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8.6. Suppose S,T ∈ L(V) and ST is nilpotent. Prove that TS is nilpotent.

Proof. Since ST is nilpotent, there exists some positive integer i such that (ST)i = 0. So, using associativity of linear maps,
we have

(TS)i+1 = (TS)(TS) · · · (TS)(TS)︸                      ︷︷                      ︸
i+1 terms

= T (ST) · · · (ST)︸         ︷︷         ︸
i terms

S

= T(ST)iS

= T0S

= 0,

and so TS is nilpotent. �

8.7. Prove or give a counterexample: The set of nilpotent operators on V is a subspace of L(V).

Proof. Disprove: Define S,T by their matrix representations

A =

[
0 1
0 0

]
,

B =

[
0 0
1 0

]
,

respectively. Then A2 = B2 = 0, which means S,T are nilpotent. But at the same time we have

A + B =

[
0 1
1 0

]
.

Then, for all positive integers i, we have (A + B)i = I if i is even and (A + B)i = A + B if i is odd. In other words, (A + B)i , 0
for all positive integers i, which means S + T is not nilpotent. This violates the closure property of a subspace, and so the set
of nilpotent operators on V is not a subspace of L(V). �

8.8. Give an example of an operator T on a finite-dimensional real vector space such that 0 is the only eigenvalue of T but T is not
nilpotent.

Proof. Let V = R3, let B ⊂ R3 be a basis and define A = [T]B←B by

A :=

0 0 0
0 0 −1
0 1 0


Then solving det(A − λI) = 0 shows that the only real (that is, non-imaginary) eigenvalue of A is 0. However, we have

A2 =


0 0 0
0 −1 0
0 0 −1

 ,
A3 =


0 0 0
0 0 1
0 −1 0

 ,
A4 =


0 0 0
0 1 0
0 0 1

 ,
A5 = A,

all of which are clearly nonzero matrices. This means for all integers i ≥ 5 that Ai is a product of A, A2, A3, A4 and hence
nonzero. This is enough to demonstrate that we have Ai , 0, and therefore T i , 0, for all positive integers i, and so T is not
nilpotent. �



8.9. Suppose T ∈ L(C4) is such that the eigenvalues of T are 3, 5, 8. Prove that (T − 3I)2(T − 5I)2(T − 8I)2 = 0.

Proof. We have that 3, 5, 8 are the only three distinct eigenvalues of T and the size of the matrix representation of T is 4. Since
this matrix representation of T is similar to the corresponding Jordan canonical form of T , we can determine that the largest
Jordan block is 2 × 2. This implies the highest degree of a factor of a minimal polynomial is 2. So the minimal polynomial of
T is exactly one of (x − 3)2(x − 5)(x − 8), (x − 3)(x − 5)2(x − 8), (x − 3)(x − 5)(x − 8)2; in other words, we have exactly one of
(T − 3I)2(T − 5I)(T − 8I) = 0, (T − 3I)(T − 5I)2(T − 8I) = 0, (T − 3I)(T − 5I)(T − 8I)2 = 0, which means in all three cases
we get (T − 3I)2(T − 5I)2(T − 8I)2 = 0.

Alternate proof: Theorem 8.3.2 of the Notes asserts that V is a direct sum of generalized eigenspaces; that is, C4 = VG
3 ⊕

VG
5 ⊕ VG

8 . Taking dimensions, we get 4 = dim C4 = dim VG
3 + dim VG

5 + dim VG
8 . This implies that one of VG

3 ,V
G
5 ,V

G
8 must

have dimension 2 and the other two have dimension 1; in other words one of the eigenvalues 3, 5, 8 have multiplicity 2 and
the other two multiplicity 1. For instance, if 3 has multiplicity 2, then there exists a generalized eigenvector x ∈ C4 satisfying
(T − 3I)2x = 0, which implies (T − 3I)2 = 0. In any case, we have exactly one of (T − 3I)2 = 0, (T − 5I)2 = 0, (T − 8I)2 = 0,
which means in all three cases we get (T − 3I)2(T − 5I)2(T − 8I)2 = 0. �

8.10. (1) Give an example of an operator on C4 whose characteristic polynomial equals (x − 1)(x − 3)3 and whose minimal
polynomial equals (x − 1)(x − 3)2.

