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MATH 132 Homework 6

8.6. Suppose S,T € L(V) and ST is nilpotent. Prove that 7'S is nilpotent.

Proof. Since ST is nilpotent, there exists some positive integer i such that (ST)" = 0. So, using associativity of linear maps,

we have
(TS)*! = (TS)TS)--- (TSTS)
i+1 terms
=T(ST)---(ST) S
| —
i terms
=T(ST)'S
=708
=0,
and so T'S is nilpotent. O

8.7. Prove or give a counterexample: The set of nilpotent operators on V is a subspace of L(V).

Proof. Disprove: Define S, T by their matrix representations

0 1
=)o o
00
B=1 0}’

respectively. Then A> = B? = 0, which means S, T are nilpotent. But at the same time we have

0 1
A+B_[1 0}.

Then, for all positive integers i, we have (A + B)! = I if i is even and (A + B)' = A+ B if i is odd. In other words, (A + B)' # 0
for all positive integers i, which means S + T is not nilpotent. This violates the closure property of a subspace, and so the set
of nilpotent operators on V is not a subspace of L(V). O

8.8. Give an example of an operator T on a finite-dimensional real vector space such that O is the only eigenvalue of 7 but T is not
nilpotent.

0 0 O
A=10 0 -1
01 O

0 0 0
A2=10 -1 0],

0 -1

[0 0
Ad=lo o 1],

0 -1 0

[0 0 0
A*=1(0 1 of,

0 0 1
A = A

all of which are clearly nonzero matrices. This means for all integers i > 5 that A’ is a product of A, A2, A3, A* and hence
nonzero. This is enough to demonstrate that we have A' # 0, and therefore T* # 0, for all positive integers i, and so T is not
nilpotent. O



8.9.

8.10.

Suppose T € L(C*) is such that the eigenvalues of T are 3,5, 8. Prove that (T — 31)*(T — 5I)>(T — 81)*> =0

Proof. We have that 3, 5, 8 are the only three distinct eigenvalues of 7" and the size of the matrix representation of 7T is 4. Since
this matrix representation of 7 is similar to the corresponding Jordan canonical form of 7, we can determine that the largest
Jordan block is 2 x 2. This implies the highest degree of a factor of a minimal polynomial is 2. So the minimal polynomial of
T is exactly one of (x — 3)*(x — 5)(x — 8), (x — 3)(x — 5)*(x — 8), (x — 3)(x — 5)(x — 8)?; in other words, we have exactly one of
(T = 30T = SI)NT - 81) = 0,(T = 3I)(T — SI)X(T — 81) = 0,(T — 3I)(T — 5I)(T — 8I)* = 0, which means in all three cases
we get (T — 30)%(T = 51)*(T - 81)> =0

Alternate proof: Theorem 8.3.2 of the Notes asserts that V is a direct sum of generalized eigenspaces; that is, C* = VG
VE @ V. Taking dimensions, we get 4 = dim C* = dim V¥ + dim VE + dim V. This implies that one of V,°, VE, V& must
have dlmenswn 2 and the other two have dimension 1; in other Words one of the eigenvalues 3, 5, 8 have multiplicity 2 and
the other two multiplicity 1. For instance, if 3 has multiplicity 2, then there exists a generalized eigenvector x € C* satlsfylng
(T - 31)*x = 0, which implies (T — 37)> = 0. In any case, we have exactly one of (T —31)? =0,(T —51)*> =0,(T - 81)> =
which means in all three cases we get (T — 31)(T — 51)*(T — 81)* = 0. O

(1) Give an example of an operator on C* whose characteristic polynomial equals (x — 1)(x — 3)3 and whose minimal
polynomial equals (x — 1)(x — 3).

