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MATH 132 Homework 4

5.7. Check whether the following matrices are diagonalizable. Note that you do NOT need compute the diagonalized matrix or the
change-of-basis matrix.
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2

3)

210
A=10 5 3
0 0 8

Proof. We can solve the equation
0 =det(A - Al)

2-4 1 0
= det 0 5-2 3
0 0 &-1

=Q2-)DE-)T-2)
to obtain our eigenvalues A = 2,5, 8. All our eigenvalues are distinct, which implies that there exists a basis of eigenvec-

tors. (Recall on a side note that the converse is generally false.) We conclude using Theorem 5.5.2 of the Notes that A is
diagonalizable. o

1 2
3 4

Proof. We can solve the equation

B =

0 = det(B — A1)

sl 52

=(1-D(E-19-03)2)

=212 -51-2

to obtain our eigenvalues A = 5_5/5 , 5+;/§ . All our eigenvalues are distinct, which implies that there exists a basis of
eigenvectors. (Recall on a side note that the converse is generally false.) We conclude using Theorem 5.5.2 of the Notes
that A is diagonalizable. O

2 -1 0
c=10 3 O

1 1 2
Proof. We can solve the equation

0 = det(C — A1)

2-1 -1 0
= det 0 3-4 0
1 1 2-2

=Q2-1’G-2
to obtain our eigenvalues 2, 2, 3. Not all of our eigenvalues are distinct, which means C may or may not be diagonalizable.

If C were diagonalizable, then we would be able to find a basis of eigenvectors; otherwise, if we cannot find such a basis,
then C would not be diagonalizable. For A = 2, we have

0=(C-2)x
0 -1 0ffx
={0 1 Of]|x].
1 1 0] |x3
bl 0 0 0
So a solution can be x = [x2| = | 0| € spanq |0| ¢, and so we can choose |0[ to be an eigenvector for 4 = 2. For
X3 X3 1 1
A =3, we have
0=(C-3D)x
-1 -1 0] |x



X1 X1 1 1

So a solution can be x = |xp| = |—x;| € span3 [—1] ¢, and so we can choose |—1| to be an eigenvector for 1 = 3. We
X3 0 0 0

are able to find only two linearly independent eigenvalues, which means there does not exist a basis of eigenvectors. We

conclude using Theorem 5.5.2 of the Notes that C is not diagonalizable. O

5.8. (1) Suppose T € L(V) is diagonalizable. Prove that V = nul 7 & imT.

Proof. Since T is diagonalizable, by implication (1) = (2) Theorem 5.5.2 of the Notes, V has a basis consisting of
eigenvectors vy, ..., v,. So there exist eigenalues Ai,...,4, € F such that Tv; = A;v; foralli = 1,...,n. We note an
obvious fact that an eigenvalue is either zero or nonzero. Furthermore, there exists k € {1,...,n} such that k of our n
eigenvalues Ai, ..., 4, is zero (this does not contradict Theorem 5.5.2 of the Notes); in this case, our remaning n — k
eigenvalues are nonzero. Without loss of generality, suppose 4; = Oforalli =1,...,kand A; # Oforalli = k+1,...,n.
Ifi=1,...,k, then A; = 0, which means

Tv; = A;v;

= OQv;

=0,
and so vy, ..., v € nul 7T, which implies span{vy,...,vg} =nulT. Ifi = k + 1,.. ., n, then A; # 0, which means

T (lvi) = (lv,-)
Ai A

= vi,

and SO V41, .. ., V, € im T, which implies span{vg1,...,v,} = imT. Hence,

V =span{vy,...,v,}
span{vy,...,vi} @ span{vg+1, ..., Vn}
=nul7T ®imT7,

as desired. O
(2) State the converse of the statement above. Prove it or give a counterexample.
Proof. Converse: If V =nul7T @imT, then T is diagonalizable. We will disprove the converse. For our counterexample,

let V = C? and represent T by the matrix

0 0 0
A=10 1 1j.
0 0 1

Then
Tey = Ae
[0 0 0][1
=10 1 1{f0
0 0 1f|0
[0
= 0],
10
and so e; € nul 7. Solving the equation Av = 0 implies span{e;} = nul7. We also have
Tey = Aen
[0 0 0
=0 1 1f|1
0 0 1
[0
=|0
|1
and
T€3=A€3
[0 0 o]fo0
= 1 110
0 1)1

—_—_ o ocooco



5.9.