Proof. Let B ⊂ C4 be a basis and define A = [T]B←B by

A :=


1 0 0 0
0 3 1 0
0 0 3 0
0 0 0 3

 .
Then, by Definition 8.4.2 of the Notes, the characteristic polynomial of A is

det(A − xI) = det
©«

1 − x 0 0 0

0 3 − x 1 0
0 0 3 − x 0
0 0 0 3 − x


ª®®®¬

= (1 − x)(3 − x)3

= (x − 1)(x − 3)3.

To find the minimal polynomial of A, we evaluate all the factors of our characteristic polynomial of A. We have

(A − I)(A − 3I) =


0 0 0 0
0 2 1 0
0 0 2 0
0 0 0 2



−2 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0


=


0 0 0 0
0 0 2 0
0 0 0 0
0 0 0 0


, 0,

which means (x − 1)(x − 3) is not the minimal polynomial of A. This implies that all factors of (x − 1)(x − 3)—that
is, x − 1, x − 3—are also not minimal polynomials of A; otherwise, if either x − 1 or x − 3 were, then we would have
A − I = 0 or A − 3I = 0, either of which would imply (A − I)(A − 3I) = 0 which contradicts (A − I)(A − 3I) , 0.
However, we have

(A − I)(A − 3I)2 =


0 0 0 0
0 2 1 0
0 0 2 0
0 0 0 2



−2 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0


2

=


0 0 0 0
0 2 1 0
0 0 2 0
0 0 0 2



4 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


= 0.

So the minimal polynomial of A is (x − 1)(x − 2)2. �



(2) Give an example of an operator on C4 whose characteristic and minimal polynomials both equal x(x − 1)2(x − 3).

Proof. Let C ⊂ C4 be a basis and define B = [T]C←C by

B :=


0 0 0 0
0 1 1 0
0 0 1 0
0 0 0 3

 .
Then, by Definition 8.4.2 of the Notes, the characteristic polynomial of B is

det(B − xI) = det
©«

−x 0 0 0
0 1 − x 1 0
0 0 1 − x 0
0 0 0 3 − x


ª®®®¬

= −x(1 − x)2(3 − x)

= x(x − 1)2(x − 3).

To show that the minimal polynomial of B is our characteristic polynomial of B, we need to show that all the factors of
our characteristic polynomial of B of lower degree is not the minimal polynomial of B. We have

B(B − I)(B − 3I) =


0 0 0 0
0 1 1 0
0 0 1 0
0 0 0 3



−1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 2



−3 0 0 0
0 −2 1 0
0 0 −2 0
0 0 0 0


=


0 0 0 0
0 0 −2 0
0 0 0 0
0 0 0 0


, 0,

which means x(x − 1)(x − 3) is not the minimal polynomial of A. This implies that all the factors of lower degree—that
is, x, x − 1, x − 3, x(x − 1), x(x − 3), (x − 1)(x − 3)—are also not minimal polynomials of B; otherwise, if any one of
them were, then we would have one of B = 0, B − I = 0, B − 3I = 0, B(B − I) = 0, B(B − 3I) = 0, (B − I)(B − 3I) = 0,
any one of which would imply B(B − I)(B − 3I) = 0 which contradicts B(B − I)(B − 3I) , 0. Hence, none of
x, x−1, x−3, x(x−1), x(x−3), (x−1)(x−3), x(x−1)(x−3) are minimal polynomials of B, which means x(x−1)2(x−3)
must be the minimal polynomial of B and therefore coincide with the characteristic polynomial of B. �

8.11. Suppose V is a complex vector space and T ∈ L(V). Prove that V has a basis consisting of eigenvectors of T if and only if the
minimal polynomial of T has no repeated zeros.

Proof. (I am stacking “if and only if" statements instead of proving the forward and backward directions separately.) Theorem
5.5.2 of the Notes asserts that V has a basis consisting of eigenvectors of T if and only if T is diagonalizable. And T is
diagonalizable if and only if the largest Jordan block corresponding to any eigenvalue of T is size 1× 1. Finally, Remark 8.4.6
of the Notes asserts that each factor (x − λi)ri of a minimal polynomial (x − λ1)

r1 · · · (x − λm)rm is related to a Jordan block
Jλi of the size ri . So each Jordan block is size 1 × 1 if and only if the minimal polynomial of T has no repeated zeros. �

8.12. Let

N :=


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 .
Please find the characteristic polynomial and minimal polynomial of N .