Proof. Let 8 c C* be a basis and define A = [T]g_g by

1 00 0
03 10
A=10 0 3 ol
000 3

Then, by Definition 8.4.2 of the Notes, the characteristic polynomial of A is

I-x 0 0 0
0 3-x 1 0
0 0 3-x 0
0 0 0 3-x
=(1-x3-x)’
=(x - 1)(x=3).

det(A — xI) = det

To find the minimal polynomial of A, we evaluate all the factors of our characteristic polynomial of A. We have

0 0 0 0][-2 0 0 0
0o210/lo 010
A=DA=3D=\5 6 2 ollo 0 0 o
0 00 2[0o 000
0 0 0 0
oo 2 0
=100 0 0
0 0 0 0
£0,

which means (x — 1)(x — 3) is not the minimal polynomial of A. This implies that all factors of (x — 1)(x — 3)—that
is, x — 1, x — 3—are also not minimal polynomials of A; otherwise, if either x — 1 or x — 3 were, then we would have
A—1=0or A-3I =0, either of which would imply (A — I)(A — 3I) = 0 which contradicts (A — I)(A — 31) # 0.
However, we have

0 0 0 0[[-2 0 0 0
, o2 1 0/lo o1 o0
A=-D@A-30"=1 6 2 ollo 0 0 o
0 00 2[0o 000
0 0 0 0l[4 0 0 0
Jo2 1 0|lo 00 o0
=lo 0o 2 ollo 0o 0 0
000 20000
0 0 0 0
o0 0 o0
=100 0 0
0 0 0 0
- 0.

So the minimal polynomial of A is (x — 1)(x — 2)2. O



(2) Give an example of an operator on C* whose characteristic and minimal polynomials both equal x(x — 1)?(x — 3).
Proof. Let C c C* be a basis and define B = [T]|¢cc by

[0

SO = O
S = = O
w o oo

0
0
0
Then, by Definition 8.4.2 of the Notes, the characteristic polynomial of B is

[—x 0 0 0
0 1-x 1 0

0 0 1-x 0

| 0 0 0 3-x

=-x(1-x)*B-x)

= x(x - 1)*(x - 3).

det(B — xI) = det

To show that the minimal polynomial of B is our characteristic polynomial of B, we need to show that all the factors of
our characteristic polynomial of B of lower degree is not the minimal polynomial of B. We have

0 0 0 0][-1 0 0 0][=3 0 0 0
o1 10/lo o1o0llo -2 1 o
BB-DE=3D=\ 6 1 ollo 0 0 ollo 0 -2 o0
o 00 3/[0o 0020 0 0 o0
0 0 0 0]
oo 2 0
=lo 0o 0 o
o 0 0 o
£0,

which means x(x — 1)(x — 3) is not the minimal polynomial of A. This implies that all the factors of lower degree—that
is, x,x — 1, x = 3, x(x — 1), x(x — 3), (x — 1)(x — 3)—are also not minimal polynomials of B; otherwise, if any one of
them were, then we would have one of B=0,B—-1=0,B-31=0,B(B-1)=0,B(B-31)=0,(B-1)(B-31)=0,
any one of which would imply B(B — I)(B — 3I) = 0 which contradicts B(B — I)(B — 3I) # 0. Hence, none of
x,x—1,x=3 x(x—=1), x(x=3), (x = 1)(x = 3), x(x — 1)(x — 3) are minimal polynomials of B, which means x(x —1)?(x —3)
must be the minimal polynomial of B and therefore coincide with the characteristic polynomial of B. O

8.11. Suppose V is a complex vector space and T € L(V). Prove that V has a basis consisting of eigenvectors of T if and only if the
minimal polynomial of T has no repeated zeros.

Proof. (I am stacking “if and only if" statements instead of proving the forward and backward directions separately.) Theorem
5.5.2 of the Notes asserts that V has a basis consisting of eigenvectors of T if and only if T is diagonalizable. And T is
diagonalizable if and only if the largest Jordan block corresponding to any eigenvalue of T is size 1 X 1. Finally, Remark 8.4.6
of the Notes asserts that each factor (x — A;)"" of a minimal polynomial (x — A;)™ - - - (x — A,;,)"™ is related to a Jordan block
Ja, of the size r;. So each Jordan block is size 1 X 1 if and only if the minimal polynomial of 7 has no repeated zeros. O

8.12. Let

(=R
S O =
(=]

0
0
1
0 0 0O
Please find the characteristic polynomial and minimal polynomial of N

Proof. By Definition 8.4.2 of the Notes, the characteristic polynomial of N is

-x 1 0 0

0 x 1 0
det(N — xI) = det 0 0 -x 1

0 0 0 -—x



8.13.