5.10.

and so e, e3 € im T, which implies span{e;, e3} = imT. O

Give an example that R, T € .E(C4) such that R and T each have 2, 6, 7 as eigenvalues and no other eigenvalues, and there does
not exist an invertible operator S € £(C*) such that R = S~'TS.

Proof. Consider the two bases & := {ej, ez, e3,e4}, F = {f1, /o, f5, fa} C C*. Since 2, 6,7 are the only eigenvalues of S, 7,
we can choose a matrix representation of R with respect to & to be

21 00

0200
4=10 0 6 0

0 0 0 7

and a matrix representation of 7' with respect to ¥ to be

2 0 00

0200
B=10o 0 6 of

0 0 0 7

Based on the matrix representations A, B, we find that R is diagonalizable but T is not diagonalizable. Assume to the contrary
that there exists an invertible operator S € £(C*) such that R = S7!TS. Letv; = S~!(f;) and v, = S7!(f). Since { fi, o} ¢ C?
is a linearly independent set and S is a linear map, it follows that {v{,v,} ¢ C? is also a linearly independent set. But we also
have
RV] = S_ITSvl

=S7'TS(S7' /1)

=S7'TH

=57'2f)

=257'(f)

= 2V1
and

Rv, = SilTsvz
=S7'TS(S7' fr)
=5'Th
=57'2f)

=257'(f)
= 2vy,

which means that v, v, are both eigenvectors of R corresponding to 4 = 2. On the other hand, since 2 is an eigenvalue of R,
we have

0=(A-2yv
0100
10 0 0 O
1o 0o 4 of
0 0 05
0 0
which implies v € span (1) , and so any eigenvector of R must be a scalar of multiple of (1) . So the contradiction here is
0 0

that an argument using the bases &, F of C* asserts that R has two linearly independent eigenvectors, but at the same time our
direct computation establishes that R has only one linearly independent eigenvector. Hence, the invertible operator S € £(C*)
does not exist. O

Let V be finite-dimensional, and S, T € L(V). Suppose T has dim V distinct eigenvalues, and S has the same eigenvectors as
T (not necessarily with the same eigenvalues). Prove that ST = T'S.



5.11.

Proof. Let Ay,...,Adgimy € F be the dimV distinct eigenvalues of 7. Then there exist dimV linear independent vectors

V1, ..., Vdimv, Which by definition satisfy Tv; = A;v; foralli = 1,...,dim V. Since S has the same eigenvectors vy, . . ., Vdimv
as T, there exist corresponding eigenvalues uj, . . ., tgimv € F such that Sv; = y;v; foralli = 1,...,dim V. Now we consider
an arbitrary vector v € V. Since {vi,...,vaimy} C V is a basis, we can write v = ¢{v] + -+ + CdimyVdimy for some
Cl,...,cdimv € F. Soforall v € V we have

STv = ST(cvi + -+ + CdimvVdimV)
=S(c1Tvy + -+ + ciimvT Vdimv)
= S(c1A1vi + -+ - + Cdimv Adim VVdim V)
=c1A1Sv1 + - -+ + cu Adim v Sdimv

= c1 A1 vy + -+ - + Cdim v Adim V Hdim V Vdim V

and
TSv =TS(civi + -+ + CdimVVdimV)
=T(c1Svi + -+ + cdimvSVdimv)
= S(c1p1vi + -+ + CdimV Mdim V Vdim V)
= u18vy + - - + Cpdim v Sdim v
= cipd1vy + -+ + Cdimv Mdim vV Adim v Vdim V -
So we proved STv = T'Sv for all v € V, which is equivalent to proving ST = T'S. O