Proof. By Definition 8.4.2 of the Notes, the characteristic polynomial of N is

det(N − xI) = det
©«

−x 1 0 0
0 −x 1 0
0 0 −x 1
0 0 0 −x


ª®®®¬

= x4.



Also, we have

N2 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,
N3 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 ,
N4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,
and so the minimal polynomial of N is x4, which coincides with the characteristic polynomial of N . (Another way of
determining that the minimal polynomial of N is x4 is realizing that N − xI is already a Jordan block of size 4 × 4.) �

8.13. Let

A :=

1 2 3
0 1 2
0 0 2

 .
Please find its Jordan canonical form C and find the transformation matrix P such that C = P−1 AP.

Proof. Our characteristic polynomial of A is

det(A − xI) = det ©«

1 − x 2 3

0 1 − x 2
0 0 2 − x

ª®¬
= (1 − x)2(2 − x).

Next, we will find the minimal polynomial of A. Since

(I − A)(2I − A) =
©«

1 0 0
0 1 0
0 0 1

 −

1 2 3
0 1 2
0 0 2

ª®¬ ©«2

1 0 0
0 1 0
0 0 1

 −

1 2 3
0 1 2
0 0 2

ª®¬
=


0 −2 −3
0 0 −2
0 0 −1



1 −2 −3
0 1 −2
0 0 0


=


0 −2 4
0 0 0
0 0 0


, 0,

it follows that (1− x)(2− x) is not a minimal polynomial of A. This also implies that 1− x, 2− x are not minimal polynomials
of A. Therefore, the minimal polynomial of A is (1 − x)2(2 − x), which coincides with the characteristic polynomial of A.
Following Remark 8.4.6 of the Notes, which asserts that each factor (x−λi)ri of a minimal polynomial (x−λ1)

r1 · · · (x−λm)rm
is related to a Jordan block Jλi of the size ri , our Jordan blocks corresponding to our eigenvalues 1, 2 are

J1 =

[
1 1
0 1

]
,

J2 =
[
2
]
,

and so the Jordan canonical form of A is

C =

[
J1 0
0 J2

]
=


1 1 0
0 1 0
0 0 2

 .
Next, we will find a transformation matrix P satisfying C = P−1 AP. For the eigenvalue 1, we solve (A − I)x = 0 to get

0 = (A − I)x

=


0 2 3
0 0 2
0 0 1



x1
x2
x3

 ,



from which we obtain the eigenvector x =


x1
x2
x3

 =


x1
0
0

 ∈ span


1
0
0


, and so we can choose our first basis vector to be

v1 :=

1
0
0

 . Next, we solve (A − I)x = v1 to get


1
0
0

 = v1

= (A − I)x

=


0 2 3
0 0 2
0 0 1



x1
x2
x3

 ,
from which we obtain the eigenvector x =


x1
x2
x3

 =


x1
1
2
0

 =


0
1
2
0

 +


x1
0
0

 ∈

0
1
2
0

 + span


2x1
1
0


, and so we can choose the

representative vector to be our second basis vector v2 :=

0
1
2
0

 . Finally, for the eigenvalue 2, we solve (A − 2I)x = 0 to get

0 = (A − 2I)x

=


−1 2 3
0 −1 2
0 0 0



x1
x2
x3

 ,
from which we obtain the eigenvector x =


x1
x2
x3

 =


7x3
2x3
x3

 ∈ span


7
2
1


, and so we can choose our third basis vector to be

v3 :=

7
2
1

 . Since the matrix representation C of T under our basis B := {v1, v2, v3} ⊂ C
3 is in Jordan canonical form, it follows

that B is a Jordan basis. This means that our transformation matrix is

P =
[
v1 v2 v3

]
=


1 0 7
0 1

2 2
0 0 1

 .
Furthermore,

P−1 AP =


1 0 7
0 1

2 2
0 0 1


−1 

1 2 3
0 1 2
0 0 2



1 0 7
0 1

2 2
0 0 1


=


1 0 −7
0 2 −4
0 0 1



1 2 3
0 1 2
0 0 2



1 0 7
0 1

2 2
0 0 1


=


1 1 0
0 1 0
0 0 2


= C,

as desired. �


