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8.1. Let V be a finite-dimensional complex vector space of dimension n, and T ∈ L(V). Please show that nul Tn and im Tn are
invariant under T .

Proof. If v ∈ nul Tn be arbitrary, then Tnv = 0, which implies Tn(Tv) = T(Tnv) = T(0) = 0, and so Tv ∈ nul Tn, which
means nul Tn is invariant under T . If w ∈ im Tn is arbitrary, then there exists u ∈ V such that Tnu = w, which implies
Tn(Tu) = T(Tnu) = Tw, and so Tw ∈ im Tn since T ∈ L(V) implies Tu ∈ V , which means im Tn is invariant under T . �

8.2. Suppose T ∈ L(V) and m is a non-negative integer. Show that nul Tm = nul Tm+1 if and only if im Tm = im Tm+1.

Proof. We will first prove the forward direction: If nul Tm = nul Tm+1, then im Tm = im Tm+1. Since we assumed nul Tm =

nul Tm+1, we can apply the Rank-Nullity Theorem twice to obtain

dim im Tm = dim V − dim nul Tm

= dim V − dim nul Tm+1

= dim im Tm+1.

We recall part (1) of Exercise 8.14 (instructor’s additional exercise) which asserts im Tm ⊇ im Tm+1 for all integers m ≥ 0.
But, in order to satisfy dim im Tm = dim im Tm+1, we must have im Tm = im Tm+1. Now we will prove the backward
direction: If im Tm = im Tm+1, then nul Tm = nul Tm+1. Since we assumed im Tm = im Tm+1, we can apply the Rank-Nullity
Theorem twice to obtain

dim nul Tm = dim V − dim im Tm

= dim V − dim im Tm+1

= dim nul Tm+1.

We recall Lemma 8.1.1 of the Notes which asserts nul Tm ⊆ nul Tm+1 for all integers m ≥ 0. But, in order to satisfy
dim nul Tm = dim nul Tm+1, we must have nul Tm = nul Tm+1. �

8.3. Let T ∈ L(C2) be defined in the following ways. Find all the generalized eigenspaces.

(1) T
( [

a
b

] )
=

[
−b
a

]
Proof. We consider the standard basis S :=

{
e1 =

[
1
0

]
, e2 =

[
0
1

]}
. To find the eigenvalues of T , we can let A = [T]S←S be

the matrix representation of T with respect to S and solve the equation det(A − λI) = 0; that is, we have

A =
[
T(e1) T(e2)

]
=

[
T

( [
1
0

] )
T

( [
0
1

] )]
=

[
0 −1
1 0

]
,

and so

0 = det(A − λI)

= det
( [
−λ −1
1 −λ

] )
= λ2 + 1
= (λ + i)(λ − i),

from which we obtain the eigenvalues λ = i,−i. As we have two distinct eigenvalues, there exist at least two linearly
independent eigenvectors corresponding to their respective eigenvalues, and so there must be at least two eigenspaces. Remark
8.2.4 of the Notes implies in particular that the eigenvectors for λ = i,−i are examples of generalized eigenvectors for λ = i,−i.
Note that we can have no more than two eigenspaces in C2; otherwise, if we had more than two eigenspaces in C2, then the
basis of C2 would contain at least three linearly independent vectors, implying that dimC2 ≥ 3, which is a contradiction. So



we have exactly two eigenspaces, and furthermore all generalized eigenspaces VG
i ,V

G
−i are eigenspaces Vi,V−i . To say this

more explicitly: for λ = i we can solve

0 = (A − iI)x

=

[
−i −1
1 −i

] [
x1
x2

]
to obtain x =

[
x1
x2

]
=

[
x1
−ix1

]
∈ span

{[
1
−i

]}
= Vi = VG

i , and for λ = −i we can solve

0 = (A − (−i)I)x

=

[
i −1
1 i

] [
x1
x2

]
to obtain x =

[
x1
x2

]
=

[
x1
ix1

]
∈ span

{[
1
i

]}
= V−i = VG

−i . �

(2) T
( [

a
b

] )
=

[
b
0

]
Proof. We consider the standard basis S :=

{
e1 =

[
1
0

]
, e2 =

[
0
1

]}
. To find the eigenvalues of T , we can let A = [T]S←S be

the matrix representation of T with respect to S and solve the equation det(A − λI) = 0; that is, we have

