
5. Solutions to Exercise 5

Exercise 5.7. Check whether the following matrices are diagonalizable. Note that you do

NOT need compute the diagonalized matrix or the change-of-basis matrix.

(1) A =


2 1 0

0 5 3

0 0 8

.

Solution 5.7. A is upper-triangular matrix. Then its diagonal consists of all its eigenval-

ues, which are 2, 5, 8. Since all are distinct, A is diagonalizable.

(2) B =

1 2

3 4

.

Solution 5.7. The equation det(B − λI) = 0 is (1 − λ)(4 − λ) − 6 = 0. The equation is

λ2 − 5λ− 2 = 0, which has two distinct solutions since (−5)2 − 4× 1× (−2) ̸= 0. Then B

has two distinct eigenvalues. Then it is diagonalizable.

(3) C =


2 −1 0

0 3 0

1 1 2

.

Solution 5.7. The equation det(C − λI) = 0 is (2− λ)2(3− λ) = 0. It has two solutions

2 and 3 where 2 is a double solution.

• For eigenvalue λ = 2, the eigenspace is the solution to the equation (C − 2I)X = 0 for

X ∈ C3: 
2− 2 −1 0

0 3− 2 0

1 1 2− 2

X = 0.

The solution is X ∈ Span



0

0

1


.

1
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• For eigenvalue λ = 3, the eigenspace is the solution to the equation (C − 3I)X = 0 for

X ∈ C3: 
2− 3 −1 0

0 3− 3 0

1 1 2− 3

X = 0.

The solution is X ∈ Span




1

−1

0


.

Then we can only find two linearly independent eigenvectors. Therefore C is not diagonal-

izable.

Exercise 5.8.

(1) Suppose T ∈ L(V ) is diagonalizable. Prove that V = Nul(T )⊕ im(T ).

Solution 5.8. Since T is diagonalizable, then there exists a basis of V {v1, . . . , vn} con-

sisting of eigenvectors. Then there exists λ ∈ F such that T (vi) = λivi for i = 1, . . . , n.

Without loss of generality, we may assume that λ1 = . . . = λk = 0 and λk+1, . . . , λn ̸= 0.

Then v1, . . . , vk ∈ Nul(T ), and vk+1, . . . , vn ∈ im(T ). So since V = Span(v1, . . . , vk) ⊕

Span(vk+1, . . . , vn) = Nul(T )⊕ im(T ).

(2) State the converse of the statement above. Prove it or give a counterexample.

Solution 5.8. The converse is “If V = Nul(T )⊕ im(T ), then T is diagonalizable.” V = C3

and T being defined by A =


0 0 0

0 1 1

0 0 1

 is a counter example. Here Nul(T ) = Span(e1), and

im(T ) = Span(e2, e3) but A is not diagonalizable.

Exercise 5.9. Give an example that R, T ∈ L(C4) such that R and T each have 2, 6, 7 as

eigenvalues and no other eigenvalues, and there does not exist an invertible operator S ∈ L(C4)

such that R = S−1TS.
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Solution 5.9. Let E = {e1, e2, e3, e4} and F = {f1, f2, f3, f4} be two bases. Let R be defined

by


2 1 0 0

0 2 0 0

0 0 6 0

0 0 0 7


under the basis E and T be defined by


2 0 0 0

0 2 0 0

0 0 6 0

0 0 0 7


under the basis F .

Assume such an invertible operator S exists. Then let v1 = S−1(f1) and v2 = S−1(f2). Since

{f1, f2} is linearly independent, {v1, v2} should be linearly independent. Since

R(v1) = S−1TS(v1) = S−1T (f1) = S−1(2f1) = 2S−1(f1) = 2v1,

R(v2) = S−1TS(v2) = S−1T (f2) = S−1(2f2) = 2S−1(f2) = 2v2,

v1 and v2 are linearly independent eigenvectors of R corresponding to the eigenvalue 2, which

is impossible. Therefore the assumption is wrong. Then such an invertible operator doesn’t

exist.

Exercise 5.10. Let V be finite-dimensional, and T, S ∈ L(V ). Suppose T has dimV distinct

eigenvalues, and S has the same eigenvectors as T (not necessarily with the same eigenvalues).

Prove that ST = TS.

Solution 5.10. Since T have dimV distinct eigenvalues, the eigenvectors of T corresponding

to distinct eigenvalues form a basis. Let v1, . . . , vn be these eigenvectors and λ1, . . . , λn be

corresponding eigenvalues. Then we have T (v1) = λ1v1, . . . , T (vn) = λnvn.

S has the same eigenvectors as T , and we denote the corresponding eigenvalues by µ1, . . . , µn.

Then we have S(v1) = µ1v1, . . . , S(vn) = µnvn.