Also, we have

[0 0 1 0]
0 0 0 1
2 _
N=1lo 0 0 of
0 0 0 0
[0 0 0 1]
00 00
3_
N=lo 0 0 of
0 0 0 0
[0 0 0 0]
00 00
4 _
N=lo 0 0 of
0 0 0 0
and so the minimal polynomial of N is x*, which coincides with the characteristic polynomial of N. (Another way of
determining that the minimal polynomial of N is x* is realizing that N — xI is already a Jordan block of size 4 x 4.) O
Let
1 23
A=0 1 2|.
0 0 2

Please find its Jordan canonical form C and find the transformation matrix P such that C = P~1AP.
Proof. Our characteristic polynomial of A is

I-x 2 3
det(A — xI) = det 0 1-x 2
0 0 2-x

=(1-x)*2-x).

Next, we will find the minimal polynomial of A. Since

1 00 [1 2 3 1 oo [1 2 3
(I-AQRI-A)=|l0 1 o|-]0 1 2[|[2]0 1T 0o]|-|0 1 2

00 1] |0 0 2 00 1| |0 0 2
0 -2 -=3][t -2 -3

=0 o -=2{[o 1 =2
0 0 -1/j0 0 0
(0 -2 4

=0 0 0
0 0 0

#0,

it follows that (1 — x)(2 — x) is not a minimal polynomial of A. This also implies that 1 — x, 2 — x are not minimal polynomials
of A. Therefore, the minimal polynomial of A is (1 — x)?(2 — x), which coincides with the characteristic polynomial of A.
Following Remark 8.4.6 of the Notes, which asserts that each factor (x—4;)"" of a minimal polynomial (x—A1)" - - - (x = A,,)"™
is related to a Jordan block Jj, of the size r;, our Jordan blocks corresponding to our eigenvalues 1, 2 are

1 1
Jl=[0 1],

L =2],
and so the Jordan canonical form of A is
|40
C= [0 Jz]
1 1 0
=0 1 0f.
0 0 2

Next, we will find a transformation matrix P satisfying C = P~'AP. For the eigenvalue 1, we solve (A — I)x = 0 to get

0=(A-I)x
0 2 3|[x
={0 0 2||x],
0 0 1 X3



X1 X1 1

from which we obtain the eigenvector x = |xp| = | 0| € spanq |0f ¢, and so we can choose our first basis vector to be
X3 0 0
1
v1 := |0]. Next, we solve (A — I)x = v; to get
0
1
of = Vi
0
=(A-Dx
0 2 3 X1
=0 0 2{]|x2],
0 0 1f|x3
X1 )Cl— 0 X1 0 2)61
from which we obtain the eigenvector x = |x2| = | $| = |3|+|0| € [5| +span{| 1 |}, and so we can choose the
X3 0] 0 0 0 0
[0
representative vector to be our second basis vector v := % . Finally, for the eigenvalue 2, we solve (A — 27)x = 0 to get
0
0=(A-2D)x
-1 2 RIRES
= 0 -1 2 X210,
0 0 Of]|xs
X1 Tx3 7
from which we obtain the eigenvector x = |x2| = |2x3| € spanq |2| ¢, and so we can choose our third basis vector to be
X3 X3 1
7
v3 := |2]. Since the matrix representation C of T under our basis 8 := {v, v2, v3} C C?3 is in Jordan canonical form, it follows
1

that B is a Jordan basis. This means that our transformation matrix is

P=[V1 V) V3]

1 0 7
1
0 0 1
Furthermore,
10 717'[1 2 311 0 7
pl'Ap=10 1 2| |0 1 2o } 2
0 0 1f [0 0 2/[0 0 I
1 o 7]t 2 3][1 o
=10 2 —4{|0 1 2f|l0o § 2
0 0 1]lo 0 2/[0 0 1
1 1 0
=0 1 0
0 0 2
=C,

as desired. |