The Fibonacci sequence Fy, F5, . . . is defined by
Fi=1,FK=1F,=F,,+F,_yforn>3,

()

Note: For parts (2)-(4), I am presenting a solution to finding eigenvalues and eigenvectors that is different from your in-
structor’s, without finding a matrix representation of the linear map T. This matrix-free approach is how the textbook author
Sheldon Axler wanted his readers to do this exercise. However, this solution here is only for your amusement, because for
your MATH 132 class your instructor would like you to follow the standard matrix approach to this problem, among other

problems.
A 1O\ _ | Fu
()=

Proof. The proof will be by induction. At n = 1, we have

Define T € L(R?) by

y
xX+y

(1) Show that

for each positive integer n.

Assuming that the statement for n = k, which is

is true, we will prove the statement for n = k + 1:

This completes our proof by induction. O
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3)

“)

Find the eigenvalues of 7.

x|. . . .
Proof. If we assume that [y] is an eigenvector of 7', then there exists some eigenvalue A € R such that

(3=

So we have
Ax x|
=1
sl=+[>
(|3
y
_|
x+y|’
or in other words, the system of equations
Ax =y
Ay =x+y.

We can algebraically rearrange the second equation 1y = x + y to get (1 — 1)y = x, which implies
(AP =2-Dy=2a-1)y-y
=Ax-Yy
=y-Yy
=0.
We claim y # 0; otherwise, if y = 0, then the second equation Ay = x + y will force x = 0, and so we would have

is an eigenvector of 7. Since we proved our claim y # 0, the equation

[x] = [O] contradicting our assumption that [x
(2> = A - 1)y = 0 implies 2> — A — 1 = 0, from which we obtain the eigenvalues 1; = O

1-V5 3 1435
2 2T T
Find a basis of R? consisting of eigenvectors of 7.

Proof. For A1 = %5, we have

<

’

xX+y

from which we can equate the entries to construct the system of equations

1-+5
X =
) y
1-+5
y=Xx+y.
. X X 1 1 )
So a solution can be y =115 € span | _v5| and so we can choose v; = ARS be an eigenvector for
7 2 2
1-v5 ini 1 : : 1+v5
A1 = —=. By a similar argument, we can choose v2 = |, y3 | to be an eigenvector for the eigenvalue 1, = =5=. So
2
. . 1 1 )
we can choose a basis of eigenvectors to be 8 = {v| = 1-v5|sv2=|1445]|1 C R~. O
2 2

Use the basis from part (3) to compute 7" ([(1)] ) Conclude that

Fn:%((uzws)"_(l_f)n)

for each positive integer n.



Proof. Since 8 C R? is a basis of eigenvectors, we can write [1 € R? as a linear combination of the eigenvectors as

follows:

i
1 =avy +axvy

1 1
=a1|1-v5| T a2 1445
2 2
[ a) +ap
= 11=45 1+5 g
Sear+ 5 ay

from which we can equate the entries to construct the system of equations

O=a; +a

:1—\/5 1+ 5

1 +
@ 2

ar.

We can apply first equation O = a; + a, or equivalently a» = —ay, to the second equation 1 = l_ﬁal + 1+‘5a2 to obtain
pply q q y q

2 2
1-+5 1+ 5
1= ap + ap

2 2
1-vV5  1+45
= ay — a
2 ! 2
(1-V5) - (1+ V5)
= ay
2
= —V5a,,
from which we get a; = —%, followed immediately by a, = % Therefore, we have

[

) =T"(aivi + axv)

= alT”vl + azT”Vz

= a1 Afvi + a5 v

Since T" ([(1)]) = [ FF" ] at the same time, we obtain
n+1

Fn=\%((1+2«/§)"_(1_2\5)n)’

as desired. O