A =
[
T(e1) T(e2)

]
=

[
T

( [
1
0

] )
T

( [
0
1

] )]
=

[
0 1
0 0

]
,

and so

0 = det(A − λI)

= det
( [
−λ 1
0 −λ

] )
= λ2,

from which we obtain the eigenvalue λ = 0 of multiplicity 2, which implies that there exists a generalized eigenspace VG
0 of

dimension 2. By Theorem 8.2.5 of the Notes, we have VG
0 = nul(A − 0I)2. To find elements of nul(A − 0I)2 is equivalent to

solving (A − 0I)2 = 0. So we have

0 = (A − 0I)2x

=

( [
0 1
0 0

] )2 [
x1
x2

]
=

[
0 0
0 0

] [
x1
x2

]
.

So we have x =

[
x1
x2

]
=

[
x1
0

]
+

[
0
x2

]
∈ span

{[
1
0

]
,

[
0
1

]}
= span{e1, e2} = V . Altogether, we have

VG
0 = nul(A − 0I)2

= span{e1, e2}

= V ;

in other words, VG
0 = V is the generalized eigenspace for λ = 0. �

8.4. Prove or give a counterexample: If V is a complex vector space and dim V = n and T ∈ L(V), then Tn is diagonalizable.

Proof. Counterexample: Let V = C2 so that V is a complex vector space with dim V = 2, and let

A =

[
1 1
0 1

]



be the matrix representation of T so that T ∈ L(V). Then

A2 =

[
1 2
0 1

]
is a matrix representation of T2. But the only eigenvalue of A2 is λ = 1, which produces only one linearly independent

eigenvector such as
[
1
0

]
. So there does not exist a basis of eigenvectors of T2 in C2, and so Theorem 5.5.2 of the Notes implies

that T2 is not diagonalizable. �

8.5. Suppose V is a complex vector space and T ∈ L(V). Prove that V has a basis consisting of eigenvectors of T if and only if
every generalized eigenvector of T is an eigenvector of T .

Proof. We will first prove the forward direction: If V has a basis consisting of eigenvectors of T , then every generalized
eigenvector of T is an eigenvector of T . Let v ∈ VG

λ , which means v is a generalized eigenvector for the eigenvalue λ. We
note that generalized eigenspaces such as VG

λ intersect other eigenspaces for different eigenvalues not equal to λ at {0}, which
implies that v will not be a scalar multiple of the eigenvectors of the eigenspaces that intersect VG

λ trivially. So v is only a
linear combination of eigenvectors for our eigenvalue λ, which means v ∈ Vλ. Therefore, VG

λ ⊂ Vλ, meaning every generalized
eigenvector of T is an eigenvector of T . (Of course, we also have Vλ ⊂ VG

λ because clearly every eigenvector of T is also a
generalized eigenvector of T , so we really have Vλ = VG

λ , but that is technically not too relevant here.)

Now we will prove the backward direction: If every generalized eigenvector of T is an eigenvector of T , then V has a basis
consisting of eigenvectors of T . Since we assumed that every generalized eigenvector of T is an eigenvector of T , it follows
that every generalized eigenspace of T is an eigenspace of T . We also know by Theorem 8.3.2 of the Notes that V is a direct
sum of generalized eigenspaces, which means V is also a direct sum of eigenspaces. By Theorem 5.5.2 of the Notes, T is
diaongalizable; equivalently, V has a basis consisting of eigenvectors of T . �


