Span}(v)$. Then $[c_1v_1 + \ldots + c_kv_k] = 0 \in V/\operatorname{Span}(v)$. So

$$c_1[v_1] + \ldots + c_k[v_k] = [c_1v_1 + \ldots + c_kv_k] = 0.$$

Since $\{[v_1], \ldots, [v_k]\}$ is a basis of V/ Span(v), $c_1 = \ldots = c_k = 0$. Then in Equation (**), we have cv = 0. Therefore c = 0. Then $\{v, v_1, \ldots, v_k\}$ is linearly independent.

Exercise 5.4. Suppose V is a finite-dimensional complex vector space and $T \in \mathcal{L}(V)$. Prove that T has an invariant subspace of dimension k for each $k = 1, \ldots, \dim V$.

Proof. Let $n = \dim V$. By Theorem 5.4.1, there is a basis $\mathcal{B} = \{v_1, \ldots, v_n\}$ such that $\lfloor T \rfloor_{\mathcal{B} \leftarrow \mathcal{B}}$ is upper-triangular. Then

$$T(v_1) \in \operatorname{Span}(v_1),$$

 $T(v_2) \in \operatorname{Span}(v_1, v_2),$
 $\dots \dots$
 $T(v_n) \in \operatorname{Span}(v_1, \dots, v_n).$

— (

Then $W_k = \operatorname{Span}(v_1, \ldots, v_k)$ is the desired T-invariant subspace of dimension k for any k = $1,\ldots,n.$

Exercise 5.5. Suppose W is a complex vector space and $T \in \mathcal{L}(W)$ has no eigenvalues. Prove that every subspace of W invariant under T is either $\{0\}$ or infinite-dimensional.

Proof. Use contradiction. Assume that there is a finite-dimensional non-zero subspace U of Winvariant under T. Then by Theorem 5.4.2, $T|_U$ has an eigenvector in U. Then there exists $w \in U, \lambda \in \mathbb{C}$ such that $w \neq 0$ and $T(w) = \lambda w$. Since $w \in U \subset W$, w is an eigenvector of T in W. This is a contradiction. So the assumption is wrong. Then every subspace of W invariant under T is either $\{0\}$ or infinite-dimensional.

Exercise 5.6. Let $T \in \mathcal{L}(\mathbb{C}^3)$ which is defined by the matrix

$$A = \begin{bmatrix} 2 & -2 & 0 \\ 0 & 3 & 0 \\ 1 & 6 & 2 \end{bmatrix}.$$

Find a basis \mathbb{C}^3 to write T as an upper-triangular matrix.

Solution 5.6. Let
$$V = \mathbb{C}^3$$
. Let $S = \left\{ e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$ be the standard basis.
Then
$$\begin{bmatrix} T \end{bmatrix}_{S \leftarrow S} = \begin{bmatrix} 2 & -2 & 0 \\ 0 & 3 & 0 \\ 1 & 6 & 2 \end{bmatrix}.$$

(1) Find an eigenvector of T on V: det $(A - \lambda I) = 0$. Then $(2 - \lambda)^2(3 - \lambda) = 0$. So 2 and 3 are eigenvalues. We use 2 as our current eigenvalue here. Solve the equation (A - 2I)X = 0 for $X \in \mathbb{C}^3$.

$$\begin{bmatrix} 2-2 & -2 & 0 \\ 0 & 3-2 & 0 \\ 1 & 6 & 2-2 \end{bmatrix} X = 0.$$

Solutions are $X \in \operatorname{Span} \left(\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right)$. We take $v_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ as our first eigenvector.