For any v ∈ V , since {v1, . . . , vn} is a basis of V , v = c1v1 + . . .+ cnvn. Then

TS(v) = TS(c1v1 + . . .+ cnvn) = T (c1S(v1) + . . .+ cnS(vn)) = T (c1µ1v1 + . . .+ cnµnvn)

= c1µ1T (v1) + . . .+ cnµnT (vn) = c1µ1λ1v1 + . . .+ cnµnλnvn,

and

ST (v) = ST (c1v1 + . . .+ cnvn) = S(c1T (v1) + . . .+ cnT (vn)) = S(c1λ1v1 + . . .+ cnλnvn)

= c1λ1S(v1) + . . .+ cnλnS(vn) = c1λ1µ1v1 + . . .+ cnλnµnvn.
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So TS(v) = ST (v). Since this holds for any v ∈ V , ST = TS.

Exercise 5.11. The Fibonacci sequence F1, F2, . . . is defined by

F1 = 1, F2 = 1, and Fn = Fn−2 + Fn−1 for n ≥ 3.

Define T ∈ L(R2) by

T

x
y

 =

 y

x+ y

.
(1) Show that T n

0
1

 =

 Fn

Fn+1

 for each positive integer n.

Solution 5.11. Use induction. Let P (n) =“T n

0
1

 =

 Fn

Fn+1

” for each positive

integer n.

Base case n = 1: T 1

0
1

 =

 1

0 + 1

 =

1
1

 =

F1

F2

.

Induction Step: Assume that P (k) is true for some k ≥ 1. Then T k

0
1

 =

 Fk

Fk+1


for some k ≥ 1. Then

T k+1

0
1

 = T

T k

0
1

 = T

 Fk

Fk+1

 =

 Fn+1

Fn + Fn+1

 =

Fn+1

Fn+2

.
Then P (k + 1) is true.

By induction, P (n) is true for any n ≥ 1. Then T n

0
1

 =

 Fn

Fn+1

 for each positive

integer n.

(2) Find the eigenvalues of T .
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Solution 5.11. Let S =

e1 =

1
0

, e2 =
0
1

 be a basis of R2. Then since

T (e1) = T

1
0

 =

0
1

 = e2,

T (e2) = T

0
1

 =

1
1

 = e1 + e2,

The matrix of T is

A =
[
T
]
S←S

=

0 1

1 1

.
To find the eigenvalues, we need to solve the equation det(A− λI) = 0. That is λ2−λ−1 =

0. So eigenvalues are 1±
√
5

2
.

(3) Find a basis of R2 consisting of eigenvectors of T .

Solution 5.11. Consider the two eigenvalues λ one by one.

λ =
1 +

√
5

2
: Solve the equation (A− 1 +

√
5

2
I)X = 0 for X ∈ R2. Solutions are

X ∈ Span

√5−12

1

.

λ =
1−

√
5

2
: Solve the equation (A− 1−

√
5

2
I)X = 0 for X ∈ R2. Solutions are

X ∈ Span

−√5−12

1

.

Then B =

v1 =

√5−12

1

, v2 =
−√5−12

1

 is a basis consisting of eigenvectors of T . Then

the matrix under this basis is

[
T
]
B←B

=

1+
√
5

2
0

0 1−
√
5

2

.
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(4) Use the basis from part (c) to compute T n

0
1

. Conclude that

Fn =
1√
5

[(
1 +

√
5

2

)n

−

(
1−

√
5

2

)n]

for each positive integer n.

Solution 5.11. Since B =

v1 =

√5−12

1

, v2 =
−√5−12

1

 is a basis, the change-of-basis

matrix

PS←B =

√5−12
−
√
5−1
2

1 1

.
Then [

e2

]
B
= P−1S←B

[
e2

]
S
=

√5−12
−
√
5−1
2

1 1

−10
1

 =
1√
5

√5+1
2

√
5−1
2

.
ThenT n

0
1


B

=
[
T n(e2)

]
B
=
[
T n

]
B←B

[
e2

]
B
=
[
T
]n
B←B

[
e2

]
B
=

1+
√
5

2
0

0 1−
√
5

2

n

1√
5

√5+1
2

√
5−1
2



=


(

1+
√
5

2

)n
0

0
(

1−
√
5

2

)n
 1√

5

√5+1
2

√
5−1
2

 =
1√
5


(

1+
√
5

2

)n+1

−
(

1−
√
5

2

)n+1

.
Then

T n

0
1

 =
1√
5

(1 +
√
5

2

)n+1

v1 −

(
1−

√
5

2

)n+1

v2


=

1√
5

(1 +
√
5

2

)n+1
√5−12

1

−

(
1−

√
5

2

)n+1
−√5−12

1



=
1√
5


(

1+
√
5

2

)n
−
(

1−
√
5

2

)n(
1+
√
5

2

)n+1

−
(

1−
√
5

2

)n+1

.
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Since T n

0
1

 =

 Fn

Fn+1

, then

Fn =
1√
5

[(
1 +

√
5

2

)n

−

(
1−

√
5

2

)n]
.
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