(2) Consider the quotient space $V/\operatorname{Span}(v_1)$. Consider the basis $\left\{ \lfloor e_1 \rfloor, \lfloor e_2 \rfloor \right\}$ where

$$\begin{bmatrix} e_1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \operatorname{Span}(v_1), \quad \begin{bmatrix} e_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \operatorname{Span}(v_1).$$

 $V/\operatorname{Span}(v_1) \simeq \mathbb{C}^2$ by $\begin{bmatrix} e_1 \end{bmatrix} \mapsto \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} e_2 \end{bmatrix} \mapsto \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

(3) Since

$$\overline{T}\left(\begin{bmatrix}e_1\end{bmatrix}\right) = \begin{bmatrix}T(e_1)\end{bmatrix} = \begin{bmatrix}2\\0\\1\end{bmatrix} = 2\begin{bmatrix}e_1\end{bmatrix},$$
$$\overline{T}\left(\begin{bmatrix}e_2\end{bmatrix}\right) = \begin{bmatrix}T(e_2)\end{bmatrix} = \begin{bmatrix}-2\\3\\6\end{bmatrix} = -2\begin{bmatrix}e_1\end{bmatrix} + 3\begin{bmatrix}e_2\end{bmatrix}.$$

Therefore under the basis $\left\{ \begin{bmatrix} e_1 \end{bmatrix}, \begin{bmatrix} e_2 \end{bmatrix} \right\}$, the matrix of \overline{T} is $B = \begin{bmatrix} 2 & -2 \\ 0 & 3 \end{bmatrix}$.

(4) Find an eigenvector of \overline{T} on $V/\operatorname{Span}(v_1)$: $\det(B - \lambda I) = 0$. Then $(2 - \lambda)(3 - \lambda) = 0$. So 2 and 3 are eigenvalues. We use 2 as our current eigenvalue here. Solve the equation (B-2I)X = 0 for $X \in \mathbb{C}^2 \simeq V/\operatorname{Span}(v_1)$.

$$\begin{bmatrix} 2 - 2 & -2 \\ 0 & 3 - 2 \end{bmatrix} X = 0.$$

Solutions are $X \in \text{Span}\left(\begin{bmatrix}1\\0\end{bmatrix}\right)$. We take $\overline{v_2} = \begin{bmatrix}1\\0\end{bmatrix}$. By the isomorphism between \mathbb{C}^2 and $V/\text{Span}(v_1)$, $\begin{bmatrix}1\\0\end{bmatrix}$ is corresponding to $\begin{bmatrix}1\\0\\0\end{bmatrix} + \text{Span}(v_1)$. We take a representative from the class to be v_2 . For example we can pick $v_2 = \begin{bmatrix}1\\0\\0\end{bmatrix}$.

(5) Consider the quotient space $V/\operatorname{Span}(v_1, v_2)$. Consider the basis $\left\{ \begin{bmatrix} e_2 \end{bmatrix} \right\}$ where

$$\begin{bmatrix} e_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \operatorname{Span}(v_1, v_2).$$

 $V/\operatorname{Span}(v_1, v_2) \simeq \mathbb{C}$ by $\left[e_2\right] \mapsto 1$.

(6) Since

$$\overline{T}\left(\begin{bmatrix}e_2\end{bmatrix}\right) = \begin{bmatrix}T(e_2)\end{bmatrix} = \begin{bmatrix}-2\\3\\6\end{bmatrix} = 3\begin{bmatrix}e_2\end{bmatrix}.$$

Then $\begin{bmatrix} e_2 \end{bmatrix}$ is an eigenvector of \overline{T} in $V/\operatorname{Span}(v_1, v_2)$. The vector is corresponding to the class $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \operatorname{Span}(v_1, v_2)$. We take a representative from the class to be v_3 . For example we can pick $v_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$. (7) We now have a basis $\mathcal{B} = \left\{ v_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}$. The change-of-basis $P_{\mathcal{S}\leftarrow\mathcal{B}} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$

 $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$. Then the matrix of *T* is

$$\begin{bmatrix} T \end{bmatrix}_{\mathcal{B}\leftarrow\mathcal{B}} = P_{\mathcal{S}\leftarrow\mathcal{B}}^{-1} \begin{bmatrix} T \end{bmatrix}_{\mathcal{S}\leftarrow\mathcal{S}} P_{\mathcal{S}\leftarrow\mathcal{B}} = \begin{bmatrix} 2 & 1 & 6 \\ 0 & 2 & -2 \\ 0 & 0 & 3 \end{bmatrix}.$